
DOI: 10.1002/minf.201300030

Modeling the Biodegradability of Chemical Compounds
Using the Online CHEmical Modeling Environment
(OCHEM)
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1 Introduction

Biodegradability is an important property of industrial
chemicals. An enormous amount of waste, containing thou-
sands of chemical compounds and/or their breakdown
products, is produced by modern consumer society. The ef-
fects of the pollution produced frequently remain for many
years due to the complexity of the interaction of the chem-
icals with biological systems, the selectivity of their effects,
and the adaptive power of nature. Thus, chemicals that do
not quickly degrade have the potential to release their
toxic effects over a long period; they can therefore pose
a greater risk than chemicals with higher acute toxicity, but
which are not stable. In order to introduce and establish
standards for decomposing chemicals in industry, a uniform
basis of the meaning of biodegradability had to be defined.

Tests for determining the biodegradability of compounds
were designed already in the 1980s. These measure how
quickly and completely chemicals break down in the envi-
ronment. Following these tests, a classification schema was
devised by Struijs and Stoltenkamp,[1] and subsequently
Carson et al. ,[2] describing several levels of biodegradability :

1. Highly biodegradable: complete mineralization within
10 days; time window <4days

2. Readily biodegradable: high level of mineralization (>
70 %) within 28 days

3. Intermediate biodegradability : borderline cases of ready
biodegradability; inconclusive results in ring tests

4. Inherently biodegradable: not readily biodegradable but
shown to be biodegradable using other test methods

5. Non-biodegradable: after unsuccessful attempts to dem-
onstrate inherent biodegradability

In order to better characterize readily biodegradable
chemicals, the Organization for Economic Cooperation and
Development (OECD) made efforts to develop standardized
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Abstract : Biodegradability describes the capacity of sub-
stances to be mineralized by free-living bacteria. It is a cru-
cial property in estimating a compound’s long-term impact
on the environment. The ability to reliably predict biode-
gradability would reduce the need for laborious experimen-
tal testing. However, this endpoint is difficult to model due
to unavailability or inconsistency of experimental data. Our
approach makes use of the Online Chemical Modeling Envi-
ronment (OCHEM) and its rich supply of machine learning
methods and descriptor sets to build classification models
for ready biodegradability. These models were analyzed to

determine the relationship between characteristic structural
properties and biodegradation activity. The distinguishing
feature of the developed models is their ability to estimate
the accuracy of prediction for each individual compound.
The models developed using seven individual descriptor sets
were combined in a consensus model, which provided the
highest accuracy. The identified overrepresented structural
fragments can be used by chemists to improve the biode-
gradability of new chemical compounds. The consensus
model, the datasets used, and the calculated structural frag-
ments are publicly available at http://ochem.eu/article/31660.
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methods. In 1992, test guideline 301 was published, de-
scribing six methods of screening chemicals for ready bio-
degradability under aerobic conditions:[3]

– 301A: DOC Die-Away: dissolved organic carbon
– 301B: Respirometry: CO2 evolution (modified Sturm

Test)
– 301C: MITI (Ministry of International Trade and Industry,

Japan) test: Respirometry: oxygen consumption
(= BOD)

– 301D: Closed Bottle: Respirometry: dissolved oxygen
– 301E: Modified OECD Screening: dissolved organic

carbon
– 301F: Manometric Respirometry: oxygen consumption

Depending on the chemical’s characteristics (solubility,
vapor pressure, adsorption characteristics), some of the test
methods might be inappropriate. Compounds with a high
solubility (soluble in water to at least 100 mg/L) can be an-
alyzed using all the methods listed above. Poorly soluble
compounds can only be analyzed by tests using respirome-
try methods (301B, C, D, F), whereas the biodegradability of
volatile substances can only be determined using the
closed bottle test (301D).[3]

The various test methods share a number of features:
the test substance is incubated in a mineral medium (po-
tassium, sodium phosphate, etc.) and an inoculum (activat-
ed sludge, surface soils, etc.) under aerobic conditions in
dark or diffuse light. A reference compound (aniline,
sodium acetate, or sodium benzoate) is run in parallel as
a control. The degradation is then determined by measur-
ing properties such as DOC (dissolved organic carbon), CO2

production, and O2 uptake. The test should run for a period
of 28 days.

The pass levels for biodegradability must be reached
during a 10-day window within the 28-day test period. De-
pending on the test method employed, these are:

– 70 % DOC: percentage of dissolved organic carbon re-
moved

– 60 % ThOD: percentage of the theoretical oxygen
demand

– 60 % ThCO2 : percentage of the theoretical carbon diox-
ide yield

Although standardized methods have been developed,
limitations remain concerning the reliability of biodegrada-
bility measurements. Considering the diverse compart-
ments of the environment, a chemical compound might
show different biodegradability properties. Bacterial popu-
lations in soil, sewage plants, rivers, and the sea differ re-
garding their metabolism and therefore also in their capa-
bility to dissolve chemicals ; further, the acquisition of nutri-
ments required for the breakdown process varies in differ-
ent environments; and biodegradation under anaerobic
conditions remains poorly understood.[4] Therefore, “bio-

degradation data are generally not comparable, unless they
derive from side-by-side experiments. This is related to the
fact that the nature of the inoculum is not standardized”
(anonymous reviewer). Of course, all these facts contribute
to the intrinsic variability and the difficulties of computer
modeling of biodegradability data. In order to simplify and
accelerate the laborious testing of chemicals, it is of utmost
interest to be able to predict their biodegradability charac-
teristics.

Several published models are available to predict the
ready biodegradability of chemical compounds. Recently,
a number of review articles have provided comprehensive
comparisons;[5–7] the reader is referred to these as the anal-
ysis of existing methods is beyond the topic of the current
paper. The overall trend of previously developed ap-
proaches[5] has been to identify a set of interpretable chem-
ical features, substructure fragments (which frequently rep-
resent easily biodegradable or non-biodegradable
groups),[8–11] and use these for model development. This ap-
proach has been used in many popular and recognized
methods, such as BIOWIN,[8,12] Multiple Computer Automat-
ed Structure Evaluation (MultiCASE),[9] and its subsequent
development MultiCASE/META expert system.[13] The CATA-
BOL expert system,[14] or PredictBT,[15] contains biotransfor-
mation rules which are used to simulate biodegradation
pathways.

On the one hand, this strategy provides easily interpreta-
ble models, which transparently describe the underlying
mechanisms to the end user. This is one of the most impor-
tant goals in terms of regulation, e.g. , in REACH. Unfortu-
nately, on the other hand, the same strategy can lead to
oversimplification of the problem and result in an inability
of the developed models to handle new chemical struc-
tures that contain new structural fragments (or slightly dif-
ferent fragments), which are not recognized by the particu-
lar program. This problem can reduce the performance of
QSAR models for new compounds.[5]

The majority of existing models do not explicitly provide
an applicability domain (AD)[16–18] or estimation of the accu-
racy of prediction for each molecule. The chemical space is
very large, with the number of theoretically accessible
chemical compounds considered to be 1060.[19] Thus, it is
unfeasible to predict the biodegradability of chemical struc-
tures with the same accuracy across the whole chemical
space.

In this study, we used the Online CHEmical Modeling en-
vironment (OCHEM)[20] to develop a high accuracy model
for predicting biodegradability. One of our aims was to
carry out a comprehensive study to explore the effects of
different representations of chemical structures, various
machine-learning methods, and different training strategies
on the accuracy of the resulting models. The other goal
was to contribute a public and freely accessible Internet
model, which provides a confidence level for each predic-
tion and thus allows users to decide whether the predicted
values are sufficient for their purposes.
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2 Material and Methods

2.1 Dataset

The initial biodegradability dataset was collected from
three main sources:

1. The internal CADASTER dataset comprising 1400 meas-
urements extracted from CHRIP (Chemical Risk Informa-
tion Platform http://www.safe.nite.go.jp/english/
db.html) from the Japanese NITE database http://
www.nite.go.jp/index-e.html and ECHA (European
Chemical Agency http://echa.europa.eu) database, pro-
vided by Dr. N. Jeliazkova (Idea Ltd, Bulgaria).

2. One thousand five hundred measurements assembled
by Cheng at al.[21] from the Japanese NITE database and
BIOWIN dataset.[22]

3. Sixty measurements of fragrances gathered from various
online resources, provided by Prof. P. Gramatica’s group
(University of Insubria, Italy).

All these data were measured using one of the six “readi-
ly biodegradable” OECD standardized tests mentioned in
the introduction. Thus, as outlined above, the class of
“readily biodegradable” compounds comprised those with
a high level of mineralization (>70 %) within 28 days (thus
also including “highly biodegradable” substances), while
others were considered “not readily biodegradable.”

2.2 Validation of the Biodegradability Dataset

All data were uploaded to OCHEM using the provided
SMILES code. Confirmation of compounds was achieved by
applying majority voting on available annotated structures.
For this purpose, the CAS number, SMILES code, chemical
name or other provided information was mapped against
several online compound databases, including ChemSpider,
PubChem, Ambit, ChemIdPlus, ECHA, and the CHRIP data-
base.

Compounds listed as oligomers, multi-constituents, and/
or Unknown or Variable composition, Complex reaction
products or Biological materials (UVCBs) were omitted, as
well as compounds assigned ambiguous structures. This
was because of difficulties with the representation of chem-
ical structures and generation of descriptors for chemical
mixtures, in particular for UVCBs. Commonly used and
widely accepted programs, such as BIOWIN, which identify
biodegradability based on the presence or absence of spe-
cific fragments could not be used for such substances.
However, in principle, the descriptors used in the current
study could be adopted to predict the biodegradability of
such complex substances or mixtures, using approaches
that were successfully employed to predict the physico-
chemical properties of chemical mixtures.[23] In our view,
such an analysis requires a separate study.

In the case of Markush structures, the structure provided
by the source database (ECHA or CHRIP) was used. There
was substantial overlap of compounds between the inter-
nal and the Cheng dataset[21] (parts of both were retrieved
from the NITE database (CHRIP)). One record was chosen in
each case to avoid duplicates, which were presumably the
same experimental measurements entered in different da-
tabases. Thus, the high number of exact duplicates in all
three sets does not indicate high reproducibility of the
data, rather a common origin. Furthermore, for 53 com-
pounds from both datasets controversial biodegradability
results were provided. A lookup in the CHRIP database re-
vealed that different experimental results were reported for
these compounds. Therefore, these compounds were also
excluded.

Some descriptors could not be calculated for specific
compounds due to special structural or chemical features.
For example, Si atoms are not accounted for in the Dragon
descriptor package. For this reason, 104 non-computable
compounds were excluded from the collection to give
a unified dataset for all models. The cleaned dataset com-
prised 1938 compounds, of which 717 (37 % of all com-
pounds in the set) were readily biodegradable (RB) and
1221 (63 %) not readily biodegradable (NRB). By excluding
duplicates with two test sets[24,25] (see Section 3.2.10), this
dataset was further reduced to 1884 compounds and used
for the validation of the final model.

2.3 Machine Learning Methods

Several machine-learning methods were used to generate
QSAR models using different descriptor sets. Furthermore,
different parameters were checked for each method. In the
following sections, we describe the methods and final pa-
rameter configuration, as these were used for generation
and validation of the models. The selection of the optimal
parameters for each algorithm is described in the section
“Optimization of machine learning parameters.”

kNN (k-nearest neighbor). The k-nearest neighbor
method predicts the biodegradability class of the target
compound by majority vote over k neighbors that are the
nearest ones to the target compound. The optimal value of
k in the range of 1 to 100 was automatically detected by
OCHEM.

ASNN (Associative Neural Networks). This method com-
bines an ensemble of feed-forward neural networks (NN)
with the kNN approach. Here, the correlations between
predictions of several NN serve as a distance measure for
the kNN method. This approach reduces the bias of the en-
semble of NN.[26] The NN was a single layer network, con-
taining three neurons in the hidden layer. The SuperSab[27]

method was used to optimize the NN weights. Sixty-four
NN were included in an ensemble and the number of learn-
ing iterations for NN training was 1000.

FSMLR (Fast Stagewise Multivariate Linear Regression).[28]

This method generates stepwise linear regression models
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based on a greedy descriptor selection method. It uses an
internal validation set, whose relative size determines the
amount of descriptors taken into account. The parameter
shrinkage was set to 1.

LibSVM (Support Vector Machines).[29] This classification
method uses a kernel-function to transform the input varia-
bles into a higher dimensional space in order to classify in-
stances via an optimally linear separating hyperplane. In
this study, the classic algorithm (C-SVC) was used with
a radial basis function (c = 4, g= 0.25 optimized with grid
search) and an upstream scaling of the compound descrip-
tors.

WEKA J48. This classification method uses a pruned C4.5
decision tree,[30] as implemented in the Java WEKA pack-
age.[31] The C4.5 tree recursively partitions the dataset into
subsets. Splitting of the data in each step is based on
choosing the descriptor with the highest normalized infor-
mation gain (information entropy), so that each subset is
enriched in one of the two classes.

WEKA RF (Random Forest). This method is also a WEKA
implementation of a random decision tree.[32] It uses no
pruning and considers log2(N) random features at each
node, where N is the total amount of descriptors.

PLS (Partial Least Squares) This linear regression method
is useful especially for datasets where the number of (puta-
tively highly correlated) descriptor variables exceeds the
number of training samples. The number of latent variables
was optimized automatically.

These machine-learning methods range from simple
(kNN, decision trees) to complex (ASNN, LibSVM) and thus
cover a wide range of algorithms used in QSAR studies.
They were selected to explore whether the use of more
complex approaches could provide significant advantages
over the simpler ones.

2.4 Descriptors

A variety of descriptors and their combinations were ap-
plied using the machine learning methods. In a preprocess-
ing step using Chemaxon Standardizer, all molecules were
standardized, neutralized, and salts were removed. Mole-
cule structures were optimized with Corina.[33] Unsupervised
filtering of descriptors was applied to each descriptor set
before using it as a machine learning input. Descriptors
with fewer than two unique variables or with a variance
less than 0.01 were eliminated. Further, descriptors with
a pair-wise Pearson’s correlation coefficient R>0.95 were
grouped. The section below briefly explains the different
kinds of descriptors.

Estate[34] refers to electrotopological state indices that
are based on chemical graph theory. E-State indices are 2D
descriptors that combine the electronic character and the
topological environment of each skeletal atom.

ALogPS[35,36] calculates two 2D descriptors, namely the
octanol/water partition coefficient and the solubility in
water.

ISIDA (In SIlico Design and data Analysis) fragments.
These 2D descriptors are calculated with the help of the
ISIDA Fragmenter tool[37] developed at the Laboratoire d’In-
fochimie of the University of Strasbourg. Compounds are
split into Substructural Molecular Fragments (SMF) of (in
our case) lengths 2 to 4. Each fragment type comprises
a descriptor, with the number of occurrence of a fragment
type as the respective descriptor value. In general, there
are two types of fragments: sequences and “augmented
atoms,” defined by a centered atom and its neighbors. In
this study, the sequence fragments that are composed of
atoms and bonds were used.

GSFragments. GSFrag and GSFrag-L[38] are used to calcu-
late 2D descriptors representing fragments of length k =
2…10 or k = 2…7, respectively. Similar to ISIDA, descriptor
values are the occurrences of specific fragments. GSFrag-L
is an extension of GSFrag; it considers labeled vertices in
order to take heteroatoms of otherwise identical fragments
into account.

CDK. CDK (Chemistry Development Kit)[39] is an open
source Java library for structural chemo- and bioinformatics.
It provides the Descriptor Engine, which calculates 246 de-
scriptors containing topological, geometric, electronic, mo-
lecular, and constitutional descriptors.

Dragon v. 6.0. Dragon is a software package from
Talete[40] which calculates 4885 molecular descriptors. They
cover 0D - 3D space and are subdivided into 29 different
logical blocks. Detailed information on the descriptors can
be found on the Talete website.

Chemaxon descriptors. The Chemaxon Calculator Plugin
produces a variety of properties. Only properties encoded
by numerical or Boolean values were used as descriptors.
They were subdivided into seven groups, ranging from 0D
to 3D: elemental analysis, charge, geometry, partitioning,
protonation, isomers, and others.

Adriana.Code[41] , developed by Molecular Networks
GmbH, calculates a variety of physicochemical properties of
a molecule. The 211 resulting descriptors range from 0D
descriptors (such as molecular weight, or atom numbers) to
1D, 2D, and various 3D descriptors.

The aforementioned descriptor packages cover different
representations of chemical structures; all have been fre-
quently used for modeling of physicochemical and biologi-
cal properties of molecules. For example, ISIDA fragments
represent molecules as a set of 2D fragments. Correlations
of those fragments to biodegradability contribute to
a mechanistic underpinning of the investigated property.
Our objective was to examine whether some of the pack-
ages offered significant advantages over others.

2.5 Bagging

Bagging is a powerful meta-learning method that can dra-
matically increase the accuracy of machine learning meth-
ods.[42] In this method, N training datasets (bags) are gener-
ated by sampling instances from the original dataset with
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replacement. Each bag is used to generate a model using
a particular machine-learning method. The samples, which
are not selected as part of the training set (out-of-the-bag
samples), are used to estimate the performance of the de-
veloped models. In this paper, we used bagging for all
studies. This allowed an unbiased comparison of methods.
In our study, the number of readily biodegradable com-
pounds was about half that of non-readily biodegradable
ones, and thus our dataset was imbalanced. We used strati-
fied undersampling bagging[43] to take this into account.
Using this approach, the same numbers of samples from
each class were selected, thus providing balanced sets for
machine learning.

2.6 Model Performance

The balanced accuracy (BA)[44] was applied to determine
the quality of the generated models. In the following sec-
tion, the definitions of the different measures are based on
TP = True Positive, TN = True Negative, FP = False Positive,
and FN = False Negative classification results. Traditionally,
accuracy of predictions is used as a measure of perfor-
mance for classification models. It is the proportion of cor-
rectly classified instances versus all instances and is defined
as

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ ð1Þ

For (highly) imbalanced datasets, the accuracy can pro-
vide an incorrect estimation of the performance of the
models, since it can be dominated by the model perfor-
mance for the overrepresented class. The balanced accura-
cy (BA), which is defined as the arithmetic mean of sensitiv-
ity and specificity,

BA ¼ ðSensitivityþ SpecificityÞ=2

¼ TP=ðTPþ FNÞ þ TN=ðTNþ FPÞ
ð2Þ

accounts for this problem and is the correct classification
performance metric for such sets.[44] Furthermore, it coin-
cides with the traditional Accuracy in cases where the clas-
sifier performs equally for each class.

2.7 Confidence Intervals

The confidence intervals were provided by OCHEM for each
statistical parameter using a bootstrap procedure, i.e. ,
using random sampling with replacement. For the estima-
tion, the values predicted by each model are used to gen-
erate N = 1000 datasets of the same size as the analyzed
set (i.e. , training or test) using the bootstrap. The statistical
parameters are then calculated for each set, thus generat-
ing the respective distributions with N = 1000 values. The
confidence intervals are determined using the 2.5 percen-
tile and the 97.5 percentile of the distributions. The inter-
vals generated this way are, in general, not symmetric with

respect to the value calculated for the original set. OCHEM
automatically symmetrizes them by reporting the average
value.

2.8 Applicability Domain

Models may show inhomogeneous performance for differ-
ent compounds. Therefore, it is important to distinguish
between reliable and unreliable predictions. Using the Ap-
plicability Domain (AD) estimation[16–18] enables one to dif-
ferentiate between predictions of high and low confidence
and thus to identify a subset of molecules for which labori-
ous experimental measurements can be substituted with
computational predictions. In the current study, we used
the standard deviation of predictions of the ensemble of
models in the bagging approach (BAGGING-STD) or in
a consensus model (CONSENSUS-STD) as a measure to dis-
tinguish reliable and non-reliable predictions. The standard
deviation was one of the best measures in our previous
benchmarking study.[18] While BAGGING-STD/CONSENSUS-
STD were provided for each prediction, we also used
threshold values, which covered 95 % of compounds from
the training set, to determine the qualitative ADs of
models. The idea of this threshold was that 5 % of the com-
pounds in the training set, which were defined as outside
the AD, did not form a sufficiently large set to correctly
evaluate the confidence of predictions.

3 Results

3.1 Structural Analysis

The initial dataset was examined using the SetCompare
tool implemented in OCHEM to identify structural features,
which can distinguish readily (RB) or non-readily biodegrad-
able (NRB) molecules. The SetCompare tool uses a hyper-
geometric distribution to identify a probability that ob-
served ratios of a particular feature (chemical scaffold, tox-
icity alert) in two analyzed sets could happen by chance.

The analysis of structural variability was performed using
functional groups provided by the ToxAlerts tool.[45] The
groups are based on classifications provided by the Check-
Mol software,[46] which was extended to cover new groups,
especially heterocycles. The full list of calculated groups is
available on the article website.

It was found that several functional groups showed pref-
erences for one of the two analyzed classes (see Table 1).
For example, halogen derivatives occurred significantly
more often in NRB compounds (p<10�40). The majority of
these derivatives comprised aryl chlorides (187 out of 355
in the NRB class). We should note that halogen derivatives
and, in particular, chloride substituents constitute toxic
functional groups, while fluoride substituents are extremely
persistent in the environment.[47] Additionally, further toxic
functional alerts, e.g. , isocyanides and phosphoric acid de-
rivatives, were overrepresented in the NRB dataset as iden-
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tified by the ToxAlert tool.[45] Of course, not all compounds
containing such groups are toxic: the presence of such
groups merely indicates a possible concern. However, we
cannot rule out that their toxicity might be a factor in why
molecules with these functional groups are not degraded
and hence are enriched in the NRB dataset.

Aromatic compounds were also significantly (p<10�38)
overrepresented in the NRB dataset. Confirming the first
finding, halogenated rings and activated halo-aromatics
were found exclusively in NRB compounds (34 and
28 counts, respectively). Furthermore, anilines and phenols,
both of which are very reactive but toxic to bacteria, were
enriched in the NRBs. The top ten significant scaffolds com-
prised only aromatic substructures that were overrepresent-
ed in the NRB set.

At the same time, carboxylic acid derivatives occurred
more often in the RB dataset (p<10�36). This class includes
carboxylic esters, alcohols, and carboxyl groups. These
functional groups are highly degradable and can thus
result in a breakdown of the substance. Finally, compounds
containing aliphatic chains were also enriched in the RB da-
taset. Heptanes in particular were overrepresented in the
dataset (p<10�18).

These findings indicate that both classes of compounds
have distinct structural features that define their biodegrad-
ability potential. The detected overrepresented structural

fragments could be important for rapid screening of new
chemical compounds with respect to RB. In the following
section, we applied machine-learning algorithms to devel-
op reliable predictors of the biodegradability of molecules.

3.2 Predicting Ready Biodegradability

OCHEM allows users to easily apply different machine learn-
ing methods to a variety of descriptor sets and to generate
QSAR models in an automated manner. For this study, the
following machine learning methods and descriptor sets
were used:

– Machine Learning Methods:

ASNN, FSMLR, KNN, LibSVM, PLS, Weka-J48, Weka
Random Forest

– Descriptor Sets:

Dragon v.6.0, CDK, AlogP and EState, Adriana.Code,
Chemaxon, ISIDA Fragments, GS Fragments

3.2.1 Optimization of Machine Learning Parameters

The models were calculated using a stratified-bagging ap-
proach. To achieve the highest BA, various parameters were
analyzed for the machine learning methods. For Weka RF,
the tree size was varied (8–15), with 12 yielding the highest
model performance. LibSVM was run with the classic algo-
rithm (C-SVC) and different kernel functions (RBF, poly-
nomial, linear, sigmoid), combined with the option to scale
variables. Best results were achieved using an RBF kernel
applied to scaled descriptors. KNN used the Euclidian dis-
tance measure and the Pearson correlation. There were no
significant differences between the two distance measures.
The Euclidian distance was used for further analysis. For
ASNN, we employed the following training methods: Mo-
mentum, SuperSAB, RPPROP, QuickProp, and QuickPropII.
The number of neurons in the hidden layer was analyzed
(3–9) as well as the number of learning iterations (500–
5000). SuperSAB[27] yielded the best results. Neither varying
the number of neurons in the hidden layer nor the learning
iterations resulted in significant changes. Therefore, the Su-
perSAB algorithm and three hidden neurons combined
with 1000 learning iterations was used for subsequent anal-
ysis.

ASNN, WEKA decision tree J48, and Random Forest pro-
duced the best results (Table 2). These three methods had
an averaged BA of over 82 % on the descriptor sets. Three
models (Weka-J48 + CDK, LibSVM + Dragon6, Weka-J48 +
Dragon6) even achieved a BA of over 84 %.

The Dragon6 descriptor set showed the best results over-
all in combination with all machine learning methods,
yielding an average BA of 82 %. ISIDA, ALogP/Estate, and
the CDK descriptor sets performed almost equally well with

Table 1. Functional groups that are overrepresented in one of the
datasets. RB = Readily Biodegradable compounds, NRB = Non-Read-
ily Biodegradable compounds. Appearance counts are listed as
well as the p-value of the respective distribution. Negative and
positive p-values indicate groups overrepresented in RB and NRB
sets, respectively.

Group RB set NRB set p-value
717 molecules 1221 molecules

Halogen deriv. 40 (6 %) 355 (29 %) �1.03 � 10�40

R-Cl 7 (1 %) 186 (15 %) �5.75 � 10�31

Aromatic compound 235 (33 %) 775 (63 %) �1.45 � 10�39

201 (28 %) 581 (48 %) �8.02 � 10�18

2 (0.3 %) 39 (3 %) �1.51 � 10�6

82 (11 %) 315 (26 %) �4.29 � 10�15

Carboxylic acid deriv. 331 (46 %) 230 (19 %) 7.23 � 10�37

166 (23 %) 69 (6 %) 4.59 � 10�29

287 (40 %) 158 (13 %) 1.51 � 10�41

Alcohols 150 (21 %) 68 (6 %) 4.01 � 10�24

101 (14 %) 47 (4 %) 9.86 � 10�16

50 (7 %) 17 (1.4 %) 2.02 � 10�10

Aliphatic chains 131 (18 %) 52 (4 %) 1.64 � 10�23

Heptanes 114 (16 %) 48 (4 %) 2.04 � 10�19
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an 81 % averaged BA. From these results, one can conclude
that 3D-containing descriptor sets (Dragon6, CDK) perform
equally as well as 2D descriptor sets (ISIDA, ALogPS/EState).
Further analysis can be found in the section “Analysis of 3D
and 2D descriptors.”

These initial models already provided accurate predic-
tions. However, for this analysis only the parameters of the
machine learning method were tuned. In the following sec-
tion, further aspects of model generation and validation are
analyzed to improve the model accuracy.

3.2.2 Stratified vs. Non-Stratified Bagging

Since the dataset was imbalanced, we analyzed the rele-
vance of stratified versus non-stratified learning. All models
were developed using both approaches (Table 3).

ASNN, LibSVM, Weka-J48, and Weka-RF yielded the best
models, with an averaged BA of over 80 %, while FSML,
KNN, and PLS had averaged balanced accuracies of less
than 80 %. The best model was generated with ASNN, with
a BA of 83 % on the Dragon6 descriptor set. Compared to
the results obtained using stratified bagging, only KNN
generated better models using non-stratified bagging. All
other methods performed similarly or worse on average
when using the non-stratified bagging approach. The same
conclusion could be drawn when comparing the average
performances of methods for the descriptor sets. The aver-
age balanced accuracy across all methods and descriptors
using stratified bagging was 80.4 % compared to 79.3 %
with non-stratified bagging. Therefore, stratified bagging
was used for all further analyses.

3.2.3 Size of Bags

Another free parameter we wished to optimize was the
size of the bags used for bagging. In our previous analysis,
64 bags were used. The best methods (ASNN, LibSVM,
Weka J48, Weka RF) and descriptor sets (Dragon6, CDK,
ISIDA) were used for stratified bagging to investigate the
influence of this parameter. There were only minor differen-
ces in the results for bag sizes of 64, 128, and 256. A bag
size of 32 provided models with the lower average BA of
83.0 %�1.8, while no changes in average model perform-
ances (83.2 % �1.7) were observed for bag sizes >64.
Therefore, for all further analyses a bag size of 64 was
chosen.

3.2.4 Exclusion of Outliers

For the six best models (Weka-J48/Dragon6, Weka-J48/CDK,
LibSVM/Dragon6, ASNN/Dragon6, Weka-RF/ALogPS/EState,
ASNN/ALogPS/EState), the bagging standard deviation
(Bagging-STD) was used as a measure for the distance to
model (DM);[18] this was to exclude compounds that were
incorrectly predicted despite their respective models giving
a high confidence for those predictions. For this purpose,
incorrectly predicted compounds were identified from the
20 % most confidently predicted compounds for each
model. These compounds had the lowest DM (i.e. , the
highest concordance of predictions amid 64 bags), as ex-
emplified on the accuracy plot for one of the best models
(Figure 1). An overlap was determined, including only those
compounds that were incorrectly predicted by all six
models and among the 50 % most confidently predicted

Table 2. Balanced accuracy in % and standard deviation for various machine learning methods based on different descriptors for the
whole biodegradability dataset using stratified bagging validation with 64 bags.

Descriptors ASNN FSMLR KNN LibSVM PLS Weka-J48 Weka-RF

ALogPS, EState 83.7�1.6 79.4�1.8 75.7�1.7 82.1�1.7 79.3�1.7 82.5�1.8 83.7�1.7
GS Frag 82.4�1.9 78.0�1.8 76.4�1.9 81.4�1.8 75.1�1.8 80.4�1.9 81.0�1.9
ISIDA 83.1�1.8 81.1�1.8 75.7�1.7 82.5�1.7 81.8�1.7 81.9�1.7 83.4�1.8
Dragon6 83.9�1.7 81.9�1.7 77.9�1.7 84.1�1.7 80.1�2.0 84.9�1.7 82.3�1.8
Adriana 82.9�1.8 77.8�2.0 78.3�1.8 80.7�1.7 69.7�1.8 82.8�1.7 81.7�1.8
CDK 83.4�1.7 77.3�2.0 77.8�1.8 83.6�1.7 80.1�1.8 84.0�1.7 83.4�1.8
Chemaxon 82.1�1.8 75.0�2.0 75.4�1.9 81.4�1.8 77.0�1.9 80.9�1.8 80.5�1.9

Table 3. Comparison of stratified and non-stratified bagging. The table shows averaged balanced accuracy values for applied machine
learning methods and descriptor sets.

Method % stratified % non-stratified Descriptors % stratified % non-stratified

ASNN 83.1�1.8 83.0�1.8 Dragon6 82.2�1.8 81.2�1.8
Weka-J48 82.5�1.8 81.6�1.8 CDK 81.4�1.8 79.1�1.8
Weka-RF 82.3�1.8 80.7�1.8 ISIDA 81.4�1.7 81.0�1.8
LibSVM 82.3�1.7 82.3�1.8 ALogPS, Estate 80.9�1.8 80.6�1.8
FSMLR 78.6�1.8 74.1�1.9 GS Frag 79.2�1.9 79.0�1.9
PLS 77.6�1.8 75.3�1.8 Adriana 79.1�1.8 77.7�1.7
KNN 76.7�1.8 78.1�1.9 Chemaxon 78.9�1.9 76.5�1.9
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compounds for at least three models. The overlap regard-
ing the latter constraint is exemplified for three models in
1(b) for 48 identified outliers. These 48 compounds (consti-
tuting less than 3 % of the dataset size) were excluded
from further analysis, thus resulting in 1890 compounds for
model development.

The models applying ASNN, Weka-J48, Weka-RF and
LibSVM to CDK descriptors, Dragon6 descriptors, ISIDA frag-
ments, and ALogPS/Estate indices were recalculated for the
reduced dataset. Exclusion of the 48 compounds signifi-
cantly improved the prediction accuracy. The BA of the re-
calculated models was over 86 %. On average, ASNN was
the best performing method with averaged balanced accu-
racies of over 86 %. The differences in performance of the
four methods were non-significant. Regarding the descrip-
tors, the CDK descriptor set resulted in the most accurate
models, achieving averaged balanced accuracies of over
86 %. However, similar to the performances of machine
learning algorithms, no significant differences in the per-
formances of the four descriptor sets were observed.

3.2.5 Analysis of Excluded Compounds

The 48 excluded compounds comprised 25 and 23 substan-
ces that were NRB and RB, respectively. These outlier com-
pounds were analyzed with respect to specific features that
distinguished them from the correctly predicted com-
pounds of the respective class. In order to do so, the
OCHEM SetCompare tool was again used to identify charac-
teristic features that were overrepresented in the respective
sets of the excluded RB and NRB compounds.

We found that most outliers possessed characteristic fea-
tures of the opposite class (i.e. , outliers for the RB class had
functional groups typical for NRB and vice versa). As shown
in Table 4, many RB outlier compounds had aromatic sub-
structures that were enriched within compounds of the
NRB dataset (compare Table 1). Furthermore, the number of
carboxylic acid derivatives, like carboxylic esters and car-
boxylic acids, was vanishingly small within the outlier com-
pounds in the RB class, but larger in the NRB outlier class
than expected from the analysis of the whole dataset: only

22 % of the RB outliers contained carboxylic acid moieties
compared to 46 % of the >700 compounds in the RB data-
set. In contrast, 52 % of the NRB outliers were composed of
carboxylic acid derivatives, compared to 19 % of the origi-
nal NRB dataset. The same applies for alcohols: there were
no primary alcohols in the RB outlier class, but they occur
more frequently than expected in the NRB outlier class
(24 % compared to 6 % of original NRB class). And finally,
compounds containing aliphatic chains were enriched in
the NRB outlier class (32 % compared to 4 % of the original
NRB class) but were absent in the RB outlier class (com-
pared to 18 % in the original RB class).

In Table 5, four outlier compounds are given as illustra-
tion of the above results. The finding that outliers exhibit
structural features of the opposite biodegradability class
provides a convincing explanation for why these com-
pounds were incorrectly predicted with high confidence by
several models. We assume that some of the incorrectly
predicted compounds were possibly experimental errors
and thus their exclusion could contribute to the develop-
ment of better models.

Figure 1. (a) Accuracy plot (y-axis provides the ratio of correct predictions) for the WEKA model based on CDK descriptors with Bagging-
STD as distance to model. The 20 % of compounds with the lowest distance to the model, used for determination of outliers, are empha-
sized in the plot. (b) Venn diagram of the overlap of excluded compounds regarding 50 % of the lowest distance-to-model compounds (for
the three best models of the whole dataset).

Table 4. Molecular groups that are overrepresented in one of the
two outlier datasets: RB = Readily Biodegradable compounds,
NRB = Non-Readily Biodegradable compounds. Appearance counts
are listed as well as the p-value of the respective distribution.

Group RB outliers 23 mol-
ecules

NRB outliers 25 mol-
ecules

p-
value

Aaromatic com-
pound

13 (57 %) 5 (20 %) 0.01

9 (39 %) 3 (12 %) 0.03

Carboxylic acid
deriv.

5 (22 %) 13 (52 %) �0.03

2 (9 %) 8 (32 %) �0.05

4 (17 %) 13 (52 %) �0.01

Primary alcohols 0 6 (24 %) �0.01
Aliphatic chains 0 8 (32 %) �0.003
Alkyl chains 0 9 (32 %) �0.001
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3.2.6 Analysis of 3D and 2D Descriptors

Since Dragon and CDK comprise a variety of descriptor sub-
sets, it was interesting to examine whether subsets of 3D
descriptors were important for the prediction of biodegrad-
ability of molecules. We identified descriptors that required
3D structures of molecules for Dragon and CDK and devel-
oped models with 3D and non-3D subsets. The models
based on non-3D descriptors had similar accuracy to those
based on the whole descriptor set.

3.2.7 Making Interpretable Models

While previous models achieved good accuracy, they could
not be easily interpreted. Therefore, we developed a linear
model using functional groups[46] and the ALOGPS pro-
gram[48] as the interpretable descriptors.

Y ¼ 0:534þ 0:253*alcohol �0:203*prim: aromat: amine

�0:236*sec: mixed amineðaryl alkylÞ �0:286*tert: amine

�0:259*halogen deriv: þ 0:298*carboxylic acid

þ0:383*carboxylic acid ester �0:184*nitro compound

�0:318*thiol �0:105*aromatic compound

�0:143*heterocyclic compound þ 0:0349*ALogPS logS

ð3Þ

N ¼ 1890, BA ¼ 74:4� 2 %

Although the model BA is about 14 % lower than that of
the models based on the aforementioned advanced ma-
chine learning methods, it allows a clear explanation of the
results. Several of the structural features that were found to
be significant in the structural analysis section are also
present in the equation. For example, aromatic compounds
and heterocyclic compounds, compounds with nitro, thiol,
and amine groups, and halogenic derivatives determine
low biodegradability (Y = 0) of molecules. At the same time,

the presence of alcohol, carboxylic acid, and acid ester
groups increases the biodegradable potential of molecules.

3.2.8 Consensus Model

The consensus approach has been shown to provide
models with a higher accuracy and coverage than the indi-
vidual models.[49–51] We developed a consensus model as
a simple average of individual ASNN models, calculated for
seven individual sets of descriptors. The ASNN models were
selected since this method provided models with the high-
est accuracy on average. The new model had the same ac-
curacy, a BA of 87.6 % �1.6, and thus better statistical pa-
rameters than individual models. The consensus model ob-
viously benefited from various representations of chemical
structures, which characterized molecules from different
perspectives. This model was selected as the final one and
was used for further analyses reported in this article.

3.2.9 Predicting Molecules with Underrepresented Groups

The analysis using the ToxAlerts tool identified a number of
functional groups that occurred only rarely in the training
set. Molecules containing such groups could have a lower
accuracy as these groups were underrepresented in the
training set for model development. Indeed, we observed
that the BA of the model for compounds containing
groups that occurred five times or less (n = 202 for 128
groups) in the training set was 0.84�0.06, but 0.88�0.02
for the remaining compounds. Thus, there was indeed
some effect but the difference in BA values was not suffi-
ciently large to state a statistically significant difference.
The molecules with rare groups had a CONSENSUS-STD =
0.096 �0.008, which was significantly higher than that cal-
culated for the remaining compounds (0.081�0.03). Thus,
the model differentiated both groups of compounds by in-
dicating that molecules with rare groups were significantly
more dissimilar (greater distance to model values) to the
rest of the training set compounds.

Table 5. Occurrence of functional groups in four outlier compounds. “X” marks presence of the respective functional group in the mole-
cule. The outliers have functional groups overrepresented in the opposite activity classes, e.g. , 3,3’-oxydipropanol (CAS 2396-61-4) has
three groups that are overrepresented in the class of RB compounds.

Compound CAS Outlier class Aromatic Carboxylic acid der. Alcohol Aliphatic

5333-42-6 NRB X X

2396-61-4 NRB X X X

581-40-8 RB X

98-07-7 RB X

� 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2014, 33, 73 – 85 81

Full Paper www.molinf.com

www.molinf.com


3.2.10 Validation of the Model Using Test Sets

The validation protocol used in this study provided a so-
called “external” validation of all models. The term external,
which is gaining some popularity in QSAR studies,[17,52,53] is
in our opinion a confusing one. Actually, there can be just
two types of validation: “correct” or “biased.” The first,
which is referred as “external,” tests a model following its
development, i.e. , following all model development steps
including variable selection and parameter optimization. In
our study, we always developed a new model for each fold,
including parameter optimization, and only after that was
the model used to predict a validation dataset. Thus, we
indeed performed “external model validation” during each
fold, and all reported cross-validation results were thus “ex-
ternally validated”.[17,53] Typical examples of an incorrect val-
idation procedure include either variable selection or
tuning model parameters or both using all data, followed
by a cross-validation. Such an “internal” validation proce-
dure can provide excellent statistical parameters using
even random numbers, as was clearly demonstrated in one
of our tutorials provided during the Summer Chemoinfor-
matics School.[54]

We also decided to validate the performance of the
model using two public test sets of 63[55] and 40 (including
2 stereoisomers) compounds.[25] The estimated average ac-
curacy of the model of 83 % was in a good agreement with
the calculated accuracy of 86�9 % for the Boethling and
Costanza dataset.[55] This result was better than the 75 % ac-
curacy reported by the authors for their BIOWIN model.[55]

The consensus model identified seven predictions as out-
side the AD of the model and, in fact, failed to predict the
correct biodegradability class for four of these. The consen-
sus model provided very good results for NRB and only 4
out of 53 compounds from this class were incorrectly pre-
dicted. Unfortunately, the accuracy of the model was lower
for RB compounds and 5 out of 10 compounds were incor-
rectly predicted. These five errors included three predic-
tions marked as outside the AD of the model as well as
theophylline and caffeine, i.e. , two very similar compounds.
This result is in accordance with other studies,[7,14,56] which
have consistently reported that prediction of biodegradable
compounds is more challenging than predicting NRB ones.
The consensus model correctly predicted all NRBs, but only
1 out of 3 RB compounds for the Steger-Hartmann et al.
set.[25] Two incorrect predictions were testosterone and es-
tradiol, which are naturally occurring sex hormones. The
failure to correctly predict the biodegradability of these
two compounds as well as that of theophylline and caffeine
could be explained by acclimation of microbial communi-
ties to their exposure during evolution, i.e. , the microbes
may have developed very specialized pathways to degrade
them. The Steger-Hartmann et al. set[25] contained about 10
further derivatives of the two steroid hormones, all of
which were not biodegradable and thus correctly predicted
by the model. Thus, even tiny modifications of the endoge-

nous compounds can change their biodegradability. Dra-
matic differences in the biological properties of compounds
due to minor variations in their structure are known as “ac-
tivity cliffs” in drug discovery.[57] Considering that the phar-
maceutical industry invests hundreds of millions of dollars
in the development of a single drug, but still faces the “ac-
tivity cliffs” as one of its main challenges in drug discovery
– for just one species, i.e. , humans – it would be na�ve to
believe that a similar problem of “biodegradability cliffs”
could easily be addressed in environmental studies. In this
respect we cannot support the conclusion of Steger-Hart-
mann et al. , who stated that “based on the findings report-
ed here, we consider the use of in silico tools for an early
selection of drug candidates with favorable properties with
regard to biodegradation as being currently immature.” In
fact, with respect to the synthetic compounds, the consen-
sus model gave a 100 % accurate prediction. In our view,
because of differences in acclimation of microbial commun-
ities to synthetic and endogenous compounds and the
aforementioned problem of “biodegradability cliffs,” the
programs developed to predict the ready biodegradability
of industrial compounds should not be tested using endog-
enous compounds.

From a formal viewpoint, the results of the consensus
model were better than those of the BIOWIN model, which
could not correctly predict three NRBs and failed to identify
all RBs. However, due to the small size of these sets, the
confidence intervals ranged from �8 % to �20 % for accu-
racy and balanced accuracy, respectively. Thus, when using
such small sets, no statistically valid conclusion regarding
higher performance of the current model can or should be
drawn. We hope that registration of compounds in REACH
will provide access to large number of experimental meas-
urements, which can be used to provide large-scale valida-
tion of existing approaches and the current model.

3.2.11 Screening of the ECHA Preliminary List of Chemical
Compounds

The model was used to predict chemicals from ECHA’s pre-
liminary list of chemical compounds pre-registered for
REACH, which was compiled at the Joint Research Center
and is available as an Excel file for QSAR analysis.[58] We ap-
plied the same filtering and exclusion of duplicated com-
pounds as for the training set. Further, several other com-
pounds, such as noble gasses, metals, and metal-containing
compounds were filtered, leaving 55 467 molecules. The
consensus model predicted an average accuracy of 84.8 %
for this dataset and about 87 % of the ECHA compounds
were covered by its AD. The former percentage was calcu-
lated as the predicted average accuracy of the model for
this set. The latter percentage does not mean that all 87 %
of the predictions will be sufficient for regulatory purposes.
The AD threshold used corresponded to an approximately
68 % probability of correct prediction, which could be low
for some purposes. The consensus model covered 55 % and
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43 % for thresholds of 80 % and 90 % predicted accuracy, re-
spectively. Since the model always reports the prediction
confidence, users can themselves decide whether the re-
ported accuracy is sufficient for their purposes.

There were several functional groups calculated using
ToxAlert (see Table S1 in the Supporting Information) for
which many predictions of the consensus model were out-
side the AD and thus had low accuracy. For many of these
groups, the training set contained only a few or even no
training set samples. The average predicted accuracy of the
model was RMSE = 0.82 for groups represented by five or
fewer compounds in the training set compared to RMSE =
0.86 for the other groups. Thus, as previously reported for
the training set, the model showed lower accuracy for
these underrepresented groups. However, the accuracy of
predictions for compounds within a group can show large
variances. For example, there were only two compounds
with a hexahydrotriazine group in the training set. Figure 2
shows four molecules with this group from the ECHA data-
set. Molecule A, which is just the hexahydrotriazine core,
was predicted as an NRB with lowest accuracy and marked
as outside the AD of the model. Adding new groups in-
creased the confidence of predictions for compounds B
and C, which were predicted as NRB and RN. In the case of
compound D, the addition did not change the accuracy of
prediction; however, it changed its predicted class.

4 Discussion and Conclusions

We started with an initial dataset of ready biodegradability
measurements for more than 2000 compounds, which was

carefully cleaned and validated to provide a solid base for
further analysis. Structural analysis of this dataset revealed
that several characteristic functional groups were overre-
presented in the two classes (RB and NRB). Whereas aro-
matic substructures and halogen derivatives are enriched in
NRB compounds, carboxylic acid derivatives, alcohols, and
aliphatic chains occur more frequently in RB compounds.
The same result was confirmed by developing a linear
model using the functional groups as descriptors.

From the initial dataset, several QSAR models were built
for combinations of machine learning methods (ASNN,
LibSVM, KNN, PLS, FSMLR, Weka-J48, Weka-RF) and descrip-
tor sets (Dragon6, CDK, AlogPS, EState, Adriana, Chemaxon,
ISIDA, GSFragments). This is thus the most comprehensive,
up-to-date published study to predict the ready biodegrad-
ability of chemical compounds using different machine
learning models and descriptor sets. The average balanced
accuracy across all generated models was around 80 %,
with some models achieving balanced accuracies of more
than 84 %. This result suggests that there is no magic com-
bination of methods and descriptors that appears prefera-
bly for the prediction of this property. The greatest accura-
cy was achieved using a consensus model, which averaged
seven individual models: this thus highlights the impor-
tance of using different representations of chemical struc-
tures to obtain the most accurate predictor.

Stratified bagging with 64 bags was found to yield the
best model performance: using a large number of bags did
not increase the accuracy of the models. For the six best
models, 48 outliers (2.5 % of all data points) were detected
using Bagging-STD (Figure 1). These outliers were incorrect-
ly predicted with high confidence and therefore excluded

Figure 2. Biodegradability classes and the confidence of prediction as calculated by the consensus model for four compounds with a hexa-
hydrotriazine group. The predictions for compounds A and D have the lowest accuracy and are flagged as outside the applicability domain
of the model.
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from the dataset. Models derived with this reduced dataset
showed an improved performance with a BA >86 %. Struc-
tural analysis of the outlier compounds revealed that they
contained functional groups characteristic of the opposite
biodegradability class (i.e. , biodegradable outliers con-
tained groups that were typically found in non-biodegrad-
able compounds, and vice versa). That is why these mole-
cules were incorrectly classified despite the high accuracy
of prediction reported by the models. It is possible that
their reported biodegradability classes were experimental
errors and/or the compounds were measured in inappropri-
ate experimental settings.

Models generated with 2D subsets of the Dragon6 and
CDK descriptors showed that 2D features were sufficient to
yield models with a similar accuracy to those built using
the whole sets of descriptors. Thus, 2D characteristics such
as the occurrence of certain functional groups could be suf-
ficient to provide a prediction of biodegradability.

The proposed workflow for data analysis and identifica-
tion of outlying compounds provides an important meth-
odological development to identify and exclude erroneous
data and significantly improve model accuracy.

The approach used in this study was somewhat different
to previously published studies. In general, previous au-
thors identify some set of the most important descriptors,
i.e. , molecular fragments, which are then used to develop
the models. In addition, identification of such fragments is
used to provide an interpretation of the models. However,
if such models are applied to new compounds, a lower pre-
diction performance is reported, quite often due to the
missing “fragments” problem.[5] Therefore, in the current
study we explored a different approach: no descriptor se-
lection (except for filtering highly correlated descriptors)
was used and thus models were developed using all avail-
able structural information. The prediction of individual
models was then used to develop a final consensus model.
In our view, a model developed in this way is more robust
and better able to predict new chemical structures. Indeed,
thanks to the different representations of chemical struc-
tures used in the individual models, the consensus model is
more easily able to account for new chemical substruc-
tures. The future benchmarking of the model for new data-
sets will allow this hypothesis to be tested.

Application of the developed models to predict two test
sets resulted in similar performances to previous models.
We showed that the accuracy and BA calculated for both
test sets had very wide confidence intervals, which were es-
timated using a bootstrap procedure. Therefore, they were
making an infeasible comparison of different models using
these sets. This result is an important warning to users who
frequently ignore the variance of statistical coefficients
when comparing the performance of models. Conclusions
based on such comparisons could be incorrect simply due
to chance effects.

In summary, in this study our aim was twofold: (i) to de-
velop a consensus model to predict the ready biodegrada-

bility of chemical compounds, and (ii) to make this model
publicly available. This is the first publicly available consen-
sus model for ready biodegradability based on seven indi-
vidual models and using the largest dataset. In contrast to
previous models, the new model provides confidence inter-
vals for each prediction. This allows the final user to decide
whether the provided accuracy of prediction is satisfactory
or whether experimental measurement is required. The
strategy of identifying and excluding outlying molecules, as
described in the article, provides an important methodo-
logical approach for working with noisy data. We also sug-
gested that model developers should take the confidence
intervals of statistical parameters into account. This is cru-
cial in order to avoid erroneous conclusions when compar-
ing model performances. Finally, we discussed why the
testing of models developed using industrial chemicals
could be biased when using endogenous compounds.
Such compounds could have a higher biodegradability po-
tential due to acclimation of microbial communities, lead-
ing to “biodegradability cliffs.” The public availability of our
model and all its data will allow other users to validate its
results. It will also contribute to its promotion[59] and
a wider use of computational methods in the environmen-
tal sciences.
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