Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Genomic data of an environmental *Escherichia coli* isolate shows high resemblance to *E. coli* K-12 reference strain MG1655.

Nicola Holden^{a,b,*}

^a SRUC, Department of Rural Land Use, Craibstone Estate, Aberdeen AB21 9YA, UK ^b Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, UK

ARTICLE INFO

Article history: Received 17 August 2021 Revised 28 October 2021 Accepted 12 November 2021 Available online 18 November 2021

Keywords: Phylogenomics Clonality Whole genome alignment Whole genome sequencing

ABSTRACT

Escherichia coli species exhibits a high genomic diversification from evolution, mobile genetic elements and recombination. An environmental *E. coli* isolate, 'JHI_5025' from a crop trial appeared to be clonally related to the historical reference isolate *E. coli* K-12 strain 'MG1655', warranting further genomic analysis. Their genomes share an average nucleotide identity of 99.74% and whole genome alignment showed little rearrangement of the JHI_5025 sequence compared to the reference. Five genomic islands not in the reference aligned to other sequences in the *Enterobacteriaceae*. Isolate JHI_5025 contained *E. coli* K-12 F plasmid sequence and at least one complete prophage sequence. The genome and comparison dataset provides utility of *E. coli* JHI_5025 as a representative contemporary genetic mimic of a well-known and much used workhorse strain.

> © 2021 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

* Correspondence to: SRUC, Department of Rural Land Use, Craibstone Estate, Aberdeen AB21 9YA, UK. *E-mail address:* Nicola.holden@sruc.ac.uk Social media:

https://doi.org/10.1016/j.dib.2021.107586

2352-3409/© 2021 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Omics: Genomics
Specific subject area	Phylogenomics comparative dataset of an environmental <i>E. coli</i> with reference strain <i>E. coli</i> K-12 MG1655
Type of data	Table
How data ware acquired	Figure Bioinformatics tools
now data were acquired	CLC Genomics Workbench (v20.0.4) with Whole Genome Comparison plugin
	installed (Qiagen Ltd.), run on a Windows 10 laptop computer (Core i5).
	Online tools for ANI, plasmid and phage sequences (detailed in Materials &
Data format	Raw
	Analyzed
Parameters for data collection	Isolate E. coli JHI_5025 from a collection of environmental Escherichia species
	isolates had an identical sequence type to the reference, <i>E. coli</i> K-12 strain
	2016) and together with geographical and temporal separation warranted a
	detailed comparative analysis between the isolates.
Description of data collection	Genome sequence files were used for the comparison using bioinformatics
	tools. The genome sequence of <i>E. coli</i> JHI_5025 is complied from short-read
	categorised as 'unfinished' The reference genome is complete and well
	described (Blattner et al. 1997; Hayashi et al. 2006), with the most recent
	version (U00096.3) used in the comparison.
Data source location	Secondary data analysis using Primary data.
	ISOIATE COLLECTION ITOM: James Hutton Institute
	Dundee,
	UK
	Latitude and longitude for collected samples/data: 56•455 (lat) by -3•075 (lng)
	SAMEA104314548 sample alias E8 ENA Browser (ebi acuk) Sequencing
	project number PRJEB22630.
Data accessibility	With the article
	AND:
	Repository name: European Nucleotide Archive
	Direct URL to data: ENA Browser (ebi.ac.uk)
	MG1655 Data identification number: U00096.3
	Direct URL to data: ENA Browser (ebi.ac.uk)

Value of the Data

- An environmental *E. coli* isolate (soil, Scotland, 2009) was genetically highly similar to the *E. coli* K-12 reference strain MG1655, a historical isolate (neonate, USA, 1922) widely known as the 'laboratory workhorse'
- The main beneficiaries are those using *E. coli* strain MG1655 genomic or functional data
- *E. coli* isolate JHI_5025 represents a contemporary genetic mimic of historical strain MG1655 enabling comparative analyses in basic and applied microbial sciences

1. Data Description

Environmental *Escherichia* species collected from a crop trial [4] were whole genome sequenced as part of a larger study [5]. Pan-genome analysis indicated clonality between isolate JHI_5025 and reference *E. coli* isolate MG1655 [2,3] despite functional differences [1], warranting detailed secondary analysis.

Fig. 1. Whole genome alignment between JHI_5025 and the MG1655.

Blocks of sequence are alignment with respect to each other, coloured by reference position. Numbering is supplied for genomic location relative to the reference sequence (MG1655: U00096.3).

The short-read (unfinished) genome sequence of JHI_5025 contains 4,887,055 nt in 71 contigs, G/C content of 50.5% and N50 of 265,259, and complete genome of strain MG1655 contains 4,641,652 nt with G/C content of 50.8% [3]. The average nucleotide identity between the strains is 99.74% (SD: 1.03%). Whole genome alignment showed little rearrangement (Fig. 1), with alignment of 'gene' features in 3,997,226 nt (JHI_5025) and 3,958,211 nt (MG1655). Inclusion of genome features aligned 4,578,512 nt (93.69% total genome) of JHI_5025 and 4,494,985 nt (96.84% total genome) of MG1655. Five unique 'genomic islands' occurred in JHI_5025 with respect to MG1655 (Table 1A), which matched sequences in *Yersinia pseudotuberculosis* (strain FDAARGOS_582), *E. coli* (strain RHBSTW-00046), *Enterobacter hormaechei* subsp. *steigerwaltii* (strain ME-1), *E. coli* 0141:H4 (strain P13-6) and *E. coli* (NCTC9102), and one prophage (Entero_IME10). One plasmid was detected that mapped in three contig positions to *E. coli* K-12 plasmid F (accession AP001918) (Table 1B). 12 prophage regions were detected including an intact sequence absent in strain MG1655 (Table 1C) and two incomplete regions also on 'genomic islands' (Table 1A). Recognised recombination 'hotspots' *rbf* and *fim* gene clusters [6] were conserved, although flagella types differed (H39 for isolate JHI_5025, H48 for MG1655, Table 1D).

2. Experimental Design, Materials and Methods

Genomic comparisons were carried out using the contig sequence fasta file for strain JHI_5025, available from ENA (project PRJEB22630, SAMEA104314548, isolated from soil, 2008, UK) and the complete sequence fasta file for reference strain MG1655 (U00096.3) using the CLC Genomics Workbench suite (Qiagen Ltd. Hilden, Germany), with the Whole Genome Alignment tool. A 2-way average nucleotide identity (ANI) was generated using an online tool [7] for positional mapping of 21,278 fragments. Unique 'genomic island' sequences in isolate JHI_5025 with respect to the reference sequence were identified with the Blastn algorithm [8], using default parameters (Word size, 11; Expect value, 0.05; Hitlist size, 10; Match/Mismatch scores, 2,-3; Gapcosts, 5,2; Low Complexity Filter, Yes; Filter string, L;m; Genetic Code, 1), with metrics for contiguous sequences with an arbitrary cut-off of 1000 nt in length in Table 1A. Specific sequences were detected with online tools for plasmids, bacteriophage and serotype from PlasmidFinder [9], PHASTER [10] and SeroTypeFinder [11] respectively, using default settings for each.

Tal	ы	6	1
Id	D	e	1

Genomic features in E. coli isolate JHI_5025.

A. 'Genomic Islands' (unique with respect to MG1655)

Name	Contig	blastn_tophit	Accession number	Bit_Score (raw)	E_value	Query Length	Identities	Gaps
island2	NODE_1_length_624063_cov_18.6826_ID_962	Escherichia coli strain RHBSTW-00046 chromosome	CP056894.1	16106 (17861)	0	27134	8938/8943 (99%)	0/8943 (0%)
island2	NODE_1_length_624063_cov_18.6826_ID_962	Escherichia coli strain RHBSTW-00046 chromosome	CP056894.1	8592 (9528)	0	27134	4770/4774 (99%)	0/4774 (0%)
island2	NODE_1_length_624063_cov_18.6826_ID_962	Escherichia coli strain RHBSTW-00046 chromosome	CP056894.1	17183 (19056)	0	27134	9528/9528 (100%)	0/9528 (0%)
island2	NODE_1_length_624063_cov_18.6826_ID_962	Escherichia coli strain RHBSTW-00046 chromosome	CP056894.1	6855 (7602)	0	27134	3801/3801 (100%)	0/3801 (0%)
island3	NODE_1_length_624063_cov_18.6826_ID_962	Enterobacter hormaechei subsp. steigerwaltij strain MF-1 chromosome	CP041733.1	2477 (2746)	0	39903	1555/1671 (93%)	9/1671 (0%)
island3	NODE_1_length_624063_cov_18.6826_ID_962	Enterobacter hormaechei subsp. steigerwaltii strain ME-1 chromosome	CP041733.1	26619 (29520)	0	39903	16633/17877 (93%)	51/17877 (0%)
island3	NODE_1_length_624063_cov_18.6826_ID_962	Enterobacter hormaechei subsp. steigerwaltii strain ME-1 chromosome	CP041733.1	3486 (3865)	0	39903	2297/2537 (91%)	16/2537 (0%)
island3	NODE_1_length_624063_cov_18.6826_ID_962	Enterobacter hormaechei subsp. steigerwaltii strain ME-1 chromosome	CP041733.1	2166 (2401)	0	39903	1316/1393 (94%)	0/1393 (0%)
island3	NODE_1_length_624063_cov_18.6826_ID_962	Enterobacter hormaechei subsp. steigerwaltii strain ME-1 chromosome	CP041733.1	1098 (1217)	0	39903	1113/1440 (77%)	12/1440 (0%)
island1	NODE_19_length_84137_cov_23.9239_ID_1485	Yersinia pseudotuberculosis strain FDAARGOS 582 chromosome	CP033711.1	25755 (28562)	0	15700	14287/14291(99%)	0/14291 (0%)
island5	NODE_4_length_375183_cov_20.3356_ID_3592	Escherichia coli strain NCTC9102 genome assembly	LR134227.1	11307 (12539)	0	6277	6274/6277 (99%)	0/6277 (0%)
island4	NODE_6_length_265259_cov_20.0908_ID_899	Escherichia coli O141:H4 strain P13-6 chromosome	CP080223.1	17232 (19110)	0	9555	9555/9555 (100%)	0/9555 (0%)
island6	NODE_9_length_131940_cov_22.2706_ID_1056	incomplete Blastn hits / PHAGE_Entero_IME10	NC_019501	n/a	n/a	38335	n/a	n/a

(continued on next page)

B. Plasmid d	etection								
					-	Query /			
Position	Contig	Plasmid	Accession number	Identity	Position in contig	Template length			
1 2	NODE_21_length_77330_cov_37.4653_ID_1799 NODE_21_length_77330_cov_37.4653_ID_1799	IncFIA IncFIB (AP001918)	AP001918 AP001918	100 99.71	40114-40475 19504-20185	362 / 388 682 / 682			
3	NODE_21_length_77330_cov_37.4653_ID_1799	IncFIC (FII)	AP001918	100	57552-58050	499 / 499			
C. Bacteriopl	nage detection								
			Accession			Region			
Region	JHI_5025 contig	Most Common Phage	number	Score	Completeness	Length	Region Position	# Total Proteins	GC%
1	NODE_1_length_624063_cov_18.6826_ID_962	PHAGE_Escher_vB_EcoM_12474III	NC_049457	70	questionable	37.7Kb	7183-44933	42	50.58%
2	NODE_1_length_624063_cov_18.6826_ID_962	PHAGE_Entero_Tyrion	NC_031077	89	questionable	54.2Kb	477673-531898	60	52.51%
ĉ	NODE_4_length_375183_cov_20.3356_ID_3592	PHAGE_Escher_SH2026Stx1	NC_049919	50	incomplete	6.7Kb	367796-374513	11	47.08%
4	NODE_5_length_327848_cov_20.9475_ID_3493	PHAGE_Shigel_SflV	NC_022749	80	questionable	10.8Kb	23761-34590	14	44.99%
5	NODE_9_length_131940_cov_22.2706_ID_1056	PHAGE_Entero_IME10	NC_019501	110	intact	41.6Kb	202-41828	55	46.69%
9	NODE_9_length_131940_cov_22.2706_ID_1056	PHAGE_Klebsi_ST437_OXA245phi4.2	NC_049449	10	incomplete	9.4Kb	120559-130009	14	46.97%
7	NODE_20_length_81134_cov_18.2852_ID_1451	PHAGE_Klebsi_4LV2017	NC_047818	10	incomplete	11.4Kb	156-11605	18	53.45%
80	NODE_21_length_77330_cov_37.4653_ID_1799	PHAGE_Stx2_c_1717	NC_011357	70	questionable	8.3Kb	18104-26477	13	50.32%
6	NODE_24_length_65727_cov_20.6388_ID_1687	PHAGE_Entero_HK629	NC_019711	50	incomplete	7.3Kb	36313-43650	7	43.69%
10	NODE_31_length_28944_cov_23.5938_ID_1979	PHAGE_Escher_500465_1	NC_049342	60	incomplete	21.3Kb	1-21345	15	48.97%
11	NODE_35_length_9188_cov_27.7188_ID_2232	PHAGE_Entero_lambda	NC_001416	50	incomplete	9Kb	3-9078	16	44.61%
12	NODE_36_length_7654_cov_27.8584_ID_2268	PHAGE_Entero_mEp460	NC_019716	60	incomplete	7.5Kb	3-7578	16	42.29%
D. Serotype	detection								
			Accession		Position in	Template /			
Database	Contig	Gene/Seroty pe	number	Identity	contig	HSP length			
H type	NODE_2_length_507490_cov_20.8048_ID_781	fliC / H39	AY250019	100	150955-152253	1299 / 1299			
genes									
0 type	:	No hit found	n/a	n/a	:	n/a			
genes									

 Table 1 (continued)

Ethics Statement

n/a.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

CRediT Author Statement

Nicola Holden: Conceptualization, Investigation, Methodology, Writing – review & editing.

Acknowledgments

NH was funded by Scottish Government RESAS Strategic Framework Programme (2016-2022), project RD2.2.6 'Animal Epidemiology'.

References

- J. Marshall, Y. Rossez, G. Mainda, D.L. Gally, T. Daniell, et al., Alternate thermoregulation and functional binding of Escherichia coli Type 1 fimbriae in environmental and animal isolates, FEMS Microbiol. Lett. (2016), doi:10.1093/ femsle/fnw251.
- [2] F.R. Blattner, P. Gr, C.A. Bloch, N.T. Perna, V. Burland, et al., The complete genome sequence of *Escherichia coli* K-12, Science 277 (5331) (1997) 1453–1462, doi:10.1126/science.277.5331.1453.
- [3] K. Hayashi, N. Morooka, Y. Yamamoto, K. Fujita, K. Isono, et al., Highly accurate genome sequences of *Escherichia coli* K-12 strains MG1655 and W3110, Mol. Syst. Biol. 2 (2006) 2006.0007, doi:10.1038/msb4100049.
- [4] N.J. Holden, F. Wright, K. MacKenzie, J. Marshall, S. Mitchell, et al., Prevalence and diversity of *Escherichia coli* isolated from a barley trial supplemented with bulky organic soil amendments: green compost and bovine slurry, Lett. Appl. Microbiol. 58 (3) (2013) 205–212, doi:10.1111/lam.12180.
- [5] N. Lupolova, T.J. Dallman, N.J. Holden, DL. Gally, Patchy promiscuity: machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli, Microb. Gen. 3 (2017), doi:10.1099/mgen.1090.000135.
- [6] L.M. Bobay, C.C. Traverse, H. Ochman, Impermanence of bacterial clones, Proc. Natl. Acad. Sci. U. S. A. 112 (29) (2015) 8893–8900, doi:10.1073/pnas.1501724112.
- [7] L.M. Rodriguez-R, K.T. Konstantinidis, The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes, PeerJ Preprints 4 (2016) e1900v1901, doi:10.7287/peerj.preprints.1900v1.
- [8] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (3) (1990) 403–410, doi:10.1016/s0022-2836(05)80360-2.
- [9] A. Carattoli, E. Zankari, A. García-Fernández, M. Voldby Larsen, O. Lund, et al., *In silico* detection and typing of plasmids using PlasmidFinder and plasmid Multilocus Sequence Typing, Antimicrob. Agents Chemother. 58 (7) (2014) 3895–3903.
- [10] D. Arndt, J.R. Grant, A. Marcu, T. Sajed, A. Pon, et al., PHASTER: a better, faster version of the PHAST phage search tool, Nucl. Acids Res. 44 (W1) (2016) W16–W21.
- [11] K.G. Joensen, A.M.M. Tetzschner, A. Iguchi, F.M. Aarestrup, F. Scheutz, et al., Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data, J. Clin. Microbiol. 53 (8) (2015) 2410–2426.