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Cancer subtype identification is important to facilitate cancer diagnosis and select
effective treatments. Clustering of cancer patients based on high-dimensional RNA-
sequencing data can be used to detect novel subtypes, but only a subset of the
features (e.g., genes) contains information related to the cancer subtype. Therefore,
it is reasonable to assume that the clustering should be based on a set of carefully
selected features rather than all features. Several feature selection methods have been
proposed, but how and when to use these methods are still poorly understood. Thirteen
feature selection methods were evaluated on four human cancer data sets, all with
known subtypes (gold standards), which were only used for evaluation. The methods
were characterized by considering mean expression and standard deviation (SD) of
the selected genes, the overlap with other methods and their clustering performance,
obtained comparing the clustering result with the gold standard using the adjusted Rand
index (ARI). The results were compared to a supervised approach as a positive control
and two negative controls in which either a random selection of genes or all genes
were included. For all data sets, the best feature selection approach outperformed the
negative control and for two data sets the gain was substantial with ARI increasing
from (−0.01, 0.39) to (0.66, 0.72), respectively. No feature selection method completely
outperformed the others but using the dip-rest statistic to select 1000 genes was overall
a good choice. The commonly used approach, where genes with the highest SDs are
selected, did not perform well in our study.

Keywords: feature selection, gene selection, RNA-seq, cancer subtypes, high-dimensional

INTRODUCTION

The human genome consists of around 21,000 protein coding genes (Pertea et al., 2018). By
analyzing genes using high-throughput technologies (e.g., sequence and microarray technologies),
researchers get access to huge amount of data that can be of relevance for prognosis of a
disease (classification), identification of novel disease subtypes (cluster analysis) and detection
of differentially expressed genes. Aside from the fact that the number of genes often far
exceeds the number of samples, most features (i.e., genes) contain no information related
to the trait of interest. Whether the aim is to distinguish between different tumor stages
or identifying new disease subtypes, the identification of discriminating features is key.
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Diseases like cancer arise by various causes and there is
reason to believe that today’s cancer diseases can be divided
further into several subtypes, which potentially should be treated
differently. Cluster analysis applied on gene expression data
from samples (e.g., tumor samples or blood samples) taken
from cancer patients has successfully been used to detect novel
cancer subtypes (Eisen et al., 1998; Sotiriou et al., 2003; Lapointe
et al., 2004; Bertucci et al., 2005; Fujikado et al., 2006; Ren
et al., 2016). However, the problem of detecting new subtypes
is challenging since most of the genes’ expressions are not
affected by disease subtype and some genes are influenced by
other factors such as gender, age, diet, presence of infections
and previous treatments. Ideally, a cluster analysis aimed at
detecting novel disease subtypes should only utilize genes that
are informative for the task, i.e., genes that have their expression
mainly governed by which disease subtype the patient has.
Hence, it is of interest to apply some sort of gene selection
procedure prior to the cluster analysis. This task would be
relatively easy if it was known which subtypes (i.e., labels) the
patients have, but for unsupervised classification problems, the
labels are unknown making gene selection a true challenge.
When the labels are unknown, statistical tests such as t-tests,
Wilcoxon rank sum tests or one-way ANOVA cannot be
used to identify differentially expressed genes. Instead, other
data characteristics need to be considered. For example, a
common approach to discover subgroups in high-dimensional
genomic data is to apply clustering on a subset of features
that are selected based on their standard deviation (SD) across
samples (Bentink et al., 2012; Kim et al., 2020; Shen et al.,
2020). Thus, the SD is used as a score that measures how
informative a gene is for the underlying subgroups. Here we
also consider a set of alternative scores for selecting informative
genes, i.e., genes affected by the subtype. Aside SD, other
examples within the category of variability scores include, e.g.,
the interquartile range (IQR) and measures based on entropy
(Liu et al., 2005; Seal et al., 2016). If instead it is assumed
that informative genes are likely to be expressed at a relatively
high level it makes sense to select highly expressed genes.
Another class of measures is based on quantifying the extent
to which the gene expression distribution can be described
by two or more relatively distinct peaks, or modes, which
represent different subtypes. In the simplest case, we assume
that the tumor samples can be divided into two subtypes.
Given that this assumption is true, the gene expression of an
informative gene may have a bimodal distribution. By ranking
genes according to some bimodality measure and including
only the top scoring genes (i.e., the genes with the highest
bimodality measures), it is possible to remove uninformative
and redundant genes before performing clustering. Several gene
selection procedures based on bimodality have been proposed
(Moody et al., 2019), including the bimodality index (BI; Wang
et al., 2009), the bimodality coefficient (BC; SAS Institute, 1990)
and various variants of the variance reduction score (VRS;
Bezdek, 1981; Hellwig et al., 2010). A more general approach is
to search for genes with an apparent multimodal distribution.
The dip-test suggested by Hartigan and Hartigan (1985)
addresses this problem.

It may be argued that genes that are involved in the same
biological processes should have similar expression profiles across
samples (Wang et al., 2014). Under the assumption that a fair
number of genes are affected by the disease subtype, it is natural
to search for a large set of genes that are highly correlated. In
the established taxonomy for feature selection approaches, the
methods studied here are filtering methods, other important
classes are wrapper, embedded, and hybrid methods thereof
(Ang et al., 2016).

It is evident that fundamentally different selection procedures
will identify different sets of genes. Moreover, several of the
approaches are likely to include not only informative genes
but also genes affected by other factors and genes that have
general inclusion properties (e.g., genes with highly variable gene-
expressions). In the worst-case scenario, a gene selection may fail
to identify genes associated with the subtype partition of interest.
This risk is particularly relevant if the influence of the disease
subtype is weak compared to other factors. Hence, gene selection
can have a negative influence on the clustering performance.

Multiple studies have compared feature selection methods
where the ultimate goal is to classify patients according to
some disease status. Arun Kumar et al. (2017) compared
feature selection algorithms based on execution time, number of
selected features and classification accuracy in two microarray
gene expression data sets. Abusamra (2013) compared eight
feature selection methods on two publicly available microarray
gene expression data sets of glioma and found that no
single method outperformed the others. Cilia et al. (2019)
concluded that the feature selection process plays a key role in
disease classification and that a reduced feature set significantly
improved classification, but no selection method had a superior
performance in all data sets. Much fewer studies have compared
feature selection methods where the objective is detection of
novel subgroups using clustering (Freyhult et al., 2010).

Here we focus on evaluating and comparing means of
selecting informative genes in high-dimensional RNA-seq data
from human cancers before performing cluster analysis for
identification of subtypes. The study is extensive and evaluates
13 gene selection procedures on four human cancer tumor types,
each with two known subtypes. The approaches are compared to
two negative controls (including all genes or a set of randomly
selected genes) and a positive control (genes selected using
label information). We study the performance of the methods,
properties of the selected genes and overlap between sets of
selected genes. We also investigate how the performance changes
when the relative distribution of the subtypes is altered.

MATERIALS AND METHODS

Data
Experimental RNA-sequencing raw count data from the TCGA-
database were obtained through Broad institute GDAC Firehose1.
Four different cancer types with known subgroups were used in
the analyses: breast (BRCA), kidney (KIRP), stomach (STAD),

1https://gdac.broadinstitute.org
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and brain (LGG) cancer. In all evaluations we treated the defined
cancer subtypes as gold standard partitions, although there exist
several ways of grouping the data.

The Brain data (denoted LGG by TCGA) consists of data
from 226 tumor samples from patients with lower grade glioma,
where 85 patients had the IDH mutation and 1p/19q co-
deletion (IDHmut-codel) while the remaining 141 patients had
the IDH mutation without the 1p/19q co-deletion (IDHMut-
NOcodel)(Brat et al., 2015). The Breast data (BRCA by TCGA)
consists of data from 929 tumor samples from patients with
breast invasive carcinoma (BRCA), where 216 patients had
negative Estrogen Receptor status (ER−) while the remaining
713 patients had positive ER status (ER+). The Kidney data
(KIRP by TCGA) includes data from tumor samples from 150
patients with kidney renal papillary cell carcinoma (KIRP), where
73 patients were histologically determined as subtype 1 and
the remaining 77 samples were determined as subtype 2 (The
Cancer Genome Atlas Research Network, 2016). The Stomach
data was obtained from tumors in 178 patients with stomach
adenocarcinoma (STAD), where 55 patients had microsatellite
instability (MSI) tumors and the remaining 123 patients had
tumors with chromosomal instability (CIN) (Cancer Genome
Atlas Research Network, 2014).

Clustering of Samples
Raw gene level count data were obtained from the TCGA-
database, i.e., an integer value was observed for each sample
and gene. First, the raw data were pre-processed, including
initial filtration, between sample normalization and applying a
variance stabilizing transformation, see section “Pre-processing”
for further details. A variety of gene selection approaches were
applied to the pre-processed data, see section “Selection of
Informative Genes”. Hierarchical clustering using Ward’s linkage
and the Euclidean distance was performed on the selected genes.
In addition, k-means (k = 2) clustering (Hartigan and Wong,
1979) and hierarchical clustering using Ward’s linkage and a
correlation-based distance (i.e., 1-| ρ|, where ρ is the Spearmans
correlation coefficient) were performed in some selected cases.
The two major groups identified by the clustering algorithm
defined a binary sample partition that was compared to our gold
standard partition (i.e., the partition defined by the considered
subgroups), see section “Evaluations”.

Simulation Study
Prior to analyzing the cancer data, a small simulation study was
conducted to understand if inclusion of non-informative features
(here defined as features with identically distributed feature
values) has a negative effect on the clustering performance. Data
from 100 samples (50 labeled A and 50 labeled B) with 10,000
features were simulated. Here, 100 features were informative such
that the A-values were simulated from a normal distribution
with mean 0 and variance 1 [i.e., N(0,1)] and the B-values
were simulated from N(1,1). All the non-informative values
were simulated from N(0,1). Hierarchical clustering using Ward’s
linkage and the Euclidean distance was performed on: all features,
only the 100 informative features and the k features with the
highest SD, k = 100, 200, . . ., 10,000. The simulations were
repeated 40 times. For each clustering, the performance was

measured using the adjusted Rand index (ARI) (Hubert and
Arabie, 1985), where the clustering result was compared to
the AB-partition.

Pre-processing
All four data sets originally contained gene expression for 20,531
genes. As a first step in finding informative genes, we excluded
genes expressed at low levels. A score was constructed for each
gene by counting the number of samples with expression values
below the 25th gene percentile (i.e., the expression value below
which 25% of the genes in a sample can be found). The 25%
of the genes with highest score were filtered out. Next, the
R-package DESeq2 (Love et al., 2014) was used for between
sample normalization using the standard settings. Finally, the
normalized data was transformed using a variance-stabilizing
transform (VST), which conceptually takes a given variance-
mean relation σ2

= var (x) = h (µ) and transforms the data
according to

y (x) =

∫ x 1√
h(µ)

dµ.

We used the VST implemented in the R-package DESeq2, a
model-based approach that relies on the variance-mean relation
implied by a negative binomial distribution for the gene
expression count data. The choice of transformation approach
was motivated by properties of the clustering method, which
often yields best results for (approximately) homoscedastic
data, meaning that the variance of the variable, such as gene
expression, does not depend on the mean. For RNA-seq count
data, however, the variance typically increases with the mean.
The commonly used procedure to handle this is to apply a
logarithmic transform to the normalized count values after
adding a small pseudo count. Unfortunately, now genes with
low counts have a tendency to dominate the clustering result
since they give the strongest signals in terms of relative difference
between samples.

Selection of Informative Genes
Our focus was to study how gene selection affects the clustering
performance. For the considered data sets there are two “true”
clusters defined by our gold standards. For supervised problems,
where the class labels of the samples are known, feature selection
is done by identifying a set of informative genes, in the simplest
case, by applying a two-sample t-test to each gene and select
the genes with the lowest p-values (Önskog et al., 2011). For
cluster analysis problems, it can be argued that removing “non-
informative” genes prior to the clustering will increase the
clustering performance (Freyhult et al., 2010). Feature selection
for cluster analysis is difficult for two reasons: (a) the sample
labels are unknown and cannot be used to select informative
genes, (b) in contrast to supervised classification it is not possible
to use performance measures (e.g., error rates in classification) to
compare and choose the best feature selection approach for the
considered clustering problem.

We evaluated 13 different methods used for gene selection,
where some are commonly used while others were included
because they constitute principally different approaches. The
methods ranked all genes based on how informative they were
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predicted to be, and the top ranked genes (100, 1000, or 3000
genes) were used in the downstream clustering. Hence, altogether
39 gene selection approaches were applied to the four data sets
and evaluated against the gold standard.

The considered feature selection methods are motivated
by fundamentally different ideas, which were used to group
the methods into four categories. The four principles include
selecting highly expressed genes, highly variably genes, highly
correlated genes and genes with bi- or multimodal profiles.
Below we give a general motivation behind the selection
procedures within each group and a detailed description of the
included methods.

One idea is to select genes with overall high expression values.
Discriminating between disease subtypes can be difficult when
the level of noise is high compared to the mean expression values,
which makes it easier to detect differentially expressed genes
among highly expressed genes. In this category of methods, we
included the methods mean value (M) and third quartile (Q3).

Another group of methods is based on the spread of gene
expression values across samples. Genes with large variability can
contain interesting variations caused by disease subtype. In this
category, we included the SD, the IQR, and the quadratic Rényi
entropy (ENT).

A category involving correlation of genes includes a technique
called co-expression (CoEx1) and a modified version (CoEx2).
Tumor cells are under constant attack by the immune
system and to survive, the genes must coordinate against
the threat. Genes that are highly correlated to other genes
may be involved in the same exposed networks and is
therefore of interest as potential biomarkers. Co-expression
among informative genes has been used for variable selection

in clustering problems for high-dimensional microarray data
(Wang et al., 2014).

Six of the methods studied in this article are based on the
idea of modality. For informative genes, the distribution of gene
expression among patients with different cancer subtypes can be
expected to differ. It is therefore of interest to identify genes that
have an expression distribution with more than one peak. We
included the so-called dip-test (DIP), a method that identifies
genes with multimodal distributions. In addition, we considered
five methods that identify genes with bimodal distributions. We
included the parametric method called the BI and four non-
parametric methods: VRS, weighted variance reduction score
(wVRS), modified variance reduction score (mVRS), and BC. The
relationship between the considered gene selection methods is
summarized in Figure 1.

The Mean Value Selection (M)
The mean value was calculated for each gene over all samples and
the highest expressed genes were included in the analyses.

Third Quartile Selection (Q3)
Genes were arranged according to decreasing values of the third
quartile and the genes with the highest Q3 values were selected.

The Standard Deviation Selection (SD)
The SD was calculated for each gene and the genes with the
highest SDs were selected.

The Interquartile Range Selection (IQR)
The distance between the first and third quartile was calculated
for each gene and genes with large distances were selected.

FIGURE 1 | Feature selection methods divided into groups based on their properties. The included methods are mean value (M), third quartile (Q3), co-expression
(CoEx1), modified co-expression (CoEx2), standard deviation (SD), interquartile range (IQR), entropy estimator (ENT), dip-test statistic (DIP), bimodality index (BI),
variance reduction score (VRS), weighted variance reduction score (wVRS), modified variance reduction score (mVRS). and bimodality coefficient (BC).
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The Entropy Estimator Selection (ENT)
Entropy is an alternative to SD for measuring variability in
gene expression across samples. Assuming the observed values
x1,x2,...,xn for a gene can be described by a distribution with
density f (x), its quadratic Rényi entropy is defined as:

H2 (X) = − log
(∫

f (x)2dx
)

.

To estimate this parameter, we use a non-parametric kernel-
estimator (Gine and Nickl, 2008), obtained as

ENT = −log

 2
n(n− 1)h

∑
i<j

K
(

xi − xj

h

) .

The user specifies the kernel function K(·) and the bandwidth h.
Here we employed the rectangular kernel, and for h we applied
Silverman’s rule-of-thumb for kernel-density estimators and
put h = 1.06× σ̂× n−1/5, where σ̂ is the sample SD. Genes with
high entropy values were selected for the cluster analysis.

The Co-Expression Selection (CoEx1)
For each gene, the co-expressions to all other genes were
calculated using Spearman correlation. Let sij =

∣∣ρij
∣∣ denote the

absolute value of the Spearman rank correlation ρij between
expression profiles for genes i and j. The matrix S with elements
sij is considered as a similarity matrix for the genes with respect
to co-expression. In the original article, the authors use Pearson
correlation, but we applied Spearman correlation instead, which
in earlier studies have proven to be more efficient in identifying
co-expressed genes (Kumari et al., 2012; Wang et al., 2014). To
rank genes according to their co-expression we define the CoEx1
score for gene i as the median of the sij values, i.e.,

CoEx1i = medianjj 6=i
{

sij
}
.

The genes with highest median correlations were selected.

The Modified Co-Expression Selection (CoEx2)
The co-expression network analysis was developed for variable
selection in cluster analysis of microarray data. Since microarray
data tend to be noisy, the authors argue that directly using the
similarity matrix for co-expression analysis may be inappropriate
and therefore suggests a transformation of the similarity matrix.
The modified version uses a power transformation of the
elements in the similarity matrix (Wang et al., 2014). The CoEx2
score for gene i is defined as:

CoEx2i =
∑
j 6=i

s3
ij,

where sij are the elements of the similarity matrix. The genes with
highest scores were selected for analysis.

The Dip-Test Statistic Selection (DIP)
The dip-test was used to test unimodality and is based on
the maximum difference between the empirical distribution
and the unimodal distribution that minimizes that maximum
difference (Hartigan and Hartigan, 1985). Genes with low
p-values were selected for analysis. The R-package diptest was
used for calculations (Maechler, 2013).

The Bimodality Index Selection (BI)
For each gene, it is assumed that the density f (x) of the
expression value can be described by a normal-mixture model
with two components, i.e.,

f (x) = pN (µA, σ)+
(
1− p

)
N (µB, σ) ,

where µA and µB denote the mean in the two subgroups and p is
the proportion of samples in one group (Wang et al., 2009). The
BI is defined as

BI =
√

p(1− p)
|µA − µB|

σ
.

The expectation-maximization (EM) algorithm was used to
estimate the BI using the R package mixtools (Benaglia et al.,
2009). Ten different starting values were used for the EM-
algorithm, generated from a grid with 10 values for the fraction
parameter p, evenly spaced between 0 and 1, for more details,
see Karlis and Xekalaki (2003). Genes with high BI were
selected for analysis.

The Variance Reduction Score Selection (VRS)
The VRS is used for measuring the reduction of variance when
splitting the data into two clusters (A and B) and is defined as
the ratio of the within sum of squares (WSS) and the total sum of
squares (TSS):

VRS =
WSS
TSS
=

∑
A (xi − xA)2

+
∑

B (xi − xB)2∑
i (xi − x)2 ,

where xA and xB denotes the mean values within group A and B.
These values lie between zero and one, where a low score indicates
an informative split (Hellwig et al., 2010). Hence, genes with a
low score were selected for cluster analysis. The clusters were
obtained using k-means clustering with k= 2.

The Weighted Variance Reduction Score Selection
(wVRS)
The wVRS is a weighted version of VRS that takes sample size
into account, i.e.,

wVRS =
1
2 ( 1

nA

∑
A (xi − xA)2

+
1

nB

∑
B (xi − xB)2)

1
n
∑

i(xi − x)2
,

where nA and nB are the sample sizes in group A and B
(Hellwig et al., 2010). The grouping of the data was obtained
by the k-means algorithm, k = 2. Again, genes with a low
score were selected.

The Modified Variance Reduction Score Selection
(mVRS)
The mVRS considers the proportion of variance reduction
when splitting data into two cluster by using the fuzzy
c-means algorithm, also known as soft k-means clustering
(Bezdek, 1981). Genes with a low score were selected for
further analysis. The R-package cluster was used for calculations
(Maechler et al., 2019).
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The Bimodality Coefficient Selection (BC)
The BC yields a value between 0 and 1 (for large samples) and is
calculated by

BC =
γ2
+ 1

κ+ 3 (n−1)2

(n−2)(n−3)

,

where γ is the sample skewness, κ is the sample excess kurtosis
and n is the sample size. The genes with largest BCs were selected
for cluster analysis. The R-package modes was used for calculating
the coefficient (Sathish and 4D Strategies, 2016).

Evaluations
The considered gene selection approaches (13 methods times
three levels of number of selected genes) were evaluated and
compared to two negative controls (random selection and no
selection) and a positive control (supervised selection).

Random Selection (RAND)
Here we randomly selected k genes, k = 100, 1000, or 3000.
The performance of the random selection (RAND) was highly
variable, therefore, the procedure was repeated 1000 times,
resulting in 1000 performance measures. The evaluated gene
selection methods were compared to the 25th, 50th, and 75th
percentile and the mean value (RAND) of the random selection
performance measures.

Supervised Selection (PVAL)
The gold standard partitions were used to rank genes according
to how well they separated the two subtypes. A standard test
for comparing two groups is the t-test, but for identification of
differentially expressed genes it is common to use a generalized
linear model (GLM). To describe the read count Kij for gene i
observed in sample j, we used a GLM from the negative-binomial
(NB) family with a logarithmic link, given as:

Kij ∼ NB (mean = µij, dispersion = αi),

µij = sijqij,

log2qij = βi0 + βi1xj.

The normalizing factors sij compensate for differences in
sequencing depth between samples and for eventual gene-related
technical biases such as gene length. We used the default
procedure where these factors are considered as fixed within
each sample, sij = sj and then only accounts for differences in
sequencing depth between samples. These so-called size factors
were estimated by the median-of-ratios method:

sj = mediani:KR
i 6=0

(
Kij

KR
i

)
,KR

i =

 n∏
j=1

Kij

1/n

The linear part βi0 + βi1xj1 contains a categorical variable
xj1 with two levels, corresponding to the cancer subgroups.
The coefficient βi1 quantifies the extent to which gene i
is differentially expressed between the groups. The intercept
term βi0 models the base mean, which is allowed to differ
between genes. The dispersion αi was regarded as a gene-specific
parameter in the model.

To fit the model (i.e., estimation of the parameters αi, βi0, βi1
for each gene i) we applied the R-package DESeq2, which
implements the empirical Bayes shrinkage method (Love et al.,
2014). The p-value for the test that gene i is differently expressed
(i.e., H0 : βi1 = 0) was then used to rank genes, so that genes with
lowest p-values were used for clustering. The method was applied
to data that had been filtered for low expressed genes, but not
normalized using the variance stabilizing transform.

No Selection (ALL)
Gene selection is performed to remove non-informative and
irrelevant genes. An alternative is to base the clustering on
all genes, and we included the case of no selection as a
reference point.

Similarity Between Feature Selection Methods
Each selection procedure was characterized by calculating the
mean value and SD of the selected genes. Procedures with similar
characteristics may also make similar selections. In addition, we
carried out a more direct analysis by measuring the overlap
between the approaches, i.e., for each pair of approaches we
measured the percentage of genes selected by both methods.

Performance of the Feature Selection Methods
The clustering performance was measured using the ARI based
on the clustering result compared to the gold standard partition.
An ARI-value of 1 indicates a complete match to the gold
standard partition, whereas a value of 0 indicates an agreement
as good as a random clustering.

Detailed Evaluation of Top-Performing Feature
Selection Methods
The evaluations described above utilize four data sets and were
used to identify a set of interesting feature selection methods.
To deeper understand our findings, we used these data sets to
simulate two types of data sets using stratified subsampling with
replacement from the original data: balanced data sets where 50
samples were drawn from each subtype and skewed data sets were
25 (75) of the samples were drawn from the least (most) common
subtype. Hundred data sets were sampled for each type. The
chosen selection methods were applied to each of the simulated
data sets, hierarchical clustering with Euclidean distance, was
performed on the top 1000 ranked genes to cluster the samples
in two groups and ARI was used to measure the performance.
For each pair of methods, the pairwise ARI-observations
were used to construct differences and the one sample t-test
was used to test if the expected value of the difference
deviated from zero.

In addition to the ARI-values we also observed the number
of samples in the smallest of the two groups generated by the
clustering, i.e., a number between 1 and 50. Again, the one sample
t-test was used to investigate differences between the considered
selection methods. Since BI is computationally heavy, the EM-
algorithm was used with only one initial value of the parameter
vector, obtained as follows: first the data was divided into two
groups using the k-means (k = 2) clustering algorithm, and then
the means, SDs and size fraction in the two subsamples were used
as starting values for the mixing parameters.
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For the top-performing feature selection methods, we also
investigated the change in ARI-values when increasing the
number of selected genes in the cluster analysis. The number of
selected genes was increased gradually in 1000 steps between two
selected genes up to all genes remaining after initial filtration.
Since the clustering result is highly variable, we applied a running
mean over 100 values to get a smoother curve.

The aim of the feature selection is to exclude genes that are
non-informative for distinguishing between the disease subtypes.
As a way of measuring the relevance of the selected features, the
list of 1000 top scoring genes were compared to 299 known cancer
driver genes (Bailey et al., 2018). Enrichment of genes relevant to
cancer etiology were tested using a one sided Fisher’s exact test.

RESULTS

We tested the performance of 13 feature selection methods
when identifying subgroups using cluster analysis on four human
cancer data sets. For each method the k top ranked genes
were selected, k = 100, 1000, and 3000. Three references were
considered: a negative control where all genes were selected, a
negative control where k genes were randomly selected and a
positive control where genes were selected using a supervised
approach. The selection methods were applied on the 15,298,
15,388, 15,397, and 15,397 genes that remained after filtering low
expressed genes in KIRP, STAD, LGG, and BRCA, respectively.
In addition, a small simulation study was performed with the
objective to investigate how clustering is affected when non-
informative features are included in the analysis.

Simulation Study
In the case when the clustering was based on only the informative
features all the clustering results were identical to the desired
AB-partition with an average ARI equal to 1. In the case when
all features were included, the average ARI was 0.34. For the
case when the clustering was based on the features with the
highest SDs the clustering performance peaked when around
600 features were included and declined when more features
were added, see Supplementary Figure 1. Although the negative
effect of including non-informative features is likely to be
general, it should be stressed that the magnitude of the effect
depends on the effect size, the sample size, and the percentage
of informative features. Moreover, in real problems we may
in addition to informative and non-informative features have
features that are informative to secondary factors, e.g., gender,
age, and prior treatments.

Characteristics of Top Ranked Genes
As an initial investigation, we studied the mean expression and
SD of top ranked genes obtained for the considered feature
selection approaches.

The Mean Value of Selected Genes
As expected, genes selected using the median (M) or the third
quartile (Q3) were highly expressed compared to the other
methods. The BC approach selected genes expressed at a very

low level. The supervised approach (PVAL) selected genes at an
intermediate gene expression level, which was comparable to the
expression level seen in the whole data (ALL). Approaches using
SD, IQR, ENT, CoEx1, and CoEx2 selected genes with mean gene
expression similar to that obtained by the supervised approach.
The remaining methods, BI, the dip-test statistic (DIP) and the
variance reduction scores (VRS, wVRS, and mVRS), selected
genes expressed at a relatively low level. Interestingly, the same
relative patterns were observed for all data sets and independently
of the number of selected genes, see Figure 2 and Supplementary
Figures 2, 3.

The Standard Deviation of Selected Genes
It is natural to assume that informative genes should have
relatively high SD, compared to most other genes. As expected,
genes selected using SD, ENT, and IQR, had high SDs. The M
and Q3 methods selected genes with relatively low variation,
which was close to the SD observed in the whole data sets (ALL).
Intermediate values of SD were observed among genes selected
using the variance reduction scores (VRS, wVRS, and mVRS),
and BI. For BC, DIP, CoEx1, CoEx2, and the supervised approach
(PVAL), the level of SD varied between low and intermediate
depending on data set and number of selected genes, see Figure 3
and Supplementary Figures 4, 5.

Overlap of Selected Genes
The above results show that methods based on similar selection
principles also have similar properties with respect to the mean
and SD of the selected genes, see Figures 2, 3. Next, we
investigated to what degree the methods selected the same genes,
by studying the overlap when 1000 genes were selected. The
overlap between M and Q3 was high (>90%) in all data sets,
but both methods showed very limited resemblance to the other
methods (<6% overlap in average). High agreement was also
observed between SD, ENT and IQR (85% in average), as well as
between CoEx1 and CoEx2 (77% in average). CoEx1 and CoEx2
showed low overlap with the remaining methods (<10%). The
intersection between VRS, mVRS and wVRS was in average 73%
in all data sets, and the group showed a greater resemblance to
BI than to BC (in average 67 vs 40%), see Figure 4. The positive
control (PVAL), that is expected to be a good selection procedure,
had a very small overlap with the methods M, Q3, CoEx1, and
CoEx2. For detailed results, see Figure 4.

Feature Selection Methods
The performance was measured using the adjusted Rand index
(ARI) comparing the obtained clustering result with the gold
standard. Each of the 13 selection methods were used to cluster
the four cancer data sets by selecting the 100, 1000, or 3000
top ranked genes. Hence, each method was used to perform 12
cluster analyses and generated 12 ARI-values. The results were
compared to two negative controls (randomly selected genes and
a selection including all genes) and a positive control (PVAL).
As expected, the supervised selection approach (PVAL) had the
highest combined performance (considering the median value of
the 12 ARI-values) followed in decreasing order by DIP, BI, IQR,
ENT, RAND, Q3, mVRS, M, VRS, SD, BC, wVRS, CoEx1, and
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FIGURE 2 | Boxplots of mean expression values over all samples for 1000 selected genes. The figure shows the result for the data sets KIRP (A), STAD (B), LGG
(C), and BRCA (D). Each plot displays expression values of preprocessed data for the 13 feature selection methods, the positive control (PVAL) and the negative
control (ALL) including all genes. The gene selection methods are: dip-test statistic (DIP), bimodality index (BI), bimodality coefficient (BC), variance reduction score
(VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range (IQR), standard deviation
(SD), mean value (M), third quartile (Q3), co-expression (CoEx1), and modified co-expression (CoEx2).

CoEx2, see Figure 5. However, the relative performance of the
methods varied between the four data sets and was also affected
by the number of selected genes. Evaluating the approaches based
on their mean ranking taken over all 12 analyses revealed that
the supervised approach performed best followed by BI, mVRS,
DIP, VRS, RAND, IQR, ENT, Q3, M, SD, wVRS, BC, CoEx1, and
CoEx2, see Table 1.

Ranking genes according to Q3 or M is a simple way of
selecting highly expressed genes. The performance for Q3 and
M varied from being top performing (BRCA 3000 genes) to
be at the very bottom (STAD 3000 genes). In KIRP, Q3 was
always ranked higher than M and for STAD it was the other way
around. For LGG and BRCA it varied depending on number of
features included, see Figure 6 and Supplementary Figures 6, 7.
Altogether, Q3 performed slightly better than M.

Of the three methods relying on variability across samples,
IQR and ENT generally performed better than the commonly

used SD procedure. IQR outperformed ENT in the LGG data,
while ENT performed better on the BRCA data. In KIRP and
STAD it depended on the number of included features, see
Figure 6 and Supplementary Figures 6, 7. Within this category,
IQR performed best and should be considered as a simple
alternative to SD.

The methods relying on gene correlation (CoEx1 and CoEx2),
performed worst of all considered methods, with CoEx2 slightly
worse than CoEx1, see Table 1.

Among methods based on modality (i.e., DIP, BI, VRS, mWRS,
wVRS, and BC), BI and DIP where the methods with the overall
highest performance. The relative performance of DIP was
particular good when more genes were selected (1000 or 3000),
while BI performed particularly well on the KIRP and STAD
data, see Table 1, Figure 6, and Supplementary Figures 6, 7.
When 1000 genes were selected, the overlap between DIP and
BI varied between 21 and 37%, see Figure 4. Furthermore,
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FIGURE 3 | Boxplots of standard deviation across samples for 1000 selected genes. Each plot displays standard deviation based on preprocessed data for the 13
feature selection methods, the positive control (PVAL) and the negative control (ALL) including all genes. The figure shows the result for the data sets KIRP (A), STAD
(B), LGG (C), and BRCA (D). The gene selection methods are: dip-test statistic (DIP), bimodality index (BI), bimodality coefficient (BC), variance reduction score
(VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range (IQR), standard deviation
(SD), mean value (M), third quartile (Q3), co-expression (CoEx1), and modified co-expression (CoEx2).

DIP tended to select genes that were slightly higher expressed
than BI, see Figure 2 and Supplementary Figures 2, 3. More
evident, BI selected genes with higher SD than DIP, see Figure 3
and Supplementary Figures 4, 5. Altogether, this suggests that
although performing similar, and relatively well, DIP and BI
select rather different genes with different characteristics.

Comparisons to Positive and Negative
Controls
Intuitively, selecting the k top scoring genes using a good feature
selection method should in average result in a better clustering
performance than obtained when randomly selecting k genes, but
worse performance than using a supervised approach. However,
if the gene expressions are highly influenced by a secondary factor

(i.e., a factor that is not informative for predicting the subgroups)
applying feature selection may result in a performance worse than
the random selection.

As expected, the supervised approach PVAL was commonly
superior to the unsupervised selection approaches, although
occasionally performed slightly worse than some other methods,
see Table 1. For the LGG data randomly selecting k genes
outperformed most of the selection methods, see Figure 5 and
Supplementary Figures 6, 7. This may indicate that the RNA-
expression of the individuals is influenced by secondary factors
or that the binary partitions defined by the gold standard are
heterogeneous and preferably should be divided further.

An alternative to applying feature selection is to include all
genes in the cluster analysis for which the ARI-values 0.28,
−0.01, 0.39, and 0.73 were observed for KIRP, STAD, LGG, and
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FIGURE 4 | Percentage overlap between 1000 selected genes for the 13 different feature selection methods and the four data sets KIRP (A), STAD (B), LGG (C),
and BRCA (D). The feature selection methods are: dip-test statistic (DIP), bimodality index (BI), bimodality coefficient (BC), variance reduction score (VRS), modified
variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range (IQR), standard deviation (SD), mean value
(M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), and the positive control (PVAL).

BRCA, respectively. For KIRP and BRCA, including all genes
was as good as the best performing selection methods, but for
STAD and LGG the best selection methods yielded considerably
higher ARI-values, 0.66 and 0.72, respectively, see Table 2. On
the other hand, variable selection often resulted in lower ARI-
values compared to including all genes, in particular when just
100 genes were selected, see Table 2. This suggests that variable
selection has potential to improve the clustering, but that the
choice of methods and the number of selected genes are crucial
for the performance.

Detailed Evaluation of Top-Performing
Feature Selection Methods
Based on our findings we conclude that DIP, BI, and mVRS
are the most promising methods and that good performance
is usually obtained when 1000 genes are selected. These

methods also ranked high when k-means (k = 2) clustering
and hierarchical clustering with a correlation-based distance
measure were used, see Supplementary Tables 1–4. DIP, BI,
and mVRS together with the commonly used SD method
were therefore selected for a deeper study based on hundreds
of simulated balanced and skewed data sets, see section
“Detailed Evaluation of Top-Performing Feature Selection
Methods.”

Pairwise comparisons with respect to ARI between DIP, BI,
mVRS, and SD showed that DIP was as good or better than the
other methods, with the exception that BI was slightly better than
DIP for the skewed KIRP data set, see Table 3 and Figure 7.
Furthermore, SD did not perform well and was the worst
performing method for most of the simulations, Table 3. For
LGG, STAD, and BRCA the difference in average ARI between
DIP and SD ranged between 0.03 and 0.35 and five out of six
findings were significant, see Table 3.
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FIGURE 5 | Boxplot of aggregated clustering performance over the four data sets KIRP, STAD, LGG, and BRCA. Performance is measured using adjusted Rand
index and the feature selection methods are ordered according to increasing median values. The selection methods are: dip-test statistic (DIP), bimodality index (BI),
bimodality coefficient (BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator
(ENT), interquartile range (IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), the positive
control (PVAL), and the negative control (RAND).

TABLE 1 | Rank of feature selection methods for data sets KIRP, STAD, LGG, and BRCA based on adjusted Rand index.

DIP BI BC VRS mVRS wVRS ENT IQR SD M Q3 CoEx1 CoEx2 PVAL RAND

KIRP100 14 2 3.5 6 3.5 12 7.5 9 10 7.5 5 13 15 1 11

STAD100 7 4.5 8 4.5 6 1 13 15 14 10 12 11 9 3 2

LGG100 14 10 10 10 10 10 7 5 6 15 13 4 3 1 2

BRCA100 6 2 8.5 5 3 4 7 8.5 10 11 13 14 15 1 12

KIRP1000 6.5 1 10.5 8 6.5 13 4.5 2.5 9 4.5 2.5 14 15 10.5 12

STAD1000 2 3 14 11 6 9 7 4 5 12 15 10 13 1 8

LGG1000 2 10 13 14 9 15 11 7 8 3 4 6 12 1 5

BRCA1000 5 8.5 6.5 1.5 3 6.5 11.5 11.5 13 10 4 14 15 1.5 8.5

KIRP3000 7 1 12 6 11 9.5 3.5 3.5 3.5 13 9.5 14 15 3.5 8

STAD3000 13.5 1 6 5 8 9 4 3 12 13.5 15 10 11 2 7

LGG3000 2 9 15 13 8 14 11.5 10 11.5 6 3 7 5 1 4

BRCA3000 6 11.5 11.5 3.5 3.5 11.5 6 9 6 2 1 14 15 11.5 8

Mean rank 7.1 5.3 9.9 7.3 6.5 9.5 7.8 7.3 9.0 9.0 8.1 10.9 11.9 3.2 7.3

The table shows results for selection of top ranked genes at three levels: 100, 1000, and 3000 genes. The gene selection methods are: dip-test statistic (DIP), bimodality
index (BI), bimodality coefficient (BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy
estimator (ENT), interquartile range (IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), and the
positive control (PVAL).
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FIGURE 6 | Adjusted Rand index for hierarchical clustering using the top 1000 ranked genes on the datasets KIRP (A), STAD (B), LGG (C), and BRCA (D). The
vertical lines represent the first, second, and third quartiles of a random selection. The feature selection methods on the y-axis are: dip-test statistic (DIP), bimodality
index (BI), bimodality coefficient (BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy
estimator (ENT), interquartile range (IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), the
positive control (PVAL), and the two negative controls ALL and RAND. The selection methods are ordered according to increasing performance.

TABLE 2 | Adjusted Rand index for 13 feature selection methods, a negative (RAND) and positive control (PVAL) for data sets KIRP, STAD, LGG, and BRCA.

DIP BI BC VRS mVRS wVRS ENT IQR SD M Q3 CoEx1 CoEx2 PVAL RAND

KIRP100 0.01 0.25 0.23 0.18 0.23 0.10 0.17 0.14 0.14 0.17 0.19 0.05 0.00 0.39 0.11

STAD100 0.03 0.05 0.03 0.05 0.04 0.07 −0.01 −0.02 −0.02 0.01 −0.01 0.01 0.01 0.06 0.07

LGG100 0.00 0.01 0.01 0.01 0.01 0.01 0.08 0.10 0.09 0.00 0.01 0.12 0.22 0.96 0.29

BRCA100 0.67 0.77 0.61 0.75 0.76 0.75 0.61 0.61 0.60 0.58 0.37 0.11 0.07 0.78 0.49

KIRP1000 0.24 0.29 0.20 0.23 0.24 0.15 0.25 0.28 0.21 0.25 0.28 0.02 0.00 0.20 0.19

STAD1000 0.49 0.43 −0.03 0.09 0.33 0.16 0.28 0.40 0.34 0.02 −0.03 0.10 0.00 0.58 0.17

LGG1000 0.72 0.16 0.08 0.07 0.18 0.06 0.14 0.20 0.18 0.55 0.39 0.34 0.11 0.95 0.37

BRCA1000 0.62 0.60 0.61 0.73 0.73 0.61 0.60 0.60 0.58 0.60 0.64 0.17 0.05 0.73 0.60

KIRP3000 0.21 0.29 0.12 0.27 0.16 0.18 0.28 0.28 0.28 0.11 0.18 0.03 0.00 0.28 0.21

STAD3000 −0.01 0.66 0.19 0.35 0.04 0.02 0.38 0.42 −0.01 −0.01 −0.06 0.00 0.00 0.61 0.14

LGG3000 0.71 0.19 0.08 0.15 0.27 0.14 0.17 0.17 0.17 0.32 0.63 0.32 0.33 0.74 0.38

BRCA3000 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.65 0.74 0.04 0.01 0.60 0.60

The table shows results for selection of top ranked genes at three levels: 100, 1000, and 3000 genes. Adjusted Rand index when including all genes was obtained as 0.28,
−0.01, 0.39, and 0.73 for KIRP, STAD, LGG, and BRCA, respectively. The gene selection methods are dip-test statistic (DIP), bimodality index (BI), bimodality coefficient
(BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range
(IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), and modified co-expression (CoEx2).

In order to better understand the results, we investigated
the number of samples in the smallest group (NSSG) obtained
doing a cluster analysis resulting in two groups. This number

should be close to 50 for the balanced data set and close
to 25 for the skewed data sets. Moreover, if this number is
very small it indicates that the clustering is governed by just
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TABLE 3 | The mean value of 100 pairwise adjusted Rand index-differences (row
method – column method) for different pairs of feature selection methods: the
dip-test (DIP), bimodality index (BI), modified variance reduction score (mVRS) and
standard deviation (SD).

25% 50%

BI mVRS SD BI mVRS SD

KIRP DIP −0.01 0.00 0.01 0.00 0.00 0.01

BI 0.01 0.02* 0.00 0.01

mVRS 0.01 0.01

STAD DIP 0.05 0.07** 0.10*** 0.00 0.02 0.05**

BI 0.02 0.06** 0.02 0.06**

mVRS 0.03 0.03

LGG DIP 0.06** 0.04 0.04 0.37*** 0.37*** 0.35***

BI −0.03* −0.02* 0.00 −0.02

mVRS 0.00 −0.02

BRCA DIP 0.01 0.00 0.03** 0.06*** 0.02 0.07***

BI −0.01 0.03*** −0.03* 0.01

mVRS 0.03** 0.05***

Simulations were made for the data sets KIRP, STAD, LGG, and BRCA, and two
types of data sets were simulated: unbalanced data where 25% of the individuals
belonged to the minor class and a balanced data set were 50% of the individuals
belonged to each of the two classes. The number of samples was 100 in each
simulation. The one sample t-test was used to test if the mean difference deviated
from zero. Positive (negative) differences indicate that the row-method was better
(worse) than the column method. Here *, **, ** denote a significant result at the
0.05, 0.01, and 0.001 significance level, respectively.

a few samples (outliers). Interestingly, the ARI-differences and
NSSG-differences were correlated, so that methods with relatively
high ARI also had a relatively high NSSG, see Table 3 and
Supplementary Table 5. In particular SD had considerably lower
NSSG than the other methods, especially for the balanced data,
see Supplementary Table 5.

It is not trivial to select how many genes to include in
the cluster analysis. The results from the analysis of ARI in
relation to the number of selected genes showed a highly variable
performance, especially in STAD and LGG, see Figure 8. The
most noticeable result was the gradual decrease in performance
in the LGG data for DIP and PVAL when including more genes,
indicating that it is possible to increase the ability to identify
disease subgroups substantially when choosing features wisely.
For BI, mVRS, and SD in the LGG data, the general trend was an
increase in performance when including more genes. In STAD,
the general trend was a decreasing performance when including
more genes. In both KIRP and BRCA the performance was
relatively stable when changing the number of included genes. At
least for BRCA, this might be explained by the high number of
informative genes.

The overlap between the 299 cancer driver genes and all
genes remaining after initial filtration were 279, 285, 279,
and 286 for KIRP, STAD, LGG, and BRCA, respectively. No
enrichment of cancer driver genes was observed for the 1000
top ranked genes for DIP, BI, mVRS, and SD, except for in
BRCA where genes selected using SD had a significantly higher
proportion of cancer driver genes (p < 0.001), see Table 4.
When extending the comparison to include all 13 selection

methods, a significant overrepresentation of cancer driver genes
was observed for both M and Q3 (data not shown) in all four data
sets, suggesting that the detected cancer driver genes are generally
high expressed.

DISCUSSION

Feature selection prior to clustering RNA-seq is common and is
often done by selecting the genes with the highest SD (i.e., the
SD method). However, this problem has not been well studied
and there is little evidence that selecting genes with high SD is
the best approach. Before we discuss our findings, it is worth
pointing out that measuring the performance of feature selection
methods is difficult. The clustering performance, in our case
measured using ARI-values, does in addition to the feature
selection algorithm also depend on clustering method, the nature
of the data and how the gold standard is defined. Samples from
a cancer cohort can be divided in several logical partitions, e.g.,
partitions defined by gender, age or disease subtype. For these
partitions, it is likely that a set of genes will be differentially
expressed between the groups. Hence, a low ARI-value does not
automatically mean that the cluster analysis failed, it can also
be a consequence of secondary factors affecting the data or that
the groups defined by the gold standards are heterogeneous and
should be further divided.

The general idea behind feature selection prior to cluster
analysis is to remove genes that do not contain information about
the “true partition” of the samples, e.g., genes that are identically
distributed among all samples and therefore only contribute with
noise, making the analysis harder.

In the considered simulation study only a small set of the
genes were informative and including all genes in the analysis
had a negative effect on the clustering result. This negative effect
will be reduced when the number of informative genes increases
(data not shown). RNA-seq cancer data are much more complex
than the simulated data and the informative genes are unknown
although they in our case can be predicted using a supervised
test. For the LGG and STAD data considerably better clustering
results were obtained when genes predicted to be informative
were used compared to when all genes were included, which
suggests that feature selection has the potential to improve the
clustering performance. For BRCA and KIRP, the gain of using
supervised selection was limited, which suggests that feature
selection is unlikely to have a positive effect on the clustering
result. Arguably, a feature selection approach should identify
informative genes related to the factor of interest.

For the considered four data sets, there were feature selection
approaches that either were equally good or considerably better
than including all genes, which again suggests that feature
selection has potential. For example, for the STAD data, including
all genes resulted in a partition no better than expected by chance
(i.e., ARI close to 0) while the best feature selection approach
resulted in a partition highly correlated with the partition defined
by the gold standard (ARI = 0.66). On the other hand, applying
feature selection often resulted in a lower performance than
including all genes in the analysis, which suggests that the
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FIGURE 7 | Adjusted Rand index for clustering based on 1000 selected genes with different proportions of the subtypes based on 100 random samplings of the
KIRP (A), STAD (B), LGG (C), and BRCA (D) data. The figure shows results for unbalanced data with 25 (75) samples in the smaller (larger) subgroup and for
balanced data sets with 50 samples in each subgroup. The selection methods on the x-axis are the dip-test statistic (DIP), bimodality index (BI), the modified
variance reduction score (mVRS), and standard deviation (SD).

choice of feature selection method and the number of selected
genes are important.

We included 13 variable selection methods that theoretically
and methodologically can be grouped in four fundamentally
different groups: methods that select highly expressed genes
(M and Q3), methods that select highly variable genes (ENT,
IQR, and SD), methods that select highly correlated genes
(CoEx1 and CoEx2) and methods that select genes with respect
to modality (BI, BC, DIP, mVRS, VRS, and wVRS). The
correlation-based methods had surprisingly low performance,
often worse than by selecting genes randomly. These methods
were developed for variable selection in microarray data, which
might explain the poor performance and suggest that these
methods need to be modified for RNA-sequence data. Since
CoEx1 and CoEx2 select genes with a relatively low SD

across samples (Figure 3), a hybrid method that combines
correlation and a bimodality score or measure of spread could
be worth to investigate further. Selecting highly expressed genes
is motivated by the fact that the signal to noise ratio is believed
to be relatively high for highly expressed genes. Hence, by
including highly expressed genes we get less noisy data and
thereby better results. These methods, in particular Q3, worked
surprisingly well and commonly better than selecting genes
randomly. Although these methods did not perform as well as
the best selection methods, the results suggest that they may
work well in combined approaches as discussed at the end
of this section.

An important finding is that the commonly used SD method
did not perform well. One reason for this may be that SD
compared to other methods is more likely to include genes with
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FIGURE 8 | Adjusted Rand index for a gradual increase in number of selected genes. The number of included genes was increased over a 1000 steps from 2 to up
to all genes remaining after filtration. Of low expressed genes. The feature selection methods are: dip-test statistic (DIP), bimodality index (BI), modified variance
reduction score (mVRS), standard deviation (SD), and the positive control (PVAL). The performance is shown for the KIRP (A), STAD (B), LGG (C), and BRCA (D)
data. A running mean over 100 values was applied to get a smoother curve.

outliers and extreme values. Samples with extreme values can
govern the clustering and incorrectly result in a binary clustering
where the smaller of the two groups contains a low number of
individuals. The results showed that SD indeed had fewer samples
in the minority group compared to DIP, BI, and mVRS, which
may explain the ARI-results. Furthermore, the IQR that is a
robust alternative to SD performed better than SD.

The best performing selection methods BI, DIP, and mVRS all
aim to identify genes based on modality. With the exception of
DIP, these methods strive to detect genes with a clear bi-modality
pattern, while DIP is more general a search for multimodality
patterns. For the case where 1000 genes were selected, DIP
achieved the best performance and worked well for both balanced
and skewed data sets. Interestingly, DIP had compared to BI and
mVRS often more samples in the minority group obtained from
the binary clustering.

For the LGG data with 1000/3000 selected genes, both
the original data and the simulated data sets, DIP performed
considerably better than BI and mVRS, which in turn performed
worse than a strategy including all genes. Furthermore, the
overlap between the genes selected by DIP and the two other
methods was small, much smaller than observed for the other
data sets, see Figure 4. This may indicate that the partition

TABLE 4 | Proportion of cancer driver genes among the 1000 top ranked genes.

DIP BI mVRS SD PVAL

KIRP 0.013 (0.92) 0.011 (0.98) 0.011 (0.98) 0.013 (0.92) 0.009 (0.99)

STAD 0.018 (0.59) 0.015 (0.84) 0.015 (0.84) 0.023 (0.17) 0.021 (0.31)

LGG 0.021 (0.27) 0.016 (0.73) 0.015 (0.81) 0.013 (0.92) 0.021 (0.27)

BRCA 0.017 (0.68) 0.018 (0.59) 0.016 (0.77) 0.032 (0) 0.024 (0.12)

The proportions in the entire data setswere obtained as 0.018, 0.019, 0.018, and
0.019 for KIRP, STAD, LGG, and BRCA, respectively. The p-value from a one sided
Fisher’s exact test is given within paranthesis.

defined by the gold standard should be further divided, which
in turn explain why methods searching for genes with a bimodal
pattern fails. In general, all methods aiming to identify bimodality
will suffer if the partitioning of interest consists of more than two
groups, in particular if there exist one or more secondary factors
that define two groups, e.g., gender.

Some potential secondary factors and their partitions are
sometimes known, e.g., the age and gender of the patients, prior
treatments and technical design questions, e.g., which hospital
analyzed the samples. This information can in principle be used
when selecting the genes, e.g., by omitting genes that are highly
correlated to any of the known secondary factors. Another way
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to improve feature selection may be to combine two or more
approaches, e.g., demand that the selected genes are both highly
expressed and have high DIP scores. How to include additional
meta information and combine different selection methods are
open questions that requires more research.

For most of the feature selection methods, the overlap
between selected genes and previously identified cancer driver
genes was relatively low. Lists of candidate cancer driver genes
are continually updated as new discoveries are made and
there are several published lists of genes that are important
for cancer development. Comparing against alternative gene
lists may affect the results. Moreover, many of the considered
cancer driver genes are affected by cancer in general but are
not necessarily informative for the partition of interest. We
did observe an enrichment of cancer driver genes among
the set of genes selected using M and Q3, suggesting that
the confirmed cancer driver genes are in general expressed
at higher levels.

Here k-means (k = 2) and hierarchical clustering with Ward’s
linkage and either the Euclidean distance or a correlation-
based distance were used to cluster the samples. It should
be stressed that the choice of clustering method may affect
the relative performance of the considered feature selection
methods. The choice was motivated by prior findings and since
these approaches are widely used. The number of selected
genes were 100, 1000, or 3000 and these choices were based
on our prior experience (Vidman et al., 2019 and Freyhult
et al., 2010). However, how to determine the optimal number
of genes to include is an open question that needs more
research. These choices affect the ARI-values and may also
have an effect on the relative performance of the considered
feature selection methods. Moreover, the performance of any
clustering approach, including pre-processing, standardization,
feature selection, and the clustering, is highly dependent on the
data making it difficult to give general advices. Nevertheless,
the results presented in this article suggest that variable
selection using DIP with 1000 selected genes is a good
choice and considerably better than selecting genes based on
the observed SD.

The study focuses on the relative merits of feature selection
strategies commonly categorized as filtering methods in the
literature, and a direction of future research with great potential
would be to investigate other classes of methods that have been
developed in the field, for example, wrapper, ensemble, and
hybrid methods (Ang et al., 2016).

CONCLUSION

Partitioning cancer patients based on RNA-seq data with the
objective to identify subgroups is an important but also very

challenging problem. The main difficulty is that only some genes
are differentially expressed between the subgroups of interest and
that several secondary factors affect gene expressions. Therefore,
it is reasonable to assume that the clustering should be based
on a set of carefully selected genes rather than all genes. The
commonly used SD-approach, where genes with the highest SDs
are selected, did not perform well in our study. We argue that
SD is more likely to select genes affected by outliers, which in
turn has a negative effect on the downstream cluster analysis.
Although the performance in general is highly data-dependent,
our study shows that selecting 1000 genes using the dip-test is a
sensible selection approach, which performs considerably better
than the SD-selection.
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