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Epitope similarity cannot explain 
the pre‑formed T cell immunity 
towards structural SARS‑CoV‑2 
proteins
Ulrik Stervbo 1,2,4*, Sven Rahmann 3,4*, Toralf Roch 1,2, Timm H. Westhoff1 & 
Nina Babel1,2

The current pandemic is caused by the SARS‑CoV‑2 virus and large progress in understanding the 
pathology of the virus has been made since its emergence in late 2019. Several reports indicate short 
lasting immunity against endemic coronaviruses, which contrasts studies showing that biobanked 
venous blood contains T cells reactive to SARS‑CoV‑2 S‑protein even before the outbreak in Wuhan. 
This suggests a preformed T cell memory towards structural proteins in individuals not exposed to 
SARS‑CoV‑2. Given the similarity of SARS‑CoV‑2 to other members of the Coronaviridae family, the 
endemic coronaviruses appear likely candidates to generate this T cell memory. However, given the 
apparent poor immunological memory created by the endemic coronaviruses, immunity against 
other common pathogens might offer an alternative explanation. Here, we utilize a combination of 
epitope prediction and similarity to common human pathogens to identify potential sources of the 
SARS‑CoV‑2 T cell memory. Although beta‑coronaviruses are the most likely candidates to explain 
the pre‑existing SARS‑CoV‑2 reactive T cells in uninfected individuals, the SARS‑CoV‑2 epitopes 
with the highest similarity to those from beta‑coronaviruses are confined to replication associated 
proteins—not the host interacting S‑protein. Thus, our study suggests that the observed SARS‑CoV‑2 
pre‑formed immunity to structural proteins is not driven by near‑identical epitopes.

The current coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2)1 with devastating consequences. SARS-CoV-2 infections have a broad spectrum 
of manifestations, ranging from asymptomatic to severe pneumonia and acute respiratory distress  syndrome2. 
The reason for this broad range is still unclear, but markedly decreased immune cell  numbers3,4, together with 
cytokine  storm5, and dysregulation of lung infiltrating immune  cells6–9 have been associated with critical COVID-
19 manifestations. The more severe virulence of SARS-CoV-2 is in contrast to the four endemic coronaviruses 
OC43, HKU1, 229E, and NL63, which are responsible for the common cold with usually mild  symptoms10.

Coronaviruses are single positive stranded RNA viruses and with a genome size of about 30 kb are the largest 
of the known RNA-viruses. The SARS-CoV-2 genome contains 14 open reading frames (ORFs), where the ORF10 
is not translated into  protein11. In addition to a number of non-structural proteins, the ORFs translates into the 
four structural proteins: spike (S) glycoprotein, small envelope (E) glycoprotein, membrane (M) glycoprotein, and 
the nucleocapsid (N) protein. The most non-structural proteins are encoded by ORF1a and ORF1b, where ORF1a 
is translated into the polyprotein pp1a and through a slippery sequence near the end of ORF1a the translation 
is continued into the ORF1b which produce the 7096 amino acid long polyprotein  pp1ab12. The autoproteolytic 
cleavage of the polyproteins pp1a and pp1ab creates the non-structural proteins, which form the complex repli-
case machinery. Among these are the essential RNA-dependent RNA polymerase (RdRp) embedded in  ORF1b11.

T cells recognize peptides presented in the context of the human leukocyte antigen (HLA) class I and class 
II molecules. Peptides presented on the class I HLAs are generally recognized by  CD8+ cytotoxic T cells, while 
 CD4+ T helper cells recognize peptides bound on the HLA class II molecule. T cells are known to be cross 

OPEN

1Center for Translational Medicine, University Hospital Marien Hospital Herne, Ruhr-University, Bochum, 
Germany. 2Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, 
Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität 
Zu Berlin, Berlin Institute of Health, Berlin, Germany. 3Genome Informatics, Institute of Human Genetics, 
University of Duisburg-Essen, Duisburg, Germany. 4These authors contributed equally: Ulrik Stervbo and Sven 
Rahmann. *email: ulrik.stervbo@elisabethgruppe.de; sven.rahmann@uni-due.de

http://orcid.org/0000-0002-2831-8868
http://orcid.org/0000-0002-8536-6065
http://orcid.org/0000-0003-2948-8700
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-75972-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18995  | https://doi.org/10.1038/s41598-020-75972-z

www.nature.com/scientificreports/

 reactive13,14, that is, a single T cell can recognize similar peptides derived from different pathogens presented by 
HLA molecules. Additionally, T cells are known to be promiscuous and can recognize many different  epitopes15.

The SARS-CoV-2 virus elicits a T cells response during the  infection6,16–18. However, mounting evidence sug-
gests that 20–50% of unexposed individuals are capable of responding to peptides derived from the S-, N-, and 
M-proteins of the SARS-CoV-2  virus6,16–24, indicating a pre-existing immunity to these SARS-CoV-2 proteins. 
A single influenza epitope has been identified by comparison of T cell  receptors25, but the original pathogenic 
source of this pre-formed T cell memory is generally unclear. Interestingly, identical SARS-CoV-2 specific T cell 
receptors were observed in multiple convalescent  donors17 indicating a similar source of the pre-formed immu-
nity. There is also some evidence of pre-existing SARS-CoV-2  antibodies26, which like for the T cells indicate 
that previous infections can cause SARS-CoV-2 cross-reactive immunity.

Given the high sequence similarity, endemic coronaviruses have been suggested likely inducers of the 
observed pre-existing immunity although other sources are  possible27. However, immunity to these coronaviruses 
appears short-lived as antibody titers return to baseline levels at 4–12 months after  infection28–30. Importantly, it 
can also not be excluded that re-infection with the same coronavirus type can occur within a single  year31. Both 
SARS-CoV-1, which caused the 2002–2004 SARS epidemic, and MERS-CoV, which emerged in 2012, have both 
been shown to elicit a long lasting T cell  memory20,32. In contrast, the T cell memory towards the endemic coro-
naviruses is not clear. For influenza it is clear that recurrent infections and epidemics are due to the accumulation 
of mutations in the hemagglutinin and  neuraminidase33. However, the genetic drift of endemic coronaviruses 
seems to be considerably slower than for Influenza A and  B34,35. Collectively, this indicates that other frequently 
encountered pathogens besides the endemic coronaviruses could have generated the preexisting immunity.

In the present report, we evaluate commonly occurring human pathogens for epitopes with a very high 
similarity to potential SARS-CoV-2 epitopes.

Results
We identified a number of pathogens commonly causing infections in the European population (Supplementary 
Tables 2–5). The list of pathogens included 32 viruses, 11 fungi, 26 bacteria and 2 parasites. We obtained all 
protein sequences for these pathogens from NCBI, and compared these to predicted HLA-I and HLA-II bind-
ing epitopes in SARS-CoV-2, and ranked the pathogens based on a relevance score (see Methods; Fig. 1a) based 
on short exact sequence matches of length k ("k-mers"). We limited the analysis to include only the five most 
common HLA alleles in the European population as reported in the Allele Frequency Net  Database36 (Supple-
mentary Tables 6–7).

We observed different relevance scores for the same pathogen, depending on the length of k-mers (Sup-
plementary Figs. 1 and 2). For k = 6 we found that all viruses were in the upper half when ranking the relevance 
scores, while the viruses were in the lower half for k = 8. This was independent of the HLA-class epitopes (Sup-
plementary Fig. 1 and 2).

Given the overall similarity between coronaviruses, the endemic coronaviruses are expected to have the 
highest relevance score. Given the compact genome size and highly optimized  proteins37 it seems likely that 
only short stretches will have an exact match, even when using a reduced alphabet. Conversely, more complex 
organisms have larger genome, why the probability of matching longer stretches increases. We therefore focus 
on pathogens with short (k = 6) matches.

Figure 1.  Analysis approach. (a) k-mers for k ϵ {6, 7, 8} were extracted from the proteins of relevant human 
pathogens and compared to epitopes predicted in the SARS-CoV-2 proteins. The epitope prediction was by 
netMHCpan and netMHCIIpan. Pathogens were ranked based on exact k-mer hits to the epitopes. (b) Principle 
of edit distance determination of epitopes. The SARS-CoV-2 epitope MKFSDRPFMLH has a edit distance of 
1 when compared to the putative pathogen epitope MKFSDRPFML_ because of the missing histidine at the 
C-terminus. The distance between MKFSDRPFMLH and MKFSDAPFMLHR is 2 because of the D6A exchange 
and the additional arginine at the C-terminus. The K2L, D5I, and F8S exchanges give rise to an edit distance of 3 
between MKFSDRPFMLH and MLFSIRPSMLH.
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Within the top 10 ranking pathogens for HLA-I binding SARS-CoV-2 epitopes based on k = 6, we find the 
two fungi Candida tropicalis and Cryptococcus neoformans, and the parasite Trichomonas vaginalis. Apart from 
the endemic coronaviruses HKU1, OC43, 229E, and NL63 we find the double-stranded DNA virus Human 
alphaherpesvirus 3 (varicella-zoster virus, VZV), the double-stranded RNA virus Rotavirus A (RV), and the 
single-stranded negative RNA virus Influenza B (Fig. 2a). When scoring the relevance based on matches to pre-
dict HLA-II SARS-CoV-2 epitopes, we find a similar result, the only difference being the appearance of Human 
Gammaherpesvirus 4 (Epstein-Barr virus, EBV) in place of Trichomonas vaginalis (Fig. 2b).

Viral genes can be expressed at different times during an  infection38. However, during the multiplication phase 
of the virus, the viral products are expressed in excess. To avoid selection of pathogens based on highly similar, 
but rarely or poorly expressed proteins, we therefore focus on the viruses in the following analysis.

Using netMHCpan and netMHCIIpan we predicted the epitopes in the reference sequences for the coro-
naviruses OC43, HKU1, 229E, and NL63, as well as Influenza B, EBV, RV, and VZV. Assessing the similarity to 
SARS-CoV-2 predicted epitopes, we calculated the edit distance from each SARS-CoV-2 epitope to each of the 
predicted epitopes in the selected pathogens (Fig. 1b). The edit distance – also known as the Levenshtein dis-
tance – accounts for addition, deletion, and substitution of amino acids to transform one amino acid sequence 
into another. We opted for this distance metric to allow differences in epitope lengths. The edit distance was 
calculated per analyzed HLA.

We found that the beta-coronaviruses OC43 and HKU1 had the highest number of epitopes identical to the 
predicted SARS-CoV-2 epitopes. For HLA-I bound epitopes we found 211 and 195 identical epitopes in HKU1 
and OC3, respectively (Fig. 3a). For HLA-II bound epitopes we found 493 and 464 identical epitopes in OC43 
and HKU1, respectively (Fig. 3b). When the similarity threshold was relaxed to an edit distance of 1 or 2 we 
found a similar pattern (Fig. 3). Interestingly, if we accept an edit distance of 3 we find the highest number of 
similar SARS-CoV-2 HLA-I epitopes in VZV, followed by OC43, and HKU1 with 1292, 1189, and 1163 epitopes, 
respectively (Fig. 3a). This was not reflected in HLA-II bound epitopes. The strong occurrence of SARS-CoV-2 
similar VZV epitopes was mainly driven by epitopes on HLA-B and HLA-C, and to a minor degree on HLA-A 
(Supplementary Figs. 3–5). In agreement with previous  reports39, we found a large number of identical or similar 
epitopes between SARS-CoV-1 and SARS-CoV-2 (Supplementary Fig. 6).

We next asked which coronavirus proteins might be the most likely inducers of cross reactivity. Arguably, the 
epitopes most likely to elicit a cross-reactive response are those found in many corona viruses and are presented 
by many HLAs. The latter constraint is important, since the current studies demonstrating cross-reactivity do not 
distinguish  HLAs6,16,18–23. We first enumerated the number of SARS-CoV-2 epitopes for each of the viral proteins 
(Supplementary Fig. 7). Given that the OC43 and HKU1 coronavirus strains appear the most likely pathogen to 
create SARS-CoV-2 reactive T cells, we focused the analysis on these strains.

We found that only epitopes from the SARS-CoV-2 polyprotein pp1ab have identical amino acid sequences to 
epitopes identified in both OC43 and HKU1. Interestingly, the epitopes from the S-protein are different at three 
positions or more compared to the amino acid sequences for the predicted OC43 and HKU1 epitopes. Since not 
only the number of epitopes but also the probability of the epitope to be presented, we also enumerated the num-
ber of epitope-presenting HLAs (Supplementary Fig. 8). The highest number of possible HLAs is 15 for HLA-I 
and 80 for HLA-II (50 DPA1-DPB1 combinations, 25 DQA1-DQB1 combinations, and 5 DRB1). Again, we found 
the highest number of HLAs and the highest similarity in epitopes from the SARS-CoV-2 polyprotein pp1ab.

Figure 2.  Some viruses and bacteria have peptides (k-mers) matching SARS-CoV-2 epitopes. The top 10 
pathogen relevance scores were averaged over k = 6,7,8 amino acids for (a) HLA-I, and (b) HLA-II. Pathogen 
relevance score for each pathogen and k are presented in Supplementary Figs. 1 and 2.
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The polyprotein pp1ab is 7096 amino acids long, and 15 nonstructural proteins are created through autopro-
teolytic  cleavage12. Comparison of the pp1ab amino acid sequence from SARS-CoV-2, HKU1, and OC43 revealed 
that the RNA-dependent RNA polymerase (RdRp), the helicase (Hel), the 3′–5′ exoribonuclease (ExoN), and 
the 2′-O-ribose methyltransferase generally have the highest similarity (Fig. 4a; upper panel). It is also in these 
regions that the near identical epitopes, as determined by an edit distance of 1 or less, are found (Fig. 4a; lower 
panel). An experimental study evaluated a set of 117 epitopes form HKU1 and OC43 for their cross reactive 
 potential24. Two epitopes from HKU1 OC43 were identified as capable of raising a T cell response, and were 
nearly identical to two SARS-CoV-2, marked with ‘M’ in Fig. 4a. The S-protein epitopes previously found to 
expand public T cell  clonotypes17, were not found to be shared with HKU1 or OC43.

T cell immunity to the structural proteins has received substantial  attention6,16,18–24. The S2 portion of the 
S-protein, which constitutes the stalk of the host interacting  receptor12, shares the highest similarity between 
SARS-CoV-2, HKU1, and OC43 (Fig. 4b; upper panel). Interestingly, we found some similar HLA-I epitopes (edit 
distance of 3) but only one HLA-II epitope (Fig. 4b; lower panel). The majority of the HLA-I epitopes and the 
single HLA-II epitope fall within the relatively conserved portion of the S2. The similarity between SARS–CoV–2, 
HKU1, and OC43 for the M- and N-proteins is most prominent around position 110 in either of the proteins 
(Fig. 4c,d; upper panel). This corresponds to the N-terminus of the long intraviron tail of the M-protein, and a 
small part of the RNA-binding domain of the N-protein. Similar to the observation for the S-protein, we find 
some similar HLA-I epitopes (edit distance of 3) but only one a single position of HLA-II epitopes (Fig. 4c,d; 
lower panel). These epitopes also appear in the conserved regions. Collectively, these data indicate that near 
identical epitopes derived from endemic coronaviruses cannot explain the observed cross-reactivity to structural 
SARS-CoV-2 proteins.

Discussion
There is mounting evidence for preformed immunity against the novel coronavirus SARS-CoV-216,19–22. Reports 
on memory T cell response to the endemic coronaviruses are lacking, but since antibody titers appear transient 
and frequent re-infections cannot be  excluded28–31, it is probable that the endemic coronaviruses with low viru-
lence do not create lasting immunity. This then begs the question, which pathogen can generate a memory T 

Figure 3.  OC43 and HKU1 epitopes can be presented on many HLAs. Epitopes were predicted using 
netMHCpan and netMHCIIpan in selected pathogens. The similarity between each SARS-CoV-2 epitope and 
pathogen epitope was calculated using the edit distance, and the number of shortest matches was enumerated. 
(a) Total number of HLA-I epitopes with a edit distance between 0 and 3. (b) Total number of HLA-II epitopes 
with a edit distance between 0 and 3. The pathogens are ordered per plot from highest to lowest, while the fill 
color is preserved.
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Figure 4.  SARS-CoV-2 epitopes from conserved regions are nearly identical to OC43 and HKU1 epitopes. (a) 
Upper panel: Protein sequence for the polyprotein pp1ab from SARS-CoV-2, OC43, and HKU1 were aligned and the 
similarity between OC43 and HKU1 amino acids to SARS-CoV-2 was calculated. The individual proteins are marked 
above the similarity graph. Lower panel: The number of HLA-alleles that present SARS-CoV-2 pp1ab epitopes with a 
edit distance of 1 or less to epitopes predicted in both OC43 and HKU1. Two epitopes previously identified as cross 
 reactive24 are marked by ‘M’. (b) Upper panel: Protein sequence for the S-protein from SARS-CoV-2, OC43, and HKU1 
were aligned and the similarity between OC43 and HKU1 amino acids to SARS-CoV-2 was calculated. The individual 
proteins are marked above the similarity graph, where RBD gives the receptor binding domain. Lower panel: The 
number of HLA-alleles presenting SARS-CoV-2 S-protein epitopes with an edit distance of 3 or less to epitopes 
predicted in both OC43 and HKU1. (c) Upper panel: Protein sequence for the M-protein from SARS-CoV-2, OC43, 
and HKU1 were aligned and the similarity between OC43 and HKU1 amino acids to SARS-CoV-2 was calculated. The 
individual proteins are marked above the similarity graph: ‘VS’ indicates the portion of the M-protein on the virion 
surface, ‘Tr’ the transmembrane region, and ‘IV’ the intraviron portion. Lower panel: The number of HLA-alleles 
presenting SARS-CoV-2 M-protein epitopes with an edit distance of 3 or less to epitopes predicted in both OC43 
and HKU1. (d) Upper panel: Protein sequence for the N-protein from SARS-CoV-2, OC43, and HKU1 were aligned 
and the similarity between OC43 and HKU1 amino acids to SARS-CoV-2 was calculated. The individual domains 
of the N-protein are marked above the similarity graph. Lower panel: The number of HLA-alleles presenting SARS-
CoV-2 N-protein epitopes with an edit distance of 3 or less to epitopes predicted in both OC43 and HKU1. The height 
and color of the similarity graphs designate similarity such that white bars indicate no similarity, light blue bars with 
half height indicate 50% similarity and dark blue bars with full height indicate 100% similarity. The width of the bar in 
the lower panels indicates the length of the epitopes. Darker regions indicate overlapping epitopes.
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cell response cross-reactive to SARS-CoV-2. Through in silico analysis of predicted SARS-CoV-2 epitopes and 
common pathogens we address this question.

When allowing some dissimilarity, VZV has the highest number of SARS-CoV-2 like epitopes. However, this 
we only find for HLA-I, and in particular HLA-B and HLA-C, but not for HLA-II. Since SARS-CoV-2 specific 
T cells are found among both the HLA-I reactive  CD8+ and among the HLA-II reactive  CD4+ it is not likely that 
VZV is the pathogen behind the SARS-CoV-2 cross reactive T cells. Rather, only the endemic coronaviruses, 
and in particular the beta-coronaviruses, have the highest number of epitopes similar to those predicted in the 
SARS-CoV-2 virus. However, the similarity between epitopes from SARS-CoV-2 and endemic coronaviruses 
was concentrated in replication related proteins. Thus, it appears unlikely that endemic coronaviruses should 
give rise to the observed preformed T cell immunity towards the S-protein. This notion is supported by experi-
mental findings, where cross-reactivity to S-protein is  rare24,40. A set of near-identical SARS-CoV-2 epitopes have 
been identified in Mycobacterium  bovis27 which, in its attenuated form, is used as vaccine against tuberculosis. 
Although the efficacy of this vaccine against SARS-CoV-2 remains  unclear41,42, the findings indicate nonetheless 
that SARS-CoV-2 cross-reactive T cells can have sources widely different from viral pathogens.

It appears that bat coronaviruses require an intermediate host to attain the potential of becoming a human 
 pathogen10. For 229E these intermediate hosts are likely camelids while SARS-CoV-1, SARS-CoV-2, and MERS-
CoV find intermediate zoonotic hosts in civets, dog or pangolin, and camels,  respectively10,43. The intermediate 
host for NL63 is not known. In this context it is interesting that OC43 and HKU1 are the most likely candidates, 
as the natural host of these viruses are  rodents43. The effect of these hosts on the pathogenicity of the coronavi-
rus remains a source of debate. However, the immune systems of dogs, camels, pangolins, rodents, and humans 
have marked differences—murine B cells for instance express the pattern recognition receptor TLR4, which is 
absent in human B  cells44. Because of these differences in the immune system, it is unlikely that the same evasive 
strategy can be applied in different species.

The lack of general epidemiological interest in the endemic coronaviruses render information on the preva-
lence in Europe elusive. Data collected by the Karolinska Institute in Stockholm, Sweden between 2010 and 2017, 
and by the West of Scotland Specialist Virology Centre, Greater Glasgow and Clyde, Scotland between 2005 and 
2017, show seasonal variation of the four viruses. The peak season is between December and April where 2–4% 
of patients with respiratory disease were positive for any of the four  viruses45,46. Though the data is obtained 
among patients with respiratory diseases, it can be expected to be a reasonable proxy for the prevalence in the 
greater population.

While the prediction of HLA-I epitopes has high accuracy, the accuracy of HLA-II epitope prediction is lower 
than that for HLA-I47. One reason for this lower accuracy of HLA-II epitope prediction is the dimer structure of 
the HLA-II making the peptide binding groove. In fact, the HLA-II ɑβ-chain combinations have been estimated 
to be over 4000 in number. In contrast, the combination of the HLA-I and β2-microglobulin chains yields less 
combinatorial variation on the receptor. The epitope prediction with netMHCpan depends on a proper training 
set. By focusing on the most frequent European HLAs, inaccuracies in the epitope prediction are reduced or even 
avoided. We did not utilize epitope databases like  VDJDB48 and  IEDB49, the reason being that these databases 
have a natural bias towards laboratory model antigen. For instance, the most frequent epitopes in the Immune 
Epitope Database are human auto antigen and epitopes derived from Trypanosoma cruzi.

The amino acid set was reduced from the 20 standard amino acids to 15 amino acids by combining molecules 
with similar hydrophobic side chains. The advantage is the ease of sequence comparison without alignment 
since the k-mer is a complete substring of the target protein. While the reduced amino acid alphabet is derived 
from structural  considerations50, it cannot be excluded that alphabet reduction might skew the results. However, 
given the requirements of anchor amino acids, which are buried within the HLA-molecule, the results should 
not change.

One limitation to the study is that we do not consider the frequency of pathogens nor the potential expres-
sion level of the proteins and accessibility for the immune system. Both arguably have an effect on the likelihood 
that an epitope can raise a robust immune response. However, both variables can only be assessed with great 
uncertainty. Additionally, our analysis hone in on pathogens with the largest number of k-mers matching SARS-
CoV-2 epitopes, which may exclude relevant pathogens producing few but highly immunogenic SARS-CoV-2 
similar epitopes. Another limitation to the study is the reliance on sequence similarity; although related epitopes 
are likely to interact with the same T cell receptor, this is not  guaranteed51. This is also observed in the report 
by Mateus et al.24 where a peptide with 80% similarity to a SARS-CoV-2 epitope did not raise a T cell response, 
while a peptide with only 33% similarity did.

The presentation of different epitopes on different HLA-molecules is well known. In this study, we focus on 
a small handful of HLAs with prevalence in Europe. Since patient HLAs are rarely evaluated, it is not possible 
to know if the patients with observed SARS-CoV-2 cross-reactivity carry the same epitopes as evaluated here. 
Given the prevalence in Europe, it is possible that there is an overlap with some studies, but the specifics are 
essentially unknown. It is therefore important that the HLAs are disclosed in studies evaluating antigen specific 
cells, in order to focus in silico studies such as this.

In conclusion, epitope similarity between SARS-CoV-2 and other endemic beta-coronaviruses cannot explain 
the observed SARS-CoV2 pre-formed immunity towards structural proteins. We conjecture that this observation 
of preformed immunity is likely driven by structurally different peptides.

Methods
The SARS-CoV2 protein sequences were downloaded from ViralZone (https ://viral zone.expas y.org/89966 )52, 
accessed May 29, 2020. Uniprot IDs and common names are listed in Supplementary Table 1. The common 
human pathogens evaluated in this study are listed in Supplementary Tables 2–5. Pathogen protein sequences 

https://viralzone.expasy.org/89966
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were extracted from the NCBI "non-redundant" protein database ("nr", version 5, downloaded from ftp://ftp.
ncbi.nlm.nih.gov/blast /db/FASTA  on May 31, 2020). The extraction was per pathogen name, as stored in the Tax-
onomy database. For epitope comparison, the protein reference sequences for the coronaviruses OC43, HKU1, 
229E, and NL63, and Influenza B, Human Gammaherpesvirus 4, Rotavirus A, and Human alphaherpesvirus 3, 
were downloaded from https ://ftp.ncbi.nlm.nih.gov/refse q/relea se/viral  on 26.Jun.2020. Validated SARS-CoV-1 
epitopes were obtained from IEDB (https ://www.iedb.org)49. Protein segments for SARS-CoV-2 pp1ab (identifier: 
P0DTD1) and S-protein (identifier: P0DTC2) were obtained from UniProt (https ://www.unipr ot.org).

All potential MHC class I and class II epitopes in the SARS-CoV2 protein sequences, and selected pathogen 
reference sequences, were identified using netMHCpan version 4.1 and netMHCIIpan version 4.0, respectively, 
with default  settings53. For this step, the evaluated HLAs listed in Supplementary Tables 6 and 7 were selected 
based on frequency in the European population as reported in the Allele Frequency Net  Database36; https ://
www.allel efreq uenci es.net, June 1, 2020.

The edit distance was calculated as the Levenshtein distance between each predicted SARS-CoV-2 epitope 
to a predicted epitope in a selected pathogen was calculated. The calculation as per pathogen and HLA and only 
the best match was used.

Short peptides of length k (k-mers) of lengths 6, 7, and 8 were extracted from the proteins of each of the 
relevant pathogens and counted, for each value of k separately Each such multiset of k-mers was pre-filtered so 
that k-mers found only once in a pathogen were removed if those k-mers constituted a small fraction (1%) or 
less of all k-mers found for the pathogen. The resulting k-mers were matched to the k-mers from the predicted 
epitopes for SARS-CoV-2 using a reduced 15 letter amino acid  alphabet50. This amino acid alphabet allows 
mismatches of amino acids with similar properties by letting the large hydrophobic amino acids V, L, I, and M 
be represented by L, the amino acids Y and F, which are hydrophobic with aromatic side chains by F, and the 
positively charged K and R by K.

The more complex an organism, the more proteins are expressed. This means that the probability of finding 
k-mers matching epitopes from SARS-CoV-2 increases. To overcome this problem we developed a pathogen 
relevance score to be evaluated for each triple of SARS-CoV-2 protein p, pathogen species s and value of k (note 
that the quantity also depends on the considered set of epitopes, i.e. HLA class I or class II only or combined). 
We thus define

where Np,s,k is the number of k-mer matched epitopes of protein p in species s, and Tp,k :=
∑

s
Np,s,k is the number 

of such epitopes of protein p across all species; their ratio Np,s,k/Tp,k is viewed in relation to the "richness" of the 
k-mer set of the pathogen species s, i.e. Ps , the number of distinct k-mers in pathogen s, divided by the total 
number of possible k-mers over the reduced alphabet ( 15k ). To avoid bias in favor of underrepresented species 
(very small Ps ), we add a regularizing constant C when computing the fraction of k-mers used by the species. 
Thus the score is a log-observed-vs-expected-ratio indicating whether species s matches unproportionally many 
SARS-CoV-2 epitopes that cannot be explained by its proteome size alone.

To focus on possibly relevant pathogens in general rather than on a single SARS-CoV-2 protein, we also 
considered an aggregated score

where Ns,k is the total number of k-mer matched epitopes in species s, and Tk :=
∑

s
Ns,k is the number of such 

epitopes across all species. The pathogens were then ranked according to score (the highest score obtaining rank 
1, the lowest score rank n, where n is the number of considered species). Then the average rank is computed over 
the different parameter combinations k = 6,7,8.

Data availability
The protein sequences used in this study are available from public sources: SARS-CoV-2 sequences: https ://viral 
zone.expas y.org/89966 , NCBI "non-redundant" protein database, version 5: ftp://ftp.ncbi.nlm.nih.gov/blast /db/
FASTA , Protein reference sequences: ftp://ftp.ncbi.nlm.nih.gov/refse q/relea se/viral . The workflow and accom-
panying Python scripts is available as a Snakefile for use with Snakemake under https ://gitla b.com/svenr ahman 
n/coron a.
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