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Genetic analyses of cancer progression in patient samples and model

systems have thus far failed to identify specific mutational drivers of metas-

tasis. Yet, at least in experimental systems, metastatic cancer clones display

stable traits that can facilitate progression through the many steps of

metastasis. How cancer cells establish and maintain the transcriptional

programmes required for metastasis remains mostly unknown. Emerging

evidence suggests that metastatic traits may arise from epigenetically

altered transcriptional output of the oncogenic signals that drive tumour

initiation and early progression. Molecular dissection of such mechanisms

remains a central challenge for a comprehensive understanding of the

origins of metastasis.

1. Introduction

While primary tumours can often be surgically

removed, metastases are in most cases incurable. The

formation of metastases in distant organs thus repre-

sents one of the most devastating aspects of cancer.

Large-scale cancer genome projects have recently cata-

logued the mutational complements of most human

tumours. However, mutations that specifically drive

metastatic progression have not been identified. On the

other hand, experimental approaches have isolated

stable cancer clones that express transcriptional traits

associated with metastasis. Many genes have been

functionally linked to metastatic progression and sev-

eral studies have described in detail diverse molecular

mechanisms that, in different contexts, endow cancer

cells with properties that modulate the rate of meta-

static success (Massagu�e and Obenauf, 2016;

Oskarsson et al., 2014; Valastyan and Weinberg,

2011). Specific phenotypic traits, dictated by the

expression of specific molecules, thus mediate meta-

static cancer progression. Little, however, is known

about the mechanisms through which cancers acquire

metastatic traits. Using specific examples, this review

will discuss a model whereby metastatic transcriptional

programmes emerge from epigenetic optimization of

the oncogenic signals that drive tumour initiation and

early progression.

2. The metastatic process

Metastases arise through a complex evolutionary

process through which cells from a primary tumour

eventually form clinically detectable secondary

tumours in distant organs. This process is extremely

inefficient. The vast majority of cancer cells never leave

the primary tumour, and of those that manage to enter

the circulation, the vast majority fail to enter distant

organs (Baccelli et al., 2013; Kienast et al., 2010; Luzzi

et al., 1998). Even of successfully established micro

metastases, only a small fraction forms clinically rele-

vant metastatic lesions (Braun et al., 2005). Hence,

even though often depicted as an orderly sequence of

distinct biological steps (Fidler, 2003), metastatic
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progression is characterized by extreme randomness

whereby potentially millions of circulating tumour cells

dispatched over several years in the end only form few

metastases (Vanharanta and Massagu�e, 2013). Several

distinct barriers for metastatic progression exist. In a

simple example, tumour cells originating from epithelia

will first have to detach from their native tissue struc-

ture, invade the nearby parenchyma, enter the circula-

tion through intravasation, sustain circulatory stress,

enter a distal organ through extravasation, survive

upon arrival at the distant site, co-opt the new

microenvironment and eventually establish a secondary

colony. Additionally, more complicated scenarios can,

for example, involve initial invasion and entry into the

circulation via the lymphatic system, intermediate

metastases in lymph nodes or other sanctuary sites

and varying lengths of cellular dormancy of single dis-

seminated cells or micro metastases. Molecular mecha-

nisms that mediate many of these steps have been

identified in experimental systems (Massagu�e and

Obenauf, 2016; Oskarsson et al., 2014; Valastyan and

Weinberg, 2011), and inhibition of a vast array of

genes that encode for proteins with various molecular

functions can inhibit metastatic progression. The pic-

ture emerging from these studies is that metastasis

genes do not seem to operate through a shared molec-

ular pathway. Rather, they represent a heterogeneous

group of metastasis facilitators that enhance the prob-

ability of successful completion of one or more of the

metastatic steps via modulating the activity of the

oncogenic pathways that also drive the earlier steps of

tumorigenesis. How the expression of these traits is

regulated remains largely unknown.

3. Mutational drivers of metastasis

The inefficiency and distinct biological barriers of

metastasis would a priori seem to generate an ideal

playground for selection to enrich for mutations that

confer metastatic capabilities. Indeed, the early genetic

models of cancer progression suggested that metastases

would be caused by specific mutations (Fearon and

Vogelstein, 1990; Nowell, 1976). However, despite

extensive efforts, such mutations have not been identi-

fied to date (Turajlic and Swanton, 2016; Vogelstein

et al., 2013). Metastatic cancer clones when compared

to the corresponding primary tumour do in most cases

contain unique mutations, some of which are predicted

to be drivers, but these target genes are already

mutated in the primary tumour in other contexts. For

example, in pancreatic (Yachida et al., 2010), renal

(Gerlinger et al., 2012) and breast (Yates et al., 2015)

cancers, distinct clones already present in the primary

tumour can be the sources of metastases to different

target organs. In prostate cancer (Gundem et al.,

2015) and melanoma (Sanborn et al., 2015), metastatic

clones were shown to originate from specific regions of

the corresponding primary tumours with sometimes

complex relationships between different distant sites,

arguing for both parallel and stepwise seeding of

metastases as well as continuous seeding of the same

distant sites by different cancer clones. On the other

hand, in colon cancer, few metastasis-specific muta-

tions were detected (Jones et al., 2008). Finally, a large

study comparing metastatic lesions to the correspond-

ing primary tumours from several different cancer

types revealed examples of mutational selection during

cancer progression, possibly imposed by metastatic

bottlenecks and therapies, but no unifying genetic sig-

nature of metastasis was identified (Brastianos et al.,

2015). Some evidence suggests that TP53 mutations

could be important for the emergence of metastatic

cancer clones, possibly through effects on genome

stability (Turajlic and Swanton, 2016). However, even

histologically normal skin can harbour TP53 mutant

clones (Martincorena et al., 2015).

Results from experimental metastasis models are in

agreement with the data from clinical samples. For

example, in genetically engineered mouse models of

lung and pancreatic cancer, both parallel and poly-

clonal seeding of metastases have been observed but

the authors did not report enriched mutations in speci-

fic genes in the metastatic clones (Maddipati and

Stanger, 2015; McFadden et al., 2014). Also, human-

derived cancer clones with functionally confirmed

metastatic potential can display minimal genetic diver-

gence from the non-metastatic parental population

(Jacob et al., 2015), suggesting that the development

of metastatic clones from already advanced cancers

may not need additional mutations.

From a genetic point of view, no unifying model for

metastatic progression thus seems to exist. The reasons

for this remain unknown, but several possible explana-

tions have been proposed, including technical issues

related to mutation detection and lack of sufficient

sample size, the low probability of specific mutations

to generate complex phenotypes needed for metastatic

competence, and the requirement of already maximal

fitness for the development of advanced cancers, after

which stochastic metastases would follow without the

need for further genetic changes (Frost and Fidler,

1986; Vogelstein et al., 2013). It remains possible that

further genetic analyses will identify metastasis muta-

tions, at least in some cancers, but accumulating data

suggest that such mutations may not be the dominant

route for the activation of metastatic traits.
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4. Epigenetic instability and
metastatic progression

If not via genetic alterations, how do cancers acquire

metastatic traits? Two general possibilities exist. On

the one hand, it may be that no stable traits that drive

metastases exist. This view is supported by evidence

showing that even metastatic cells can be repro-

grammed by embryonic microenvironments, suggesting

that at least some of the metastatic traits are reversible

and thus most likely not dictated by mutations

(Hendrix et al., 2007). There is also some evidence for

reversal of the aggressive phenotype in lung metastatic

foci (Bockhorn et al., 2014). On the other hand, at

least in experimental systems, stable highly metastatic

cancer cell populations with limited genetic divergence

from the parental population can be isolated and they

express genes that are highly active in patient samples

with higher propensity to metastasize, suggesting that

pro-metastatic transcriptional programmes are also

present in human tumours (Bos et al., 2009; Jacob

et al., 2015; Minn et al., 2005; Vanharanta et al.,

2013). Many of these genes have been functionally

linked to metastatic progression (Massagu�e and

Obenauf, 2016; Oskarsson et al., 2014; Valastyan and

Weinberg, 2011). This, together with the lack of

genetic evidence for metastasis driver mutations, sug-

gests that heritable non-genetic, i.e. epigenetic, tran-

scriptional programmes underlie metastatic cancer

progression.

Several possible molecular mechanisms of epige-

netic inheritance have been proposed. The best char-

acterized of these is DNA cytosine methylation, the

addition of a methyl group to form 5-methylcytosine

(5mC) at CpG dinucleotides, for which a clear mech-

anism of inheritance through cell division has been

identified (Song et al., 2011). Thus, once DNA

methylation patterns have been established by a given

signal, usually guided by transcription factors with

sequence specific DNA-binding properties (Sch€ubeler,

2015), these marks can be propagated in the absence

of the initial stimulus. Conversely, if DNA methyla-

tion is lost, either through active or passive demethy-

lation, critical DNA methylation marks can be

altered permanently. Modifications of other deoxynu-

cleotides also exist in human cells, but their relevance

to epigenetic inheritance remains to be established

(Koziol et al., 2016). Covalent modifications of the

histones represent a second class of molecular alter-

ations that contributes to the maintenance of stable

transcriptional programmes (Jenuwein and Allis,

2001). However, unlike DNA methylation, it remains

unclear how most of these marks are maintained

during replication. Less-well characterized mecha-

nisms involving non-coding RNAs also contribute to

epigenetic gene regulation (Sabin et al., 2013).

Finally, stable transcriptional programmes can be

supported without any specific heritable changes in

DNA methylation or chromatin by autoregulatory

transcriptional circuits that after being induced main-

tain their own transcription (Ptashne, 2007). Identifi-

cation of such feed-forward loops as mediators of

metastasis is challenging as they can be induced by

transient stimuli that may not be present in full-

blown tumours. Yet, they could be critical for the

maintenance of cancer phenotypes.

5. DNA methylation

DNA methylation is usually associated with transcrip-

tional silencing (Sch€ubeler, 2015). In cancer, wide-

spread hypomethylation is generally observed with

only specific regions such as CpG islands being hyper-

methylated (Berman et al., 2012; Hansen et al., 2011).

Similar observations have been made in many if not

most cancer types (Feinberg and Tycko, 2004).

Oncogene (e.g. HRAS) promoter regions are fre-

quently hypomethylated (Feinberg and Vogelstein,

1983), while tumour suppressor loci such as TP53,

APC and VHL are commonly hypermethylated in

association with transcriptional silencing (Herman and

Baylin, 2003), suggesting that DNA methylation alter-

ations at specific loci can influence tumour progres-

sion. The functional relevance of the more widespread

DNA hypomethylation in cancer is unknown, but it

has been suggested to induce genomic instability

(Jones and Gonzalgo, 1997). DNA methylation pat-

terns have also been assessed in metastatic cancer. In

prostate cancer, DNA methylation is in general well

conserved between primary and corresponding meta-

static tumours (Aryee et al., 2013), whereas in breast

cancer, others have observed metastasis-specific methy-

lation changes, primarily outside CpG-rich regions

(Reyngold et al., 2014). In prostate cancer, there is

also considerable intratumoural DNA methylation

heterogeneity that correlates well with genomic copy

number patterns and metastatic progression (Brocks

et al., 2014). Thus, there is a significant body of evi-

dence that links aberrations in DNA methylation to

tumourigenesis. However, the interpretation of these

data is complicated by the observation that the DNA

methylation status of promoter CpG islands in a given

tumour type tends to reflect the pattern observed in

the corresponding tissue of origin (Gebhard et al.,

2010; Sproul and Meehan, 2013; Sproul et al., 2012;

Timp and Feinberg, 2013).
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Several examples link aberrations in DNA methyla-

tion to the acquisition of functionally important meta-

static traits (Fig. 1). In renal cell carcinoma (RCC),

increased global DNA methylation is associated with

poor patient outcome (The Cancer Genome Atlas

Network, 2013). However, experimental analysis has

identified functional mediators of RCC metastasis that

are activated via DNA demethylation events. For exam-

ple, cytohesin 1 interacting protein (CYTIP) and S100

calcium binding protein A4 are highly expressed and

demethylated in metastatic RCC subpopulations and

they functionally mediate metastatic colonization

(Lopez-Lago et al., 2010; Vanharanta et al., 2013).

Additionally, hypermethylation of the CYTIP locus is

associated with good patient survival (Gevaert et al.,

2015). Without an active transcriptional programme,

loss of DNA methylation does not lead to gene activa-

tion. Indeed, CYTIP expression is driven by the RCC-

initiating VHL-HIF pathway (Fig. 1A) (Vanharanta

et al., 2013). A similar mechanism has been implicated

in melanoma progression, whereby loss of DNA methy-

lation facilitates the expression of a variant transcript of
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Fig. 1. Alterations in DNA methylation patterns as a source of cancer progression traits. (A) Loss of DNA methylation expands the HIF2A

tumour-initiating pathway output in renal cell carcinoma (RCC) to promote metastasis. In the presence of oxygen, HIF2A is normally

targeted for proteosomal degradation, but in VHL mutant RCC cells HIF2A is constitutively expressed and it drives tumorigenesis. DNA

demethylation in metastatic cells increases the HIF2A pathway target gene spectrum to include pro-metastatic CYTIP expression. (B)

Melanocyte lineage factor MITF signalling output is expanded through DNA demethylation in support of metastatic progression in

melanoma. MITF drives differentiation/pigmentation and proliferation/survival in melanocyte and melanoma cells. Loss of DNA methylation

allows MITF to bind additional gene promoters and induce expression of metastasis-promoting TBC1D16. (C) Metabolic alterations can

induce global alterations in DNA methylation. In glioblastoma, IDH1/2 mutants produce the oncometabolite 2-hydroxyglutarate (2-HG) which

inhibits the activity of TET enzymes. TETs normally mediate demethylation of DNA by converting 5-methylcytocine (5mC) to

5-hydroxymethylcytosine (5hmC). Thus, the accumulation of 2-HG leads to increased DNA methylation resulting in the global CpG island

hypermethylator phenotype (CIMP). This can lead to tumour suppressor silencing or loss of the binding of methylation sensitive DNA-

binding factors such as CTCF. CTCF functions as an insulator protein that demarcates chromatin domains. In glioblastoma, CIMP-induced

loss of CTCF binding can allow aberrant PDFGRA activation. Thus, unspecific large-scale alterations in DNA methylation can result in specific

cancer phenotypes. Similar mechanism could activate metastasis genes as well.
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the Rab GTPase-activating protein TBC1D16 in sup-

port of metastasis (Vizoso et al., 2015). Once released

by repression of DNA methylation, TBC1D16 expres-

sion is driven by the core melanocyte lineage factor

MITF (Fig. 1B). DNA hypomethylation has also been

linked to osteosarcoma metastasis through the induc-

tion of IRX1, however the pathway that drives gene

expression in this case remains unidentified (Lu et al.,

2015). In these examples, the mechanism through which

DNA methylation is lost remains unknown. It could be

through passive stochastic dilution of methylated CpGs

during cell division, but accumulating evidence suggests

that active DNA demethylation can also be involved in

the acquisition of invasive and metastatic phenotypes

(Munoz et al., 2013).

DNA methylation can also silence metastasis suppres-

sor genes. Global profiling of matched cell lines from

metastasis and primary tumour identified CDH11 as a

target of silencing via DNA methylation and subsequent

functional analysis supported a role for CDH11 in

metastasis suppression (Carmona et al., 2012). Simi-

larly, several microRNAs have been shown to undergo

methylation-dependent silencing in metastatic cancer

(Lujambio et al., 2008). The genomic locus for the

metastasis suppressor miR-335 is epigenetically silenced

and subsequently also deleted in metastatic breast can-

cer; however, this is through maternal imprinting (Png

et al., 2011). Epigenetic silencing of miR-335 is thus not

cancer-associated, but rather, the silencing of a gene

during development serves essentially as the first inacti-

vating hit of a tumour suppressor.

A CpG island methylator phenotype (CIMP) has

been described in many cancer types (Issa, 2004). Analy-

sis of human data sets have demonstrated that in some

cancers, such as prostate cancer, CIMP is associated

with poor outcome (Gu et al., 2015), whereas in others,

such as breast cancer and glioblastoma, CIMP seems to

correlate with increased patient survival (Fang et al.,

2011; Turcan et al., 2012), possibly because CIMP-

induced stable gene repression may reduce the probabil-

ity of the acquisition of aggressive cancer phenotypes

(Sproul and Meehan, 2013). In glioblastoma, CIMP has

been linked to the metabolic alterations caused by muta-

tions in the tricarboxylic acid cycle (TCAC) enzyme

isocitrate dehydrogenase (IDH1) (Turcan et al., 2012).

In this model, increased levels of the oncometabolite

2-hydroxyglutarate inhibit the activity of the TET

enzymes that are important for the conversion of 5mC

to 5-hydroxymethylcytosine (5hmC), an intermediate

step for active demethylation, thus leading to global

increase in DNA methylation (He et al., 2011; Xu et al.,

2011) (Fig. 1C). Interestingly, DNA methylation in this

context can change the affinity of the chromatin

insulator protein CTCF to specific target loci, leading to

altered chromatin domain structure and activation of

oncogenic drivers such as PDGFRA (Flavahan et al.,

2016). The extent to which similar CTCF repositioning

is involved in other cancer contexts, including metasta-

sis, remains unclear, but there is evidence that CTCF/

cohesin binding sites can accumulate mutations in sev-

eral cancers (Katainen et al., 2015). In addition to

IDH1, loss of other TCAC enzymes such as FH and

SDH can also induce aberrant DNA methylation pat-

terns (Letouze et al., 2013; Sciacovelli et al., 2016), and

microenvironmental factors such as hypoxia can lead to

global DNA hypermethylation with possible cancer pro-

moting consequences (Thienpont et al., 2016). As

shown in breast cancer, microRNA-mediated silencing

of TET enzymes can similarly lead to changes in DNA

methylation and consequent activation of metastasis

genes (Song et al., 2013). In breast cancer, widespread

DNA methylation that promotes metastasis may also be

induced by receptor tyrosine kinase activation and con-

sequent induction of the methyl-CpG binding domain

protein 4 (Cunha et al., 2014). On the other hand, in

prostate cancer, CIMP has been linked to an increased

activity of the chromatin reader BAZ2A that interacts

with the polycomb repressive complex 2 (PRC2) (Gu

et al., 2015). Finally, in colorectal cancer oncogenic

KRASG13D seems to maintain CIMP and consequent

suppression of tumour suppressors through the expres-

sion of sequence specific DNA-binding proteins and

associated modulators of gene repression (Serra et al.,

2014), demonstrating that specific signalling pathways

can also induce global changes in DNA methylation.

It is unclear what mechanisms target DNA methy-

lation or demethylation events to specific loci during

metastatic cancer progression. The activation of onco-

genic pathways can target DNA methyltransferases to

tumour suppressor loci and at least in some cases,

active signalling is required for the maintenance of

gene silencing and DNA methylation (Gazin et al.,

2007; Serra et al., 2014). It could be that DNA

methylation changes in metastasis also reflect alter-

ations in the activities of transcription factors that

have DNA-binding specificities. Indeed, experimental

evidence suggests that DNA sequences play an

instructive role in determining DNA methylation pat-

terns in normal cells (Krebs et al., 2014). However,

the role of local sequence characteristics in determin-

ing the DNA methylation status in cancer is less clear

(Krebs et al., 2014) and specific pro-metastatic

changes could also emerge from the stochastic alter-

ations in global DNA methylation patterns through

selection (Hansen et al., 2011; Landan et al., 2012;

Timp and Feinberg, 2013).
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6. Chromatin alterations

While there is evidence that transcription factors deter-

mine the genomic distribution of tissue specific histone

marks (Benveniste et al., 2014), at least some repres-

sive histone modifications seem to be heritable through

the cell cycle (Hansen et al., 2008; Hathaway et al.,

2012; Margueron et al., 2009). Stable chromatin alter-

ations could therefore be another way for cancer cells

to lock in metastatic phenotypes. The frequent muta-

tions in various chromatin factors and histones in can-

cer have indisputably linked chromatin biology to

tumorigenesis (Shen and Laird, 2013). Mutations in

some of these genes, such as PBRM1 and BAP1 in

RCC, are associated with poor patient outcome

(Joseph et al., 2016; Pawlowski et al., 2013), indicating

that their downstream pathways may also contribute

to cancer progression and metastasis.

6.1. The polycomb repressive complex 2

The PRC2 is a critical regulator of gene repression in

multiple biological contexts (Margueron and Reinberg,

2011). It consists of three core subunits, EED, SUZ12,

the catalytic subunit EZH1/EZH2, and several associ-

ated factors. EZH1/EZH2 can deposit trimethylation

marks on histone H3 lysine 27 (H3K27me3), which

can be recognized by the chromatin reader subunit

EED (Margueron et al., 2009). This is thought to

allow the mark to be propagated through cell division.

There is evidence that deposition of PRC2 at given

genomic loci is passive: inactive promoters naturally

acquire PRC2 and H3K27me3, which then stabilizes

the inactive state (Jermann et al., 2014; Riising et al.,

2014) (Fig. 2A). Interestingly, both activating and

inactivating mutations in EZH2 have been identified in

different cancers (Cerami et al., 2012; Ernst et al.,
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Fig. 2. Aberrant polycomb repressive complex 2 activity as a source of metastatic cancer phenotypes. (A) In normal cells, PRC2 accumulates at

inactive promoters and it functions as a stabilizer of gene silencing through the deposition of the H3K27me3 repressive mark. (B) In tumour cells,

depending on the context, PRC2 can both promote and inhibit cancer progression. In some cancers, PRC2 is important for the stable suppression

of genes that inhibit metastasis. On the other hand, reduced PRC2 activity can in some contexts promote metastasis by inducing epigenetic

instability, which leads to increased transcriptional plasticity. This can facilitate the activation of pro-metastatic genes such as CXCR4.
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2010; McCabe et al., 2012; Souroullas et al., 2016).

Moreover, EZH2 is often upregulated in various can-

cers and the expression of EZH2 often correlates with

poor patient outcome (Chase and Cross, 2011; Chen

et al., 2015); although this could, at least in some

cases, be simply reflecting the higher proliferative phe-

notype associated with cancer progression (Wassef

et al., 2015). However, EZH2 activity is critical for

EMT in breast cancer (Malouf et al., 2013; Tiwari

et al., 2013) and metastatic progression of melanoma

(Zingg et al., 2015). Similarly, EZH2-mediated silenc-

ing of a Ras GTPase-activating protein enhances RAS

and NF-kappaB signalling in metastatic prostate can-

cer (Min et al., 2010). On the other hand, loss of

PRC2 activity has also been linked to metastatic pro-

gression. For example, expression of the chemokine

receptor CXCR4 is suppressed by PRC2 in RCC, and

loss of this suppression facilitates CXCR4 expression

and increases the metastatic fitness of RCC cells

(Vanharanta et al., 2013). In this case, CXCR4 expres-

sion is also dependent on the activity of the VHL-HIF

pathway that drives RCC induction and early progres-

sion, yet HIF2A activity alone is not sufficient for

CXCR4 expression. What leads to PRC2 eviction from

the CXCR4 locus during RCC progression remains

unknown, but it is noteworthy that low global levels

of H3K27me3 seem to be associated with poor patient

outcome in RCC (Rogenhofer et al., 2012). PRC2 loss

can also potentiate oncogenic RAS signalling in speci-

fic genetic contexts, leading to potential therapeutic

vulnerabilities (De Raedt et al., 2014). Interestingly,

even transient reduction of PRC2 activity can induce

stable expression of its target genes, suggesting that

PRC2 loss can promote epigenetic instability that may

contribute to cancer progression (Wassef et al., 2015).

Analogously, PRC2 inhibition can support the emer-

gence of drug resistant cancer clones (Rathert et al.,

2015). Thus, while PRC2 function in some cancers

seems to be critical for the suppression of genes that

inhibit metastasis, there is also strong evidence that

loss of PRC2 promotes metastasis in other contexts,

possibly by increasing transcriptional plasticity

(Fig. 2B).

6.2. The SWI/SNF complex

SWI/SNF is a multi-subunit ATP-dependent chro-

matin remodelling complex that plays a critical role in

several developmental processes (Wilson and Roberts,

2011). In humans, there are 29 genes that encode the

15 SWI/SNF subunits in a partially tissue specific

manner (Kadoch and Crabtree, 2015). Strikingly,

> 20% of cancers carry mutations in SWI/SNF

complex genes, making it the most frequently mutated

chromatin regulatory pathway in human cancer

(Kadoch et al., 2013). The mutations show strong tis-

sue specificity, indicating that different SWI/SNF vari-

ants modulate the transcriptional output of tissue

specific oncogenic and tumour suppressive pathways.

Most SWI/SNF mutations seem to be inactivating

(Kadoch and Crabtree, 2015). Interestingly, mutations

in SWI/SNF complex members may result in specific

molecular vulnerabilities that could be exploited thera-

peutically (Bitler et al., 2015; Helming et al., 2014).

While the genetic evidence linking SWI/SNF dysregu-

lation to carcinogenesis is strong, fairly little is known

about the mechanisms that link SWI/SNF to tumori-

genesis. Similarly, it remains unclear how SWI/SNF

alterations contribute to metastasis. In RCC, data

from multi-region tumour sequencing suggest that

mutations in the SWI/SNF member PBRM1 occur

early during tumorigenesis (Gerlinger et al., 2014).

Yet, PBRM1 mutations seem to be associated with

poor patient outcome in these tumours (Pawlowski

et al., 2013), suggesting that PBRM1 may modulate

the probability of RCC cells acquiring metastatic traits

at a later stage of tumour progression. Conversely,

some evidence suggests that in breast cancer SWI/SNF

activity may promote metastatic progression (Wang

et al., 2014).

6.3. Other chromatin factors

In addition to the Polycomb and SWI/SNF complexes,

multiple other chromatin regulators have been linked

to metastatic progression. For example, the inhibitory

nuclear corepressor 1, a member of histone deacetylase

(HDAC) complexes that is known to suppress nuclear

receptor activity, suppresses metastatic hepatocellular

carcinoma progression by inhibiting the expression of

multiple metastasis genes (Martinez-Iglesias et al.,

2016). Similarly, the related members of another

HDAC complex, BRMS1 and BRMS1L, inhibit breast

cancer metastasis by suppressing multiple transcrip-

tional targets (Gong et al., 2014; Hurst, 2012). The

histone H3 lysine 4 demethylase LSD1, a member of

the multifunctional nucleosome remodelling and

deacetylase complex, can also inhibit metastasis (Wang

et al., 2009). A more specific metastasis suppressive

role has been described for the (NAD)+-dependent
HDAC SIRT6 in pancreatic ductal adenocarcinoma

(Kugel et al., 2016); the effects of SIRT6 loss seem to

be largely mediated through induction of the RNA-

binding protein Lin28b. Tumours with low SIRT6

expression are highly dependent on Lin28b, highlight-

ing the interesting possibility that changes in the
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activity of specific HDACs could lead to cancer cell

dependencies with therapeutic potential even in the

metastatic setting. On the other hand, other HDACs,

such as SIRT1, have positive effects on metastatic pro-

gression in prostate cancer (Byles et al., 2012). While

these examples clearly demonstrate the relevance of

HDAC complexes for metastatic cancer progression,

they also highlight the context specific nature of

HDAC phenotypes.

In addition to LSD1, several other histone demethy-

lases and methyltransferases have been implicated in

metastatic cancer progression. Activation of the histone

H3 lysine 9 demethylase PHF2 can lead to mesenchymal-

to-epithelial transition, i.e. the reversal of EMT, thus

leading to reduced tumour-initiating capacity in breast

cancer (Pattabiraman et al., 2016). Histone H3 lysine 4

demethylase KDM5A is critical for breast cancer pro-

gression and metastasis by facilitating the expression

TNC and other genes, but the mechanism is independent

of the demethylase activity of KDM5A (Cao et al.,

2014). KDM2A demethylates H3K36me2 in lung cancer,

which reduces the expression of several genes such as

HDAC3 and DUSP3 leading to increased invasiveness

(Dhar et al., 2014; Wagner et al., 2013). JMJD2C/

KDM4C interacts with HIF1A to enhance target gene

activation and promote breast cancer progression and

metastasis by demethylating H3 lysine 9 near several

HIF1A target genes (Luo et al., 2012). The H3K79

methyltransferase DOT1L promotes breast cancer metas-

tasis by activating many EMT mediators in collaboration

with c-MYC (Cho et al., 2015). The H3K4 methyltrans-

ferases KMT2A and KMT2B, both members of the

MLL complex, collaborate with the androgen receptor to

promote prostate cancer progression (Malik et al., 2015).

Finally, altered expression of histones has been linked to

metastatic progression; the histone variant macroH2A

inhibits melanoma progression through suppression of

CDK8 expression (Kapoor et al., 2010).

Collectively these selected examples highlight the

fact that alterations in the activity of various different

chromatin regulators that lack DNA-binding specifici-

ties are functionally linked to metastatic progression.

While for some of them a transcriptional programme

that confers specificity has been identified, in many

cases it is unclear why a particular chromatin regulator

is important in a given cancer context. However, the

emerging picture suggests that chromatin factor speci-

ficity in different metastatic phenotypes is likely to

reflect the underlying oncogenic driver pathways. As

many chromatin factors are potentially druggable, it is

of significant interest to identify the chromatin regula-

tory dependencies of the core oncogenic programmes

that drive metastasis in different cancers.

7. Long non-coding RNAs

Long non-coding RNAs (lncRNAs) are emerging as

important regulators of various biological processes,

including chromatin remodelling and DNA methylation

(Sabin et al., 2013). Increasing evidence is also support-

ing their role in the control of metastatic progression.

For example, HOX transcript antisense RNA

(HOTAIR) is strongly upregulated in breast tumours,

and it is a powerful predictor of subsequent metastasis

and death (Gupta et al., 2010). HOTAIR binds directly

to PRC2 and LSD1 inducing their genome-wide retar-

geting and an altered gene expression profile in cancer

cells (Gupta et al., 2010; Tsai et al., 2010) (Fig. 3A). In

prostate cancer, high expression of the lncRNA

SChLAP1 correlates with aggressive tumour phenotypes

and metastasis, and experimental evidence suggests that

SChLAP1 antagonizes the tumour suppressive functions

of the SWI/SNF complex (Prensner et al., 2013)

(Fig. 3B). In metastatic non-small cell lung cancer,

increased expression of metastasis-associated lung ade-

nocarcinoma transcript-1 (MALAT1) correlates with

poor prognosis (Ji et al., 2003) and inhibition of

MALAT1 expression reduces lung cancer metastasis

(Gutschner et al., 2013). Additionally, lncRNA BCAR4

controls the epigenetic regulation of Hedgehog/GLI2

transcriptional activation in support of breast cancer

progression (Xing et al., 2014), whereas CCAT2 modu-

lates WNT and MYC activity in colon cancer leading to

increased metastasis (Ling et al., 2013) (Fig. 3C). Non-

coding enhancer RNAs (eRNAs) are also emerging as

important regulators of oncogenic signalling (Li et al.,

2013), but their role in metastasis remains unexplored.

Current evidence thus has implicated several lncRNAs

in metastasis, and evidence from other contexts suggests

that lncRNAs can influence the epigenetic machinery.

Also, through sequence complementarity with DNA or

nascent RNA, lncRNAs could in principle direct epige-

netic regulators to specific genomic loci. If and how such

mechanism affect the epigenetic inheritance of stable

metastatic traits is an interesting avenue for future

exploration.

8. Autoregulatory transcriptional
circuits

As demonstrated by cellular reprogramming experi-

ments, self-sustaining transcriptional networks define

cell identities (Hochedlinger and Jaenisch, 2015).

Different tissues, including cancers, are thus charac-

terized by unique gene expression profiles and chro-

matin landscapes (Hnisz et al., 2013). Accordingly,

sporadic cancers arising in different tissues harbour
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distinct patterns of mutations (Vogelstein et al.,

2013), and germline mutations in hereditary cancer

syndromes predispose to specific tumour types

(Vogelstein and Kinzler, 1998). Hence, while muta-

tions can dictate cancer phenotypes, gene regulatory

patterns can determine whether or not specific muta-

tions confer selective advantage. In general, little is

known about the transcriptional programmes that

define cell states in most cancer types. However, sev-

eral predictions have been made (Saint-Andre et al.,

2016) and some have been functionally characterized.

In glioblastoma, functional dissection of tumour ini-

tiation potential revealed a transcriptional network

consisting of four transcription factors, OLIG2,

POU3F2, SALL2 and SOX2, as critical enforcers of

stem cell identity (Suva et al., 2014). These factors

were expressed in a substantial proportion of

glioblastoma cells from patient samples, suggesting

that the core transcriptional network of glioblas-

tomas was not a feature of rare cancer stem cells

(Patel et al., 2014). In T-cell acute lymphoblastic leu-

kemia (T-ALL), specific non-coding mutations

upstream of the TAL1 oncogene are capable of gen-

erating a self-sustaining transcriptional loop, which

involves several T-ALL transcription factors such as

MYB, GATA3, RUNX1 and TAL1 itself (Mansour

et al., 2014). Interestingly, cancer-defining transcrip-

tional programmes can be extremely sensitive to per-

turbations in the activity of specific transcription

factors or chromatin binding proteins (Loven et al.,

2013). For example, in acute myeloid leukaemia,

both enhanced and reduced activity of critical tran-

scriptional regulators, such as IRF8, CEBPA, ETV6

and FOSL2, and the inhibition of the broadly tar-

geted chromatin reader BRD4 reduce cellular fitness

(Pelish et al., 2015; Zuber et al., 2011). Several tran-

scription factors have also been linked to either

increased or decreased metastatic propensity (Brady

et al., 2016; Cheung et al., 2013; Denny et al., 2016;

Winslow et al., 2011). It is possible that these or

other factors contribute to transcriptional circuits

that could autonomously maintain metastatic tran-

scriptional programmes. Some studies have indeed

explored this possibility (Lee et al., 2014), but the

A HOTAIR

LSD1

C
H3K4me2 demethylation

TCF4

Enhancer CCAT2 Promoter

MYC

PRC2
H3K27me3 (335 kb upstream of MYC)

CCAT2

Metastasis-promoting transcriptional profile

Metastatic breast cancer cell

CCAT2
WNT target genes
(including MYC)

CCAT2

MYC

B SChLAP1 SNF5 TCF4
Enhancer Promoter

Invasion and metastasis

Metastatic prostate cancer cell

Migration, invasion and metastasis

Metastatic colon cancer cell

Fig. 3. Long non-coding RNAs in the epigenetic regulation of metastasis. (A) LncRNA HOTAIR found in breast cancer metastasis binds and

activates PRC2 and LSD1 to remodel the histone methylation landscape. This can induce a pro-metastatic gene expression profile. (B)

SChLAP1 lncRNA expression is found in metastatic prostate cancer cells. Mechanistically, SChLAP1 binds and antagonizes SNF5, a

component of the SWI/SNF complex. (C) CCAT2 is transcribed from the enhancer region 335 kb upstream of MYC. Accumulation of CCAT2

in metastatic colon cancer cells stimulates expression of WNT target genes including MYC by promoting TCF4 binding. CCAT2 also

mediates enhancer-promoter interaction upstream of MYC to increase MYC expression in metastatic cells.
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extent and nature of such mechanisms as regulators

of metastatic progression remain mostly unknown.

9. Oncogenic pathways as drivers of
metastasis

As can be seen from the examples above, epigenetic

alterations are intimately linked to metastasis. How-

ever, there is no general pattern that would universally

connect a specific epigenetic modality to metastatic

progression; each regulatory mechanism can either

promote or inhibit metastasis depending on the con-

text. This is logical, as the epigenetic regulatory mech-

anisms are general modifiers of gene expression and

their target genes are dependent on the transcriptional

state of the cell. Thus, the epigenetic modifications

that promote metastatic progression do so by modify-

ing the output of the already activated transcriptional

programmes (Fig. 4). The drivers of these programmes

are either activated specifically in the cancer cells

through oncogenic mutations, or they represent

endogenous linage and other factors that are induced

without cancer-specific oncogenic alterations. Exam-

ples of both have been described. Tumour-initiating

mutations in VHL lead to the activation of the tran-

scription factor HIF2A, but this does not

automatically lead to the acquisition of a metastatic

phenotype. However, epigenetic modulation of the

HIF2A transcriptional output can later on lead to the

expression of pro-metastatic genes (Vanharanta et al.,

2013). On the other hand, the hormone-dependent

transcription factor networks that are critical for the

normal development and homoeostasis of the breast

and prostate epithelium, respectively, drive the expres-

sion of pro-metastatic genes in advanced cancers aris-

ing in these tissues (Goodwin et al., 2015; Ross-Innes

et al., 2012). Similarly, the transcriptional output of

the linage factor MITF is epigenetically modulated in

support of melanoma progression (Vizoso et al., 2015).

Most epigenetic alterations associated with metastatic

progression seem to operate in an analogous manner,

but it is in general unknown what causes these changes

in the epigenetic landscape. In a mouse model of small

cell lung cancer, the activation of a single transcription

factor can induce widespread alterations in chromatin

accessibility in association with metastatic progression

(Denny et al., 2016). Similar mechanisms could

activate metastasis genes in other cancers as well.

The general concept of qualitatively and quantita-

tively altered oncogenic signalling output as a driver

of metastatic progression is supported by multiple

levels of evidence beyond epigenetic transcriptional

Changes in 
target gene 
spectrum

Increased 
signal 

amplitude

Transcriptional cofactors
Post-transcriptional

modifications

Epigenetic 
alterations

Genetic changes

Non cell 
autonomous factors 

Non metastatic Metastatic

Oncogenic signalling

Fig. 4. Optimization of oncogenic signal output facilitates metastatic cancer progression. Thus far, no metastasis-specific genetic pathways

have been identified. This suggests a model whereby metastatic progression is supported by the same oncogenic pathways that drive

tumour initiation and early progression. However, the output of these pathways is not constant but evolves during cancer progression in

support of the most aggressive tumour phenotypes. In a mutually non-exclusive manner, this modulation of pathway output can be both

quantitative and qualitative. For example, during metastatic progression a given pathway may become more active generally through

increased expression of its core effectors, but there may also be more specific alterations in the expression of individual target genes. At

the molecular level, this fine-tuning of oncogenic signalling can occur through multiple mechanism including genetic and epigenetic

alterations, changes in the abundance of transcriptional cofactors and post-transcriptional modulation of gene products. Non-cell

autonomous factors, whereby signalling is regulated through interaction with stromal components and extracellular matrix, can also

modulate the strength of oncogenic signalling in cancer cells and consequently increase metastatic fitness.
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modulation. First, the lack of mutations specifically

associated with metastatic progression indicates that

the activation of general oncogenic pathways usually

takes place at a pre-metastatic stage of tumour

development (Vogelstein et al., 2013). Second, several

micro-RNAs and other mRNA modulatory factors

have been functionally linked to metastatic progres-

sion (Fish et al., 2016; Goodarzi et al., 2014; Pench-

eva and Tavazoie, 2013; Vanharanta et al., 2014).

Rather than activating specific pathways, post-tran-

scriptional regulation of mRNA abundance would

also fine-tune the transcriptional output of already

activated cellular signalling networks. Finally, several

non-cell autonomous mechanisms of metastatic can-

cer progression described in multiple model systems

lead to hyperactivation of one or more of the core

oncogenic pathways in the metastatic cell (Oskarsson

et al., 2014). For example, interactions between

breast cancer cells and stromal components can

amplify survival signals downstream of Akt in sev-

eral metastatic contexts (Chen et al., 2011; Zhang

et al., 2009), but the pathway is often activated

already in primary breast tumours (The Cancer Gen-

ome Atlas Network, 2012).

10. Future perspective

Instead of through the activation of specific metastasis

pathways, the metastatic phenotype seems to be

acquired through complex fine-tuning of the amplitude

and target gene spectra of the core pathways that drive

tumour initiation and early progression. Some of these

pathways are activated by mutations, others by non-

mutated lineage factors. In this context, epigenetic

alterations do not drive cancer progression but rather

facilitate the establishment of the most aggressive phe-

notypes via selection. The metastatic potential is a

continuum and it is acquired by multiple independent

alterations in a process akin to genetic evolutionary

tinkering (Jacob, 1977). However, even though the

process may be random, this epigenomic tinkering

tends to follow similar evolutionary paths in different

tumours of the same tissue of origin, as is evidenced

by the shared transcriptional patterns associated with

metastatic progression in different patients and experi-

mental systems. In this model, the intrinsic metastatic

fitness of a given cell is dictated by the combined net

effect of all the active pathways in that cell. It may

therefore be difficult to precisely determine the stage

of tumour progression at which the metastatic pheno-

type is acquired: some metastasis genes may be acti-

vated early and others late. Despite this concept of

metastatic progression being supported by multiple

lines of clinical and experimental evidence, several

open questions remain:

i. In addition to changes in DNA methylation, which

clearly can allow a transcriptional regulator to access

new target loci, the general mechanisms through

which active oncogenic programmes are modulated

during metastatic progression remain unknown. For

example, can alterations in higher order chromatin

structure promote metastasis? What is the role of

transcriptional enhancers in metastatic progression?

ii. Some chromatin regulators, such as the PRC2 com-

plex, act as buffers that stabilize transcriptional pro-

grammes and consequently cell fates. Reduced PRC2

function could thus promote metastatic progression

indirectly by increasing transcriptional variability

from which aggressive clones could emerge. Transcrip-

tional variability has been linked to higher likelihood

of metastatic relapse (Nguyen et al., 2016). However,

the origins of transcriptional noise that support meta-

static progression remain poorly understood.

iii. The tumour microenvironment is an integral player

in cancer progression and several examples of pro-

metastatic cancer-stroma signalling loops have been

identified. Stromal signals can also direct selection

towards metastasis (Zhang et al., 2013). Whether or

not transient microenvironmental cues are able to

stably reprogramme cancer cell transcriptomes

remains unclear, however.

iv. Mutations in several enzymes can change the meta-

bolic milieu in cancer cells. This has been linked to

widespread alterations in DNA methylation, as

exemplified by IDH1 mutations in glioblastoma

(Turcan et al., 2012). The contribution of other

metabolic alterations to epigenetic control of cancer

progression remains largely unexplored. Could ther-

apeutic perturbation of metabolic pathways modu-

late cancer cell transcriptomes and consequently

affect the probability of metastatic progression?

v. Developmental genetic programmes are remarkably

robust, faithfully recapitulating complex phenotypes.

Cancers, on the other hand, seem to benefit from

genetic and epigenetic instability. It would be

important to know, what kind of consequences does

epigenetic instability have on cancer cell fitness.

Does it only increase plasticity or could it also lead

to vulnerabilities that could be exploited therapeuti-

cally?
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