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Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment 
failure with high mortality rates, is associated with the presence of cancer stem cells 
(CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and pro-
liferation, producing downstream progenitor cells that drive tumor growth. Studies of 
many cancer types have identified CSCs using specific markers, but it is still unclear 
as to where in the stem cell hierarchy these markers fall. This is compounded further 
by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making 
investigation and establishment of a universal treatment difficult. This review examines 
the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, 
c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing 
on their use and validity in GBM research and how they may be utilized for investigations 
into GBM’s cancer biology.
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iNTRODUCTiON

Glioblastoma multiforme (GBM), a grade 4 astrocytoma, is the most aggressive form of glioma (1, 2) 
with the median survival of approximately 25 months following treatment (3). Despite advances in 
cancer research and treatment over several decades, there has only been a 2% improvement in 5-year 
survival (4). GBM has been shown to be resistant to radiotherapy and chemotherapy (5–7) and 
invariably recurs following surgical resection (8) and chemoradiation (9). GBM typically shows a 
space-occupying lesion with heterogeneous rim enhancement, causing mass effect with surrounding 
edema on computerized tomography (Figure 1A) and magnetic resonance imaging (Figure 1B).

The presence of central necrosis (Figure 2A, arrows) and marginal proliferation of endothelial 
cells (microvascular hyperplasia) (Figure 2B, arrows) are hallmark histological features that sepa-
rate GBM from lower grade glial tumors. Another characteristic feature of GBM is the presence 
of palisading cells around the area of necrosis (Figure 2C, arrows), which is widely regarded as a 
poor prognostic hallmark of GBM (10, 11). Increased mitosis, hypercellularity, atypical nuclei and 
cellular pleomorphism, and the development of lumina, reminiscent of kidney glomeruli (10, 12), are 
other histological features of GBM. Combinations of some or all of these features result in marked 
histological heterogeneity, indicating that GBM tumors can change and grow rapidly even while 
the central bulk of the tumor undergoes necrosis (13). While much is known about the histological 
features and chromosomal abnormalities (14, 15) in GBM, the molecular characteristics and the 
origin of the lesion are not fully elucidated.
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FiGURe 2 | Hematoxylin and eosin staining of a glioblastoma multiforme. (A) The interface between tumor cells and the area of necrosis. The necrotic area 
(arrows) show greatly reduced nuclear staining. (B) Proliferation of the endothelial cells (arrows) within a microvessel. (C) Palisading cells (arrows) around the necrotic 
area. Original magnification: 200×.

FiGURe 1 | CT (A) and T1 weighted MRi (B) scans with contrast of a patient with glioblastoma multiforme. Lesion indicated by red arrows.
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This article reviews the data on cancer stem cell (CSC) markers 
currently used in GBM research and attempt to place them in the 
context of a hierarchical model of cancer.

MODeLS OF CANCeR

The two current concepts on the origin of cancer and its con-
tinued propagation are: (1) the clonal evolution (or stochastic) 
model (Figure 3A) (16, 17), and (2) the hierarchical CSC model 
(Figure 3B) (16, 18).

The clonal evolution model of cancer proposes cumulative 
genetic mutations that occur over time in a normal cell, leading 
to the formation of a cancer cell that clonally expands to form 
identical copies, each with identical tumorigenic potential (16, 
19). If these changes confer a selective advantage to a particular 
cell, then this allows the selected “clone” to outcompete other 
potential tumor forming clones (17). Propagation of this 
selected clone means that a substantial number of cells in the 
tumor are able to maintain tumor growth, so any effective 
treatment would require the elimination of all clonal cells, a 
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FiGURe 4 | The proposed hierarchy for neural stem cell 
differentiation. The system begins with the most primitive and multipotent 
cell and moves through stages of differentiation to the most restricted cell. 
Concept from Gage (24).

FiGURe 3 | Current leading models of carcinogenesis. (A) The clonal evolution model hypothesizes that a normal cell (blue) within the organism undergoes a 
series of mutations to form a cancer cell (orange) that clonally expands and form the bulk of the tumor. Successful treatment must, therefore, eliminate all cancer 
cells. (B) The cancer stem cell (CSC) hierarchical model proposes that the origin of cancer being CSCs (red) that are pluripotent and self-renewing. They are highly 
tumorigenic with the ability to establish new tumors. CSCs divide asymmetrically to form new CSCs and progenitor (dark blue) cells that in turn give rise to 
differentiated cancer cells (light blue) that form the bulk of the tumor. These downstream cancer cells are low or non-tumorigenic. Adapted from Adams and  
Strasser (16).
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theory that is inconsistent with the identification of CSCs in 
cancer (16).

Stem cells are cells that possess the capacity for self-renewal, 
proliferation, and differentiation (20–22). From a hierarchical 
viewpoint, embryonic stem cells (ESCs) are the most primitive 
cells within a biological system, and are considered pluripotent 
in that they are capable of differentiating into any type of cell in 
a particular organism (23). Downstream from ESCs, which are 
progenitor cells, a group that includes neural stem cells (NSCs) 
(24), mesenchymal (MES) stem cells (25), endothelial progeni-
tor cells (26), and hematopoietic stem cells (HSCs) (27). These 
cells are multipotent, have more restricted lineage differentiation 
capacity, and, therefore, are no longer pluripotent (24). From 
here, the multipotent NSCs further differentiate, giving rise to 
more downstream progenitor cells with reducing differentiation, 
mitotic, and self-renewal potential, ultimately forming the major-
ity of the organism (Figure 4) (24, 28).

Current literature uses the terms stem cell and progenitor cell 
interchangeably, essentially lumping these two cell types together 
(29–34). However, the validity of this practice has been questioned 
(35) as progenitor cells and stem cells differ in terms of hierarchy 
and biology and, therefore, should be regarded as distinct enti-
ties. Stem cells are multipotent with an unlimited capacity for 
self-renewal, whereas progenitor cells are most often unipotent 
with restricted capacity for self-renewal. Distinguishing between 
stem cells and progenitor cells in cancer is important in the 
understanding of the CSC concept for carcinogenesis. However, 
as they presumably belong to a spectral continuum distinguishing 
between the two populations remains a challenge.

The hierarchical CSC model of cancer proposes that a tumor 
arises from CSCs generated by mutations in either normal ESCs 
or progenitor cells, which may be present at birth or accumulated 
over time resulting in cells possessing the ability for uncontrolled 
growth and propagation (36–39). Recent studies have also observed 
the ability of non-CSCs to “de-differentiate” into CSCs due to 

epigenetic or environmental factors, which further increases the 
complexity of tumor biology and treatment (40). Cancer consists of 
a heterogeneous population of cells, proposed to arise from CSCs. 
Cells in a tumor are thought to be structured in a similar hierarchi-
cal manner to normal tissues, ranging from the most primitive cells 
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to the most mature cells (Figure 4) (24, 41). Within a tumor, there 
may only be a small number of CSCs that are highly tumorigenic 
(Figure 3B) (16) and have the capacity to divide asymmetrically 
giving rise (1) to additional CSCs that migrate to form new tumors 
and (2) to downstream progenitor cells and differentiated cancer 
cells that possess no or low tumorigenic potential (42) and form 
the main bulk of the tumor (38, 41, 43).

It is important to note that these two different hypotheses may 
not be mutually exclusive, as clonal evolution has been shown to 
play a role in the formation of CSCs (44, 45).

CSCs iN GLiOBLASTOMA

A combination of clinical evaluation and genome-wide expression 
profiling has revealed that high-grade gliomas can be separated 
into four subtypes: proneural (PN), MES, neural, and prolifera-
tive (or classical) (15, 46). There remains some debate regarding 
the number and defining characteristics of these subtypes (46), 
but some criteria, such as chromosomal deletions and molecular 
markers (such as Notch and VEGF) have been proposed (47). The 
existence of multiple subtypes provides another explanation for 
therapy resistance in GBM, which needs to be taken into account 
when characterizing GBM cells (7). This adds another level of 
complexity to the study of GBM, as in addition to the known 
intra-tumoral cellular heterogeneity, there is also a degree of 
inter-tumor cellular heterogeneity.

In addition to the tumor subtypes, CSCs isolated from high-
grade gliomas are also categorized into two distinct groups: PN 
and MES (48, 49). Several studies have adopted the term glioma 
stem cells to describe CSCs found in GBM (40, 49, 50), but for the 
purpose of clearly differentiating between stem cells in lower grade 
gliomas and those found in GBM, this review will use the term 
glioblastoma cancer stem cells (GBCSCs). GBCSCs are thought to 
originate from either neuronal stem cells or de-differentiate from 
normal brain cells, such as astrocytes and oligodendrocytes (18, 
40), although this de-differentiation is not universally accepted 
(46). PN GBCSCs appear to share similarities with fetal NSCs, 
while MES GBCSCs more closely resemble adult NSCs (46, 51). 
MES GBCSCs are more aggressive, invasive, angiogenic, and 
resistant to radiotherapy than PN GBCSCs. MES GBCSCs are 
predominantly derived from primary GBMs that arise de novo, 
whereas PN GBCSCs reside in both Grade III gliomas and GBM 
(49, 52). Primary GBM can also contain multiple (polygenomic) 
or single (monogenomic) tumor cell clones and different genetic 
clones impact on tumorigenesis differently (53). However, even 
genetically diverse clones possess the stem cell markers CD133, 
CD15, A2B5, and CD44 (53), which suggests that despite the 
large amount of inter- and intra-tumor cell heterogeneity and 
the influence of the brain tumor microenvironment (54), at least 
some (if not all) stem cell markers remain consistent, thereby 
providing arguably one of the best targets for cancer therapy.

MOLeCULAR MARKeRS iN CSCs AND 
GBCSCs

ESCs were originally identified and characterized from cells of the 
inner cell mass (ICM) in an embryonic blastocyst (55–57). ESCs 

and their more differentiated progeny all express a variety of mark-
ers, ranging from surface markers to transcription factors (57). As 
cells with stem cell properties isolated from cancers have been 
proposed to originate from ESCs, they also express these markers, 
making it possible to both identify and isolate CSCs using these 
markers (57, 58). Schoenhals et al. (58) showed that at least one of 
the ESC markers OCT-4, SOX2, KLF4, and c-Myc was expressed 
in 18 out of 40 cancer types investigated. Takahashi et  al. (59) 
obtained induced pluripotent stem cells (iPSC) by transduction 
of these same markers into murine embryonic fibroblasts. iPSCs 
are made by reprograming adult somatic cells via transfection 
with specific markers, causing them to de-differentiate and regain 
ESC-like characteristics (60). Many more studies using additional 
ESC markers have resulted in a growing body of evidence for the 
presence of CSCs in many cancer types (61, 62). CSCs have been 
identified in lung (63), breast (64), head and neck (65), prostate 
(66, 67), pancreatic (68, 69), and colon (70, 71) cancers. GBCSCs 
were first identified by Ignatova et al. (72) and their presence has 
been confirmed in several other studies (20, 73–77). The list of 
proposed GBCSC markers includes CD133, nestin, NANOG, 
SALL4, STAT3, SOX2, c-Myc, Olig2, Bmi1, CD44, L1CAM, and 
KLF4 (1, 78–81).

The literature on normal ESCs describes a hierarchical differ-
ential expression pattern of stem cell markers, with ESC markers 
at the top of the hierarchy and progenitor cell markers more 
downstream (20, 28, 82–84). This is consistent with the observa-
tion that during formation of blood cells, HSCs rarely divide (85), 
making them slow in responding to any environmental changes 
and that they produce slightly more differentiated progenitor cells 
(Figure 5) (86). These cells are more numerous and proliferative, 
making them much more adaptable to change but still able to 
drive blood cell formation (87). Evidence for core stem cells and 
more malleable progenitor cells has also been found in some 
forms of cancer (38, 88, 89). In GBM, despite the known cellular 
heterogeneity present both within tumors and between patients 
(40, 49, 53) and the discovery of GBCSCs (52), characterization 
studies of the stem cell markers present on different GBCSC 
subtypes or at different tumor stages are relatively rare. The 
hierarchical model of cancer which proposes that a core group 
of stem cells exists at the top of the tumor hierarchy, from which 
other more differentiated cells are formed, descending from the 
most primitive cells to the most mature cells that make up the 
bulk of the tumor mass, remains relatively unexplored in GBM.

This review aimed to provide a perspective on CSC markers 
SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, 
CD44, nestin, and Glial fibrillary acidic protein (GFAP) reported 
in GBM, and attempt to place these markers in the context of 
the GBM CSC hierarchy, from the most primitive ESC mark-
ers to the more mature. These markers are presented in two 
categories: embryonic CSC markers and neural progenitor 
CSC markers.

eMBRYONiC CSC MARKeRS

SALL4
SALL4 is a spalt-like C2H2 zinc-finger transcription factor that 
is expressed on ESCs in a similar manner to OCT-4 and SOX2 

http://www.frontiersin.org/Surgery/
http://www.frontiersin.org
http://www.frontiersin.org/Surgery/archive


FiGURe 5 | Current model for human hematopoiesis. All myeloid and lymphoid cells originate from a single hematopoietic stem cell (HSC). HSCs differentiate to 
form myeloid and lymphoid progenitor cells, which in turn differentiate to produce all of the diverse cells found in human blood. HSC, hematopoietic stem cell; Thr, 
thrombocytes; Ery, erythrocytes; MC, mast cell; Bas, basophil; Neu, neutrophil; Eos, eosinophil; Mono, monocyte; Macro, macrophage; B, B-cell; T, T-cell, NK, 
natural killer cell. Adapted from Bartis and Pongracz (86).
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(90, 91). SALL4 is mandatory for the development of the ICM 
to ensure zygotic survival and maintenance of ESC pluripotency 
(90, 92, 93). Interaction between SALL4 and NANOG has 
also been confirmed by co-immunoprecipitation experiments 
and it has been suggested that they work together in a similar 
pairwise manner to ESC markers OCT-4 and SOX2 to regulate 
transcription (94). However, other evidence suggests that, as well 
as NANOG, this regulatory function also has a greater involve-
ment of OCT-4, SOX2, c-Myc, and KLF4. Yang et al. (91) report 
that when the level of the SALL4 protein is reduced, the levels of 
all four of the aforementioned ESC proteins also decrease, sug-
gesting a relatively diverse role for SALL4. SALL4 plays a role in 
multiple types of cancers (95–97) and has been previously used 
as a CSC marker. It has also been demonstrated that SALL4 is 
expressed at a higher level in gliomas than in normal brain tissue 
and that increased levels correlate with a poor prognosis (80). 
Additionally, inhibition of SALL4 reduces cellular proliferation 
in gliomas and stimulates apoptosis (98). Di Tomaso et al. (99) 
find that CSCs in GBM express SALL4 and that these same cells 
also express NANOG. However, the use of SALL4 as a marker 
for CSCs in GBM is limited to a small number of reports (80, 98, 
100, 101).

OCT-4
Together with NANOG, the transcription factor, OCT-4, is 
required for propagation of ESCs and they both work synergisti-
cally with SOX2 to achieve this regulation (102). OCT-4 is essential 
for pluripotency and mammalian embryonic development (103). 
It has also been associated with cancer, functioning as a driver 
for the self-renewal of CSCs (78, 104). OCT-4 is expressed by 
glioma cells, but not normal brain tissue, and is implicated in the 
pathogenesis of GBM (105, 106). Indeed, OCT-4 together with 
SOX2 and NANOG is expressed in most if not all gliomas and 
their expression correlates with tumor aggressiveness with GBM 
cells showing greater nuclear staining for OCT-4 and SOX2 (104). 
Furthermore, most cells expressing OCT-4 also express SOX2 and 

NANOG (104). Hence, OCT-4, SOX2, and NANOG are thought 
to be key players in the transcriptional regulation of CSCs.

SOX2
SOX2 is a member of the family of transcriptional co-factors 
that are associated with various developmental milestones and 
is over-expressed in tumors (107, 108). It plays a role in main-
taining pluripotency in several types of cancer, including rectal 
(109), breast (110), and lung (111) cancers. SOX2 is also over-
expressed in GBM with little detected in normal brain tissue (1). 
Additionally, GBM demonstrates greater SOX2 mRNA expression 
than lower grade tumors (104). Along with OCT-4 and NANOG, 
SOX2 has been used in numerous studies to characterize iPSCs 
derived from somatic cells (59, 112, 113), demonstrating that 
SOX2 is critical for stem cell maintenance. Furthermore, SOX2 
inhibition using shRNA halts tumor growth when GBM cells are 
transplanted into immunodeficient mice (114).

Although SOX2 has been implicated as a transcriptional 
regulator, it has also been proposed as a neural progenitor cell 
marker. Expression of SOX2 is essential for cells from the neural 
tube in chicks to maintain progenitor characteristics (115). There 
is also a body of evidence on co-expression of SOX2 and nestin 
and as such SOX2 has been used in some studies as a progenitor 
cell marker (116–119). Ellis et al. (120) show SOX2 as a persistent 
NSC marker that is present throughout the entire development 
of the mouse. The expression of SOX2, therefore, appears to be 
maintained even after stem cells have progressed through differ-
ent stages of differentiation.

pSTAT3
Signal transducers and activators of transcription (STAT) proteins 
are both activated by cytokines and regulate many cytokine and 
growth factor responses (121). STAT3 has more generalized func-
tions than the rest of the STAT family and has been implicated 
in cell-cycle signaling, cell survival, and ESC self-renewal and 
pluripotency (122–124). The latter activity has been proposed to 
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be maintained via the leukemia inhibitory factor (LIF) pathway, 
in which LIF binds to its receptor and produces phosphorylation 
of STAT3 that subsequently translocates to the nucleus, triggering 
the expression of other ESC-associated proteins, such as KLF4, 
SOX2, SALL4, and c-Myc (62, 125, 126). Loss of STAT3 expres-
sion has been shown to reduce ESC self-renewal, but enhance cel-
lular differentiation, resulting in embryo lethality in mice (127). 
This would, therefore, indicate that ESC expression of STAT3 is 
essential, but that it also performs multiple other functions in 
adult tissues, such as cytokine release and cell signaling (124), 
suggesting STAT3 expression persists on further differentiated 
cells and, therefore, cannot be used purely as a primitive ESC 
marker.

Abnormal STAT3 signaling has also been associated with 
promoting cellular proliferation, weakening the immune system, 
and promoting angiogenesis and inflammation in cancer (123, 
128). There is ample evidence for the role of STAT3 in cancer, with 
its activation contributing to cancers in the head and neck (129), 
breast (130), prostate (131), thyroid (132), skin (melanoma) 
(133), and GBM (134–136). In comparison to normal brain tissue 
and cells, particularly astrocytes, GBM expresses high levels of 
STAT3 and inhibition of this molecule results in the induction 
of apoptosis and cessation of tumor proliferation (81). Multiple 
subsequent studies of STAT3 in GBM have demonstrated its 
downregulation or inhibition leads to reduced tumor growth, 
suggesting a potential target for cancer treatment (137–141). 
However, as STAT3 is also required for non-cancer cell function, 
any form of inhibition will not be specific to the tumor and will 
likely result in major side effects for the patient (7, 142).

NANOG
NANOG is an ESC transcription factor and its expression has 
been associated with multiple types of cancer, including those 
affecting the lung (143), oral cavity (144), breast (145, 146), and 
prostate (147). It has also been implicated in the regulation of 
GBM and has been found to be highly expressed in stem cells 
extracted from the cerebellum and medulloblastoma (104, 148–
150). NANOG modulates GBM stem cell tumorigenicity, clono-
genicity, and proliferation (151). Inhibition of NANOG in GBM 
prevents tumor proliferation and invasion (152). It is proposed 
that together with OCT-4 and SOX2, NANOG is responsible for 
ESCs’ capacity to maintain their pluripotency and self-renewal 
(7, 153). Deletion of NANOG from murine ESCs results in a loss 
of pluripotency (154) and NANOG has been used as a marker in 
the induction of pluripotent stem cell characteristics in normal 
human fibroblasts (112, 155). Current data implicate a role for 
NANOG in the regulation GBCSCs.

c-Myc
c-Myc is a member of the family of Myc genes, although only 
c-Myc, l-Myc, and N-Myc have been linked to tumor growth, 
and as such they have been termed nuclear oncogenes (156, 
157). Upregulated c-Myc has been linked to cellular prolifera-
tion (158, 159). The deletion of c-Myc from rat fibroblast lines 
resulted in a prolonged cellular doubling time (160) and proved 
fatal to murine embryos, indicating its importance in embryonic 

development (161). Furthermore, c-Myc can be used to induce 
cellular de-differentiation, resulting in iPSCs (112).

c-Myc has been implicated in the pathogenesis of lung (162), 
pancreatic (163), prostate (164), and breast (165, 166) cancers 
as well as medulloblastoma (167) and GBM (168). Despite its 
experimental use in generating iPSCs, there is evidence indicat-
ing that c-Myc may be more of a marker for progenitor cells 
rather than ESCs. Successful generation of iPSCs without the 
expression of c-Myc implies that the oncogene is not essential for 
cellular de-differentiation (169). Additionally, in normal lung tis-
sue c-Myc expression is strongest in hyperplastic alveolar type II 
pneumocytes, also known as bronchopulmonary progenitor cells 
(170). c-Myc also enhances the tumor forming capacity of nestin-
expressing progenitor cells in medulloblastoma (171). This would 
suggest that c-Myc is expressed on progenitor cells, although its 
role as a neural progenitor cell marker is not fully established. 
Despite this, c-Myc has been strongly associated with GBM, CSC 
maintenance, and self-renewal, and its over-expression has been 
correlated with the poor prognosis of GBM (168, 171–173).

Krüppel-Like Factor 4
Krüppel-like factor 4 (KLF4) is a transcription factor involved 
in cell proliferation, differentiation, and apoptosis (174). It is a 
member of the KLF family characterized by the presence of Cys2/
His2 zinc fingers (57, 175). KLF4 is essential for the maintenance 
of pluripotency and self-renewal of ESCs (176, 177) and is one of 
the factors, along with OCT-4 and SOX2, required to re-program 
fibroblasts to generate iPSCs (59, 112, 169). It is, therefore, not 
surprising that KLF4 over-expression is associated with cancer 
(58, 178). KLF4 was first identified as a potential oncogene in 1999 
(179) and since then its over-expression has been shown to induce 
cellular dysplasia, similar to that found in squamous cell carcino-
mas (180). More recently, it has been shown that KLF4 is over-
expressed in 70% of breast cancer specimens (178). However, there 
is growing evidence indicating that KLF4 actually inhibits tumor 
formation and metastasis in many types of cancer (181–185).

A possible explanation for these discrepancies has been 
proposed, suggesting that the cell-cycle inhibitor p21 can act 
as a “switch” between suppression and proliferation (186). It is 
hypothesized that KLF4 can activate p21-induced cell-cycle arrest 
and prevent tumor proliferation, but can also inhibit p53, block-
ing both cell senescence and apoptosis. These responses are also 
thought to be influenced by the cellular context. For example, it 
has been theorized that inhibition of p21 by additional pathways 
such as Ras or the adenoviral oncoprotein E1A can override the 
activation signals of KLF4. Therefore, inhibition of both apoptosis 
via p53 and cell-cycle arrest via p21 induces tumor formation. 
KLF4 expression in the first scenario can produce completely 
opposite outcomes for different pathways, yet in the second pro-
duces only one outcome no matter which pathway is activated. 
This observation may explain the aforementioned contrasting 
results for KLF4 and has been supported by further studies in 
the area of cell-cycle regulation (187–189), although the exact 
mechanism of “switching” remains unclear. Unfortunately, the 
apparent heavy reliance of KLF4 function on other proteins and 
inconsistencies in its expression make it difficult to use KLF4 as 
a CSC marker.
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Information on KLF4 expression in GBM is limited. An analy-
sis of gene expression data indicates that KLF4 is over-expressed 
in brain tumors, with no specific data on GBM (58). A more 
recent study shows that micro-RNA targeting of KLF4 suppresses 
tumor growth in GBM cells (190) but the role of KLF4 in GBM 
remains undetermined.

NeURAL PROGeNiTOR CSC MARKeRS

Nestin
The nestin gene (previously known as Rat. 401), the neuroepi-
thelial stem cell gene, encodes a novel intermediate filament that 
does not fit into one of the five classes of intermediate filaments 
that have already been defined (191). Nestin is expressed in 
several types of cancer (191–193) and it is strongly associated 
with GBM (20, 21, 73, 194–196). Increased nestin expression 
has been associated with higher grade gliomas and lower patient 
survival rates (197). Additionally, inducing differentiation of 
GBM cells leads to downregulation of nestin (198). It also binds 
to a large percentage of cells in the mammalian embryonic brain 
and its presence is correlated with cellular propagation during the 
development of the central nervous system (199, 200). These data, 
plus the observation that nestin-expressing cells have the ability 
to differentiate into multiple cell types (72), implicate nestin as an 
effective stem cell marker. However, existing evidence indicates 
that nestin is more of a neural progenitor cell marker as it is found 
on immediate neuron precursor cells (199, 201) and is downregu-
lated when precursor cells differentiate into glial cells or neurons 
(201). Nestin is currently used as a marker for cells immediately 
preceding the dedication of CNS cells to a restricted lineage (202).

Glial Fibrillary Acidic Protein
Glial fibrillary acidic protein is an astrocyte maturation marker 
commonly used as a histological marker for tumors of glial origin 
known to be involved in normal astrocyte functions (203, 204). 
GFAP has been used previously to identify differentiated cells 
(20, 73), but some evidence indicates that astrocytes found in 
the subventricular zone (SVZ) of the mammalian adult brain are 
actually NSCs and are precursors to neurons (205). NSCs from 
the postnatal and adult brain have been found to express GFAP, 
but not NSCs from the early embryonic brain (206), indicating 
that GFAP is a marker of more mature glial cells. This would, 
therefore, suggest that GFAP is a progenitor rather than an ESC 
marker. GFAP has been previously shown to be co-expressed 
with nestin in GBM cells (207) and is over-expressed in the 
serum and peripheral blood of GBM patients in comparison to 
healthy controls (208, 209). However, the proportion of GBM 
patients with GFAP positivity varied greatly between these two 
studies. The study on serum found GFAP over-expression in 80% 
of GBM cases (208) [a finding that has been replicated recently 
(210)], whereas the peripheral blood study found that GFAP was 
over-expressed in only 20.6% of patients. It is possible that this 
discrepancy is due to the heterogeneous nature of GBM and that 
GFAP may be preferentially expressed in certain GBM subtypes or 
even subtypes of GBCSCs. Nevertheless, both studies indicate the 
migration of GBM cells outside of the CNS, and this is unexpected 

given that clinically recognizable hematogenous metastasis from 
GBM is extremely rare (211). While the relationship between 
GFAP and GBM metastasis clearly requires further elucidation, 
GFAP staining is considered a standard diagnostic marker for 
GBM for samples taken within the CNS (208, 212–214).

CD133
CD133, also known as prominin-1, is a protein found on plasma 
membrane projections and is one of the cluster of differentiation 
(CD) antigens (215). CD133 is expressed on HSCs (216) and was 
also found on NSCs in 2003 (20). Singh et al. (20) have identified 
stem-like cells lacking the expression of neural differentiation 
markers in pediatric brain tumors that express CD133, and 
showed that CD133+ human GBM cells can initiate tumor forma-
tion in the brains of immunodeficient mice (21). Interestingly, 
these cells also express nestin, indicating the possibility of CD133 
expression on progenitor cells. CD133 expression has since been 
implicated in other cancers, including prostate and colorectal 
cancer, and an increased proportion of CD133+ cells in a tumor 
correlates with poorer survival (30, 47, 217). GBM tumors that 
have recurred after radiotherapy or chemotherapy contain an 
increased percentage of cells that are CD133+ compared with the 
original tumor, presumably due to increased progenitor cell acti-
vation (42). Similarly, the CD133+ gene transcription signal can 
distinguish GBM from low-grade tumors and its expression has 
been attributed to the aggressiveness of the tumor (218). These 
suggest a key role for CD133 in tumor recurrence and invasion.

However, not all stem cells express CD133. Subsequent studies 
have shown that tumors grow successfully from CD133− stem-
like cells in xenograft models (74, 217, 219) and so identification 
of CSC cannot be solely based on CD133 expression. As CD133 
is not essential for tumor formation, this implies that it is not 
present on all ESCs. Therefore, CD133 cannot be considered an 
ESC marker, but is further along on the stem cell hierarchy and 
can be considered as a marker for progenitor cells.

CD44
CD44 is a transmembrane glycoprotein and the receptor for the 
glycosaminoglycan hyaluronan (HA) (220, 221). It is found in a 
variety of tissues and is expressed on embryonic epithelia dur-
ing development (222). Multiple isoforms of CD44 exist, altered 
through splicing and post-translational modifications. CD44s 
is the most common isoform, but other variants (CD44v) also 
exist (223). The potential for hundreds of variations on the CD44 
receptor may contribute to its involvements in various pathways, 
including lymphocyte activation, angiogenesis, cytokine release, 
and cellular adhesion (222). Additionally, CD44 has been 
implicated in colorectal (224, 225), prostate (67, 226, 227), breast 
(64, 228–230), head and neck (65, 231), and non-small-cell lung 
(232) cancers. CD44+ cells can generate new tumors similar to 
the original tumor when xenografted onto mice, but CD44− cells 
cannot achieve this. (65). These findings are consistent with 
those indicating that CD44+ cells from prostate cancer are more 
proliferative than CD44− cells and that they also possess some 
progenitor cell properties (67).

CD44 activates NANOG in breast and ovarian cancers 
(145) demonstrating a role for CD44 in the regulation of ESCs, 
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supported by the finding that in cancer CD44+ cells also express 
Bmi1 (65). Moreover, tumor aggressiveness and growth can be 
inhibited by preventing the HA-CD44 interaction (233). This 
observation suggests a key role for CD44 and its ligand in the 
development of cancer, although opposing views exist.

Increased CD44 expression is associated with a better outcome 
in thyroid cancer (234). Similar findings have also been demon-
strated in ovarian cancer (235), non-small-cell lung cancer (236), 
and soft tissue sarcomas (237) although high expression of CD44 
is also correlated with increased risks of recurrence (237). This 
variation is likely due to the CD44 isoform examined, as each 
study uses a different variant or epitope or CD44 as a whole. 
Caution is needed when interpreting the data in the attempt to 
elucidate the precise role of CD44 in cancer.

Li et  al. (238) show that CD44 variants are not expressed 
by GBM, but only in metastases originating from the brain. 
However, a subsequent study shows that CD44 variants are 
expressed in 100% of all GBM cell lines and tumors (239). This 
latter finding has been supported by a more comprehensive study 
using immunohistochemical staining that demonstrates cells 
from GBM express CD44s and several other variants of CD44 
(240). Furthermore, inhibition of CD44 prevents progression of 
GBM, indicating a definite role in tumorigenesis (241). However, 
different GBM cell lines have varying expression of CD44 (242). 
These results show changeable expression of CD44 in cancer, 
with some studies finding high expression while others show low 
expression in the same cancer type (67), indicating CD44 is not 
essential for tumor formation. Consistent with this observation 
is the current hypothesis that CD44 is a progenitor cell marker as 
opposed to an ESC marker. An extensive study of the expression 
of CD44 in mouse cerebellum show this cell surface marker to 
be co-expressed with nestin, SOX2, astrocyte specific glutamate 
transporter and brain lipid binding protein (BLBP), all of which 
are specific to neural stem/progenitor cells (243). CD44 is also 
co-expressed with the oligodendrocyte progenitor marker Olig2. 
This evidence would infer that CD44 is a progenitor cell marker, 
as it is present on partially differentiated cells.

DiSCUSSiON

While there is growing evidence supporting the CSC model 
of cancer, the field of CSCs in glial tumors remains relatively 
understudied, as evidenced by the difficulties in identification and 
characterization of this primitive population. In this article, we 
review a number of markers published in the recent literature and 
evaluated their usefulness in CSC research, in the context of GBM. 
While some markers are key to the identification of CSCs, others 
have a less defined association, requiring more study to define their 
precise role in carcinogenesis. It is becoming increasingly apparent 
that the hierarchical system observed in normal stem cells, such as 
HSCs, and in other forms of cancer, also applies to GBM.

Cells in GBM express OCT-4 (104, 105), SOX2 (1, 104, 114), 
pSTAT3 (81, 134), NANOG (104, 152), SALL4 (80, 99), c-Myc 
(78, 168, 172), KLF4 (58, 190), nestin (20, 21), CD44 (239, 240), 

CD133 (21, 218), and GFAP (207, 208), highlighting an overlap-
ping hierarchical and heterogeneous population of stem and 
progenitor cells within GBM. This paper attempts to categorize 
each of the markers into one of two categories, (1) ESC mark-
ers and (2) progenitor cell markers, based on current evidence. 
NANOG, SALL4, OCT-4, KLF4, SOX2, and pSTAT3 all have 
essential roles in embryonic development, indicating that they 
must be expressed on more primitive cells. However, SOX2 and 
pSTAT3 are also expressed in cells that are more differentiated 
than ESCs, indicating that expression of a particular marker is not 
restricted to one cell type or developmental stage.

Current evidence suggests that GFAP, nestin, CD44, and 
CD133 are found further down in the stem cell hierarchy as they 
are expressed on more differentiated cells. Although involved in 
the modulation of tumor aggressiveness, both CD133 (74, 217, 
219) and CD44 (67, 243) do not appear to be essential for cancer 
formation, leading to the inference that these markers represent 
markers of more differentiated progenitor cells in the hierarchy 
although they may be co-expressed with nestin and GFAP in 
“higher up” progenitors. The presence of the same markers on 
multiple cell types highlights the importance of using multiple 
markers to properly define and distinguish the most primitive 
CSCs from their specific but varying downstream lineage and 
progenitor cells. Such models have already been proposed for 
non-cancerous stem cells (Figure  4) (24); and in the case of 
HSCs, a number of markers have been assigned to specific stages 
of blood cell development (244). A similar paradigm for markers 
for GBM is currently missing from the literature and establish-
ing a properly defined model of the hierarchy will improve the 
understanding CSCs in GBM. Additionally, it is important to 
remember that the stages of stem cell development and matura-
tion are likely not static or strictly defined, but more of a free 
flowing continuum upon which multiple variations of stem cells 
can be found. This is particularly important given the high degree 
of intra- and inter-tumor cellular heterogeneity that is already 
known to exist within GBM.

Although it has been shown that stem cell markers such as CD133 
and CD44 persist on genetically diverse clones (53), the presence of 
more primitive markers, such as OCT-4, SALL4, NANOG, SOX2, 
c-Myc, KLF4, and pSTAT3, on different GBM or GBCSC subtypes 
has not been defined. The ability to identify these extremely primi-
tive CSCs may be key to developing novel and effective treatments 
for GBM. Finding markers that are consistently expressed by CSC 
populations within different GBM subtypes may enable effective 
targeting of CSCs by destroying the “roots” of the cancer. Properly 
defining the CSC markers will underscore precise identification 
and characterization of the CSC population in GBM.
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