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Patients with autoimmune rheumatic diseases including rheumatoid arthritis and sys-

temic lupus erythematosus have an increased prevalence of hypertension. There is

now a large body of evidence showing that the immune system is a key mediator in

both human primary hypertension and experimental models. Many of the proposed

immunological mechanisms leading to primary hypertension are paralleled in autoim-

mune rheumatic disorders. Therefore, examining the link between autoimmunity and

hypertension can be informative for understanding primary hypertension. This review

examines the prevalent hypertension, the immune mediators that contribute to the

prevalent hypertension and their impact on renal function and how the risk of hyper-

tension is potentially influenced by common hormonal changes that are associated

with autoimmune rheumatic diseases.

LINKED ARTICLES: This article is part of a themed section on Immune Targets in

Hypertension. To view the other articles in this section visit http://onlinelibrary.

wiley.com/doi/10.1111/bph.v176.12/issuetoc
1 | INTRODUCTION

It is estimated that over 1 billion people worldwide have hypertension

with disease complications contributing to 10 million largely prevent-

able deaths each year (Collaborators, 2016). Despite improvements

in treatment and the development of many classes of antihypertensive

drugs over the past century, only about one quarter of patients who

receive medication achieve blood pressure control (Mills et al.,

2016). The burden of hypertension globally suggests that there is a
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continued need to understand the underlying mechanisms that con-

tribute to its development. Increases in blood pressure are primarily

attributed to perturbations in the kidney, vasculature, and CNS, but

both clinical and experimental evidence implicate the immune system

in the pathogenesis of essential hypertension (Rodriguez‐Iturbe et al.,

2014). In support of the connection between the immune system and

hypertension, patients with autoimmune rheumatic diseases such as

systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and

psoriatic arthritis/psoriasis (PsA) have prominent immune system dys-

function as well as high rates of hypertension (Al‐Herz, Ensworth,

Shojania, & Esdaile, 2003; Panoulas et al., 2008; Qureshi, Choi, Setty,

& Curhan, 2009; Sabio et al., 2011). Recent evidence from our labora-

tory (Mathis et al., 2014; Taylor, Barati, Powell, Turbeville, & Ryan,

2018; Taylor & Ryan, 2017) and others (Rodriguez‐Iturbe, 2016)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

onCommercial License, which permits use, distribution and reproduction in any

purposes.

ns Ltd on behalf of British Pharmacological Society.

wileyonlinelibrary.com/journal/bph 1897

http://orcid.org/0000-0003-0122-0833
http://orcid.org/0000-0002-1460-9787
http://orcid.org/0000-0002-8565-1157
https://orcid.org/0000-0002-5679-6031
mailto:mjryan@umc.edu
http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1111/bph.14604
http://wileyonlinelibrary.com/journal/bph


1898 TAYLOR ET AL.BJP
suggest that the prevalent immune system dysfunction in autoimmunity

has a causative role in the development of hypertension. Hypertension is

a major risk factor for the development of cardiovascular disease (CVD)

in patients with autoimmune disorders. In fact, over 50% of premature

deaths in RA are attributed to CVD (Symmons & Gabriel, 2011), and in

SLE, patients who survive beyond the first 5 years most die from com-

plications due to CVD (Manzi et al., 1997). While an association between

autoimmunity and hypertension has been established, much remains

unclear about the underlying pathways by which autoimmunity promotes

hypertension. The purpose of this review is to discuss the link between

autoimmunity and hypertension, with an emphasis on the role of immune

system components in the development of autoimmune‐associated

hypertension. In addition, because of the prevalent renal disease in

patients with autoimmune disorders and the general predilection of

autoimmune disorders for women, consideration will be given to the

effects of immune system activation on renal function and the potential

role of sex hormones in cardiovascular risk during autoimmunity.
2 | IMMUNE SYSTEM DYSFUNCTION IN
HUMAN HYPERTENSION

Studies over the past 40–50 years have provided evidence of inflam-

mation, immune system dysfunction, and characteristics of autoimmunity

in patients with essential hypertension. Cross‐sectional studies reported

a higher prevalence of hypertension in patients with increased levels of

C reactive protein (Bautista et al., 2001; Bautista, Vera, Arenas, & Gamarra,

2005; Chul Sung et al., 2003), IL‐6 (Bautista et al., 2005; Chae, Lee, Rifai,

& Ridker, 2001), and TNF‐α (Bautista et al., 2005; Yu, Yang, & Yu, 2010)

as well as elevated circulating leukocytes (Shankar, Klein, & Klein, 2004;

Tatsukawa et al., 2008). However, due to the cross‐sectional design of

those studies, it could not be determined if the inflammatory marker or

cells preceded the development of hypertension. Observational studies

that recruited normotensive patients and evaluated inflammatory status

and the development of de novo hypertension found that higher levels

of C reactive protein at baseline were associated with an increased risk

of developing hypertension (Sesso et al., 2003; Sesso, Wang, Buring,

Ridker, & Gaziano, 2007). Consistent with essential hypertension, a

variety of inflammatory cytokines, including TNF‐α and IL‐6, have been

implicated in the pathogenesis of autoimmune diseases (Yap & Lai, 2013).

Although the initiation of the immune response remains elusive as

it relates to hypertension, evidence suggests that physical injury of the

vessel wall in response to increased pressure may be an important

event (Anders, Baumann, Tripepi, & Mallamaci, 2015; Bartoloni, Alunno,

& Gerli, 2018; Wenzel et al., 2016). In addition, it has been postulated

that hypertensive factors such as angiotensin II, high salt, or aldosterone

have direct effects on the innate immune system, by activating comple-

ment, Toll‐like receptors (TLRs), and the inflammasome. This ultimately

leads to the formation of neoantigens and activation of the cells of

both the innate and adaptive immune systems (Wenzel et al., 2016).

It has been suggested that neoantigen formation leads to a loss of toler-

ance and the production of autoantibodies in hypertension (Rodriguez‐

Iturbe et al., 2014). Interestingly, this working hypothesis bearsa strong

resemblance to the mechanisms involved in the development of
autoimmune diseases. In support of this concept, patients with essential

hypertension have been shown to have elevated levels of circulating

IgG and IgM (Ebringer & Doyle, 1970; Hilme et al., 1989; Suryaprabha

et al., 1984), and clinical studies have correlated the production of

pathogenic autoantibodies and hypertension (Gudbrandsson, Herlitz,

Hansson, Lindholm, & Nilsson, 1981). A study by Wallukat et al. first

identified the presence of agonistic angiotensin AT1 receptor autoanti-

bodies in pregnancy‐related hypertension, which were later identified

in renal transplant associated hypertension and essential hypertension

(Wallukat et al., 1999; Dragun et al., 2005; Liao et al., 2002). A direct

blood pressure modulatory role for autoantibodies in humans was

demonstrated by studies in patients with refractory hypertension in

which immunoadsorption of α1‐adrenoceptor receptor autoantibodies

was sufficient to lower mean arterial pressure (Wenzel et al., 2008).

Therefore, the production of autoantibodies, as occurs in patients with

autoimmune rheumatic diseases, points to a prominent role for B lym-

phocytes in the pathogenesis of hypertension and suggests a central role

for autoantibodies in the prevalent hypertension during autoimmunity.

T lymphocytes, which are also important in the pathogenesis of

autoimmune disorders, have been extensively studied in various

experimental models such as angiotensin II and salt‐sensitive hyper-

tension (Zhang & Crowley, 2015). However, much less is known about

T cells in human hypertension. Early studies showed that T cells infil-

trated the kidneys in patients with essential hypertension (Heptinstall,

1954); however, the relative contributions of various CD4+ TH sub-

sets, CD8+ cytotoxic T lymphocytes, γδ T cells, and NKT cells to the

pathogenesis of human hypertension are still poorly understood. The

potential importance of CD8+ T cells was recently reported in a study

of patients with essential hypertension. The authors concluded that

hypertensive patients have more immuno‐senescent CD8+ T lympho-

cytes with increased expression of CXCR3, a receptor for chemokines,

which recruit T cells to injured organs (Youn et al., 2013). Finally,

Genome Wide Association Study (GWAS) studies suggest that gene

variants expressed in T lymphocytes associate with hypertension. For

example, variants in the gene encoding theT cell signalling component,

the CD3ζ chain, associated with blood pressure in a study of 2,000

hypertensive subjects (Ehret, O'connor, Weder, Cooper, &

Chakravarti, 2009), and a missense SNP in lymphocyte‐specific

adaptor protein (LNK or SH2B3) that is needed for T cell signalling

segregated with diastolic blood pressure (Newton‐Cheh et al., 2009).

While much of the attention has focused on the role of T and B lym-

phocytes in the pathogenesis of essential hypertension, it is increasingly

appreciated that cells of the myeloid lineage may also play an important

role. Neutrophils are the first line of defence against pathogens but have

diverse roles in both B and T lymphocyte function. High neutrophil counts

were found to be a predictor of hypertension in a Japanese cohort

(Tatsukawa et al., 2008), and a recent study by Belen, Sungur, Sungur,

and Erdoğan (2015) identified an increased neutrophil to lymphocyte ratio

in patients with resistant hypertension. Circulating monocytes have also

been isolated from hypertensive patients and shown to be “preactivated,”

indicating that they have enhanced secretion of inflammatory cytokines

after stimulation with angiotensin II or LPS as compared to normotensive

controls (Dörffel et al., 1999). Given that cytokines, complement,
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lymphocytes, and myeloid cells are associated with hypertension in

both humans and experimental models and their known roles in the path-

ogenesis of autoimmunity, their potential role in the autoimmune‐

associated hypertension will be reviewed in greater detail below.
3 | PREVALENCE OF HYPERTENSION IN
AUTOIMMUNE RHEUMATIC DISEASES

Autoimmune diseases collectively affect 4–7% of the population in the

United States. Each condition has a unique aetiology, with both

genetic and environmental factors contributing to disease develop-

ment and pathogenesis (Alzabin & Venables, 2012). Studies of both

arthritic diseases such as RA and PsA; systemic autoimmune diseases,

including SLE, Sjögren's syndrome, and systemic sclerosis (SSc);

and several forms of vasculitis, including giant cell arteritis and

antineutrophil cytoplasmic antibody‐associated vasculitis, have

reported increased prevalence of hypertension as compared to the

general population, although large discrepancies are found in the pub-

lished reports (Panoulas et al., 2008). Reasons for these discrepancies

may include under‐diagnosis of hypertension in autoimmune diseases,

study design, and corticosteroid use (Bartoloni et al., 2018). In the case

of RA, the prevalence of hypertension ranges from 52% to 73% in

unselected, community‐based RA populations (Chung et al., 2008;

Gonzalez et al., 2008). The most convincing evidence of increased

prevalence of hypertension in RA as compared to the general popula-

tion is from a large population‐based study in which the incidence of

hypertension was 31%, as compared to 23% in the control population.

This study also found increased prevalence of hypertension in patients

with PsA and ankylosing spondylitis (Han et al., 2006). PsA, in particu-

lar, is associated with increased incidence of all traditional cardiovas-

cular risk factors with one study reporting high blood pressure in up

to 55% of PsA patients (Jamnitski et al., 2013). Many studies have

reported an increased prevalence of hypertension in patients with

SLE (Al‐Herz et al., 2003; Budman & Steinberg, 1976; Mandell,

1987; Petri, 2000; Sabio et al., 2011; Selzer et al., 2001; Shaharir,

Mustafar, Mohd, Said, & Gafor, 2015), although the prevalence varies

widely depending on the cohort. The rates of hypertension are espe-

cially high in women with SLE younger than 40; Sabio et al. (2011)

reported that 40% of SLE patients under the age of 40 had hyperten-

sion, compared to only 11% of age‐matched controls. Sjögren's syn-

drome, a rare and poorly understood systemic autoimmune disease,

affects the moisture‐producing glands of the body. Similar to SLE,

patients with Sjögren's syndrome frequently produce antinuclear anti-

bodies and have high circulating immunoglobulins (Ramos‐Casals,

Tzioufas, & Font, 2005). While CVD has been infrequently studied in

patients with Sjögren's, several studies reported a higher prevalence

of both hypertension and dyslipidemia as well as cardiovascular events

including myocardial infarction and stroke (Bartoloni et al., 2015;

Juarez et al., 2014). Taken together, these clinical studies highlight

the increased incidence of hypertension in autoimmune rheumatic dis-

eases, but few studies have explored potential mechanisms that con-

tribute to its development. In addition, there are scant data on the
potential blood pressure lowering effects of various therapies cur-

rently prescribed to patients with autoimmune diseases.
4 | INFLAMMATION AND IMMUNE SYSTEM
DYSFUNCTION

4.1 | Toll‐like receptors

Both pathogen‐ and host‐derived molecules can function as “danger”

signals that stimulate inflammation. A variety of both immune and

non‐immune cells can become activated when they sense pathogen‐

associated molecular patterns (PAMP) or endogenous damage‐

associated molecular patterns (DAMP) using invariant immune

receptors such as the TLRs. TLRs are Type I transmembrane glycopro-

teins that can either be cell surface molecules (TLR1, ‐2, ‐4, ‐5, and ‐6)

or expressed on endosomal membranes (TLR3, ‐7, ‐8, and ‐9). Stimula-

tion of TLRs can result in the production of pro‐inflammatory

cytokines and the activation of the adaptive immune system (Akira &

Takeda, 2004). Aberrant TLR activation has been implicated in the

pathogenesis of SLE, RA, PsA, and other autoimmune diseases

(Mohammad Hosseini, Majidi, Baradaran, & Yousefi, 2015). While

the link between TLR expression and hypertension has not been

directly examined in autoimmune rheumatic diseases, the dysregula-

tion of these receptors and their signalling could contribute to low‐

grade inflammation as well as the development of hypertension in

autoimmunity. One clinical study evaluated TLR expression in kidney

sections from patients with lupus nephritis (LN) and reported higher

amounts of TLR3, TLR7, and TLR9 staining in LN patients. Regardless

of the aetiology of primary hypertension, vascular damage‐associated

molecular patterns are likely to be present due to increased cell death

and injury in response to increased pressure. Within the vasculature,

TLRs have distinct profiles, with TLRs 2 and 4 being ubiquitously

expressed (Pryshchep, Ma‐Krupa, Younge, Goronzy, & Weyand,

2008). Several studies have illustrated the role of TLRs, specifically

TLR4, in mediating vascular dysfunction and contributing to hyperten-

sion in the spontaneously hypertensive rat (Bomfim et al., 2012) and in

obese mice (Liang, Liu, Wang, Xu, & Vanhoutte, 2013).
4.2 | Cytokines

Various pro‐ and anti‐inflammatory cytokines play pivotal roles in the

pathogenesis of autoimmune rheumatic diseases. While a full discus-

sion of cytokine dysregulation in the context of autoimmunity is

beyond the scope of this review, some of the cytokines increased

in autoimmune diseases that may have a role in the pathogenesis

of hypertension will be discussed here. In general, inflammatory cyto-

kines can interact with important blood pressure regulatory systems

such as the renin‐angiotensin system (RAS; Brasier, Recinos, & Eledrisi,

2002; Capettini et al., 2012; Harrison et al., 2011) and the sympathetic

nervous system (Pongratz & Straub, 2014). Furthermore, cytokines

such as TNF‐α can block the activation of endothelial NOS and can

induce oxidative stress by increasing ROS production.
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There are limited data on the role of cytokines in the development

of RA‐associated hypertension, from either clinical studies or animal

models. The most commonly used experimental model of RA is a

murine model of collagen‐induced arthritis (CIA; Pietrosimone, Jin,

Poston, & Liu, 2015), and while this model reproduces the joint inflam-

mation present in RA, hypertension and other cardiovascular abnor-

malities do not occur. Nonetheless, several clinical studies have

examined cytokines and hypertension in RA. One clinical study by

Manavathongchai et al. (2013) measured inflammatory markers in RA

patients with and without hypertension and found that increased

serum homocysteine and leptin levels correlated with increased blood

pressure, but the inflammatory cytokines TNF‐α and IL‐6 did not.

Homocysteine and leptin can increase blood pressure by impairing

pressure natriuresis, causing vascular endothelial dysfunction, and

increasing renal sodium reabsorption (Beltowski, 2010; Lai & Kan,

2015). An additional clinical study performed 24‐hr ambulatory blood

pressure monitoring on RA patients taking the TNF‐α inhibitor

infliximab and found that systolic blood pressure was significantly

lower in patients receiving the treatment. The reduction in blood pres-

sure correlated with decreases in noradrenaline (Sandoo et al., 2011).

IL‐17A is associated with a more severe course of disease in patients

with RA (Newton‐Cheh et al., 2009) and is an attractive therapeutic

target. In experimental models, the blockade of IL‐17A in CIA

suppresses arthritis and prevents joint damage. Whether cytokines

can be a therapeutic target in RA patients with hypertension remains

to be determined.

In SLE, high circulating concentrations of TNF‐α correlate with dis-

ease activity (Davas et al., 1999; Maury & Teppo, 1989; Studnicka‐

Benke, Steiner, Petera, & Smolen, 1996), and TNF‐α expression is

increased in patients with LN (Herrera‐Esparza, Barbosa‐Cisneros,

Villalobos‐Hurtado, & Avalos‐Diaz, 1998; Malide, Russo, & Bendayan,

1995), but there are limited data on the association between TNF‐α

and hypertension in patients. Our laboratory has examined the role

of TNF‐α in SLE‐associated hypertension using the NZBWF1 (F1

hybrid of New Zealand Black and New Zealand White strains) mouse,

a widely used and established experimental model of SLE. The

NZBWF1 mouse exhibits many of the hallmark characteristics of SLE

disease in humans, including lymphadenopathy, splenomegaly, ele-

vated anti‐dsDNA autoantibodies, and the development of immune‐

complex‐mediated glomerulonephritis (Burnett, Ravel, & Descotes,

2004). As in patients with SLE, there is also a strong sex dimorphism

in NZBWF1 mice. Importantly, our laboratory has established the

NZBWF1 mouse as a model of autoimmunity with hypertension (Ryan

& Mclemore, 2007). There are several other spontaneous models of

SLE, including the MRL/lpr and BXSB models (Perry, Sang, Yin, Zheng,

& Morel, 2011). While both of these animal models produce autoanti-

bodies and develop immune complex‐mediated glomerulonephritis,

neither develop hypertension. Venegas‐Pont et al. (2010) reported

that administration of a TNF‐α antagonist, etanercept, to NZBWF1

mice attenuated the hypertension and glomerular injury. Also, mice

treated with etanercept had decreased monocyte infiltration to the

kidneys and lowered NADPH expression in the renal cortex

(Venegas‐Pont et al., 2010). These data suggest that TNF‐α may be
an important factor contributing to the increased risk for hypertension

during SLE, through a mechanism that involves renal inflammation and

oxidative stress, both of which are implicated in the development of

primary hypertension (Wilcox, 2002). Recent studies suggest that IL‐

17 plays a central role in the pathogenesis of LN, as it induces the pro-

duction of other inflammatory cytokines and recruits inflammatory

cells (Apostolidis, Crispín, & Tsokos, 2011; Zhang, Kyttaris, & Tsokos,

2009). Thus, it is likely that IL‐17 plays a role in hypertension in SLE

patients with renal involvement.

PsA is associated with pathogenic T cells that produce high levels

of IL‐17. Both IL‐17 and TNF‐α are targets for therapy in psoriasis,

but the data are limited on the effect of these treatments on hyper-

tension and CVD parameters. Piaserico et al. (2016) found that treat-

ment of young patients with severe psoriasis with TNF‐α inhibitors

resulted in the restoration of coronary microvascular function. Studies

are currently ongoing to evaluate the effects of the IL‐17A inhibitor

secukinumab on vascular inflammation and cardiovascular risk in

patients with psoriasis (Lockshin et al., 2018). Several experimental

models of psoriasis are utilized by researchers, such as imiquimod

treatment (van der Fits et al., 2009), epidermal overexpression of mol-

ecules involved in pathogenesis (Schon, 2008), and more recently, the

overexpression of IL‐17 in keratinocytes (Croxford et al., 2014). The

overexpression of IL‐17 in keratinocytes leads to systemic vascular

inflammation, endothelial dysfunction, and arterial hypertension,

accompanied by increased numbers of neutrophils in the circulation

(Karbach et al., 2014). In conclusion, various therapies that target cyto-

kines are currently used in the treatment of autoimmune diseases, but

the data are limited on the effects of therapies on blood pressure.
4.3 | Complement

The complement system is an evolutionarily ancient system consisting

of secreted proteins synthesized primarily in the liver that mediate tis-

sue damage and injury. Complement activation can occur by three

pathways known as the classical, alternative, and lectin pathways.

The classical pathway is initiated by IgG or IgM immune complex for-

mation and binding of complement component C1q to the antibody

site, the lectin pathway is initiated by the binding of mannose‐binding

lectin or ficolin to microbial components, and the alternative pathway

involves direct activation by foreign pathogens (Vignesh, Rawat,

Sharma, & Singh, 2017). Each of these pathways results in the cleav-

age of complement component C3 and the formation of the mem-

brane attack complex that can lyse pathogens and cells. Additionally,

large numbers of activated complement proteins such as C3 and C5

can bind and opsonize pathogens, targeting them for engulfment by

phagocytes that express complement receptors. Overactivation of

the complement system is an important mediator of tissue damage

and injury in autoimmunity, but the absence of complement compo-

nents is also linked to the development of autoimmune disease, prob-

ably due to an inability to clear debris and apoptotic cells (Ballanti

et al., 2013; Lintner et al., 2016). The association between hyperten-

sion and excess complement activation has been investigated in both
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humans and animal models. Elevated plasma levels of complement

components C3 and C4 in hypertensive patients has been previously

reported by several groups (Bozzoli et al., 1992; Schaadt, Sørensen,

& Krogsgaard, 1981). More recently Zhang et al. (2014) reported that

hypertensive humans have increased levels of the complement pro-

tein C5a and that in a murine chronic angiotensin II infusion model,

both C3a and C5a are increased in the circulation. The authors also

showed that the absence of C5a or antagonism of the C5a receptor

in mice chronically administered angiotensin II reduces cardiac remod-

elling and inflammation but does not affect blood pressure (Zhang, Li,

Wang, Wu, Cui, et al., 2014; Zhang, Li, Wang, Wu, & Du, 2014). In

addition, a link between TREG and the complement receptors for

C3a and C5a was recently identified. Aangiotensin II infusion elevates

expression of these receptors on TREG, and a loss of these receptors

on TREG prevents the development of hypertension in response to

Ang II infusion (Chen et al., 2018). Taken together, these animal stud-

ies suggest that complement may be an important factor in the devel-

opment of hypertension and end‐organ damage. While the role of

complement in autoimmune‐associated hypertension has not yet

been investigated, complement is likely to be an important factor in

the development of hypertension, especially in those patients with

renal involvement.
4.4 | Innate immune cells

In the context of autoimmune rheumatic diseases, several types of

innate immune cells have been reported as being dysfunctional or hav-

ing altered activity, including neutrophils, monocytes, macrophages,

and dendritic cells (DC). For example, neutrophils are not only known

mediators of tissue injury in autoimmune rheumatic diseases but are

also likely to be important for the initiation and progression of autoim-

mune disease (Németh, Mócsai, & Lowell, 2016). Recent studies found

abnormalities in various neutrophil functions in SLE, including

increased levels of neutrophil aggregation, increased apoptosis, and

abnormal clearance of apoptotic bodies (Kaplan, 2011). Also, neutro-

phils from SLE patients have increased levels of neutrophil extracellu-

lar trap (NET) formation, which is also called NETosis. NETosis results

in the release of chromatin and other putative autoantigens from the

cell, which may lead to increased autoantibody production (Gupta &

Kaplan, 2016). Impaired NET degradation is associated with LN

(Hakkim et al., 2010), suggesting that neutrophil dysfunction may have

a role in SLE hypertension in patients with renal involvement. Simi-

larly, neutrophils from RA patients have an activated phenotype and

display delayed apoptosis, increased ROS production, and increased

expression of high affinity FcR (Wright, Moots, & Edwards, 2014).

To our knowledge, no clinical or basic science study has examined

the relationship between neutrophils and autoimmune‐associated

hypertension; however, neutrophils have been examined in angioten-

sin II hypertension. Both neutrophils and monocytes infiltrate the ves-

sel wall follwing infusion of angiotensin II, but only monocytes were

shown to be essential for the hypertensive response to this peptide

(Wenzel et al., 2011).
Circulating monocytes in both SLE and RA have been reported to

have abnormalities in cell surface marker expression, antigen presenta-

tion, cytokine production, and phagocytosis (Davignon et al., 2013; Li,

Lee, & Reeves, 2010). In the case of autoimmune diseases with

immune complex formation, the binding of circulating autoantibody

immune complexes to vascular walls may increase monocyte activa-

tion and promote a pro‐inflammatory environment within the vascula-

ture. The subsequent endothelial cell damage and endothelial

dysfunction may be an important underlying risk factor for the preva-

lent hypertension and CVD in this patient population (Atehortúa,

Rojas, Vásquez, & Castaño, 2017). Monocyte infiltration is increased

in the kidney and periadventitial areas of peripheral vessels in many

experimental models of hypertension, including the SHR (Rodríguez‐

Iturbe et al., 2002), Dahl salt‐sensitive rat (De Miguel, Das, Lund, &

Mattson, 2010), chronic angiotensin II infusion (Muller et al., 2002),

and the NZBWF1 mouse model of SLE (Venegas‐Pont et al., 2010).

A reduction in macrophage infiltration is associated with lowered

blood pressure, and depletion of circulating monocytes (Wenzel

et al., 2011) or a deficiency in macrophage colony stimulating factor

(De Ciuceis et al., 2005) results in protection from angiotensin II

hypertension. Elegant studies by Steven Crowley's group identified a

direct role for macrophages cells in the kidney during angiotensin II

hypertension. The stimulation of the IL‐1R suppresses the differentia-

tion of Ly6C+Ly6G+ immature myeloid cells into mature Ly6C+Ly6G−

macrophages that can produce NO and limit NKCC2‐mediated sodium

resorption in the kidney. Thus, IL‐1R−/− mice are protected from the

angiotensin II hypertension, at least in part due to the elaboration of

NO from intra‐renal macrophages (Zhang et al., 2016).

DC are professional antigen presenting cells that play a pivotal role

in CD4+ and CD8+ T lymphocyte activation. Under normal conditions,

DC present self‐antigens to maintain tolerance; however, DC dysfunc-

tion is implicated in the loss of peripheral tolerance to self‐antigens in

autoimmunity (Klarquist, Zhou, Shen, & Janssen, 2016). Multiple stud-

ies in experimental hypertension have demonstrated the importance

of DC in the hypertensive response. A blockade of costimulatory mol-

ecules CD80 and CD86 expressed by DC using CTLA‐Ig reducesT cell

activation and blunts the hypertensive response to angiotensin II or

DOCA‐salt (Vinh et al., 2010). More recently, Kirabo et al. (2014) iden-

tified a novel pathway that implicates DC in angiotensin II hyperten-

sion: Proteins that are oxidatively modified by isoketals accumulate

in DCs and activate them to produce the inflammatory cytokines IL‐

6, IL‐1β, and IL‐23 and up‐regulate costimulatory molecules CD80

and CD86. This leads to the proliferation of CD8+ T cells and

increased production of IFN‐γ and IL‐17A (Kirabo et al., 2014). The

role that these innate immune cells have in the development of hyper-

tension during autoimmunity has not been examined.
4.5 | T lymphocytes

The potential role of B and T cells in the pathogenesis of autoimmune‐

associated hypertension was demonstrated in studies by Herrera,

Ferrebuz, MacGregor, and Rodriguez‐Iturbe (2006), in which hyper-

tensive patients with psoriasis or RA were treated with the
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immunosuppressive drug mycophenolate mofetil, which depletes acti-

vated B and T lymphocytes. This small clinical study found that treat-

ment with mycophenolate mofetil was sufficient to lower blood

pressure in RA and psoriasis (Herrera et al., 2006). Autoimmune rheu-

matic diseases are characterized by aberrant T cell activation and

alterations in multiple TH cell subsets, including TH1, TH17, and TREG

(Cope, Schulze‐Koops, & Aringer, 2007; Mak & Kow, 2014), but little

is known about contributions of T cells to hypertension and cardiovas-

cular complications in these diseases. Much of the work on immune

system contributions to experimental models of hypertension, particu-

larly angiotensin II and salt‐sensitive hypertension, has focused on the

importance of T cells. Studies by Harrison's group have shown that an

oligoclonal population of CD8+ T cells accumulate in the kidney, con-

tribute to sodium and water retention, and are needed for the

sustained hypertensive response to chronic angiotensin II infusion

(Trott et al., 2014). The importance of TH17 cells and TREG have also

been highlighted in this model as well (Zhang & Crowley, 2015).

TH17 cells primarily exert their effects by secreting IL‐17A, and both

the percentage of TH17 cells and IL‐17A production are elevated after

Ang II infusion (Madhur et al., 2010). IL‐17A has also been shown to

induce the phosphorylation of endothelial NOS at the inhibitory site

Thr495, leading to impaired endothelium‐dependent vasodilation

(Nguyen et al., 2013). A recent study by our laboratory examined

whether depletion of T cells using anti‐CD3 therapy would attenuate

hypertension in the NZBWF1 mouse with established renal disease.

After 4 weeks of treatment with anti‐CD3, mice had significantly

lower mean arterial pressure as compared to the vehicle‐treated mice.

Despite the lowered blood pressure, their renal injury was unaffected

by the treatment (Mathis, Taylor, & Ryan, 2017). Potential mechanisms

for the lowered blood pressure include expansion of tolerogenic TREG

(Kuhn & Weiner, 2016), as TREG dysfunction is an important contribu-

tor to the pathogenesis of SLE (Liu, Wang, Fung, & Wu, 2004;

Valencia, Yarboro, Illei, & Lipsky, 2007). Adoptive transfer of TREG

has been reported to blunt the hypertensive response to chronic

angiotensin II infusion (Barhoumi et al., 2011).
4.6 | B lymphocytes

B lymphocytes play important roles in autoimmune rheumatic diseases

through the production of autoantibodies, antigen presentation, and

cytokine secretion (Chan, Hannum, Haberman, Madaio, & Shlomchik,

1999; Lin et al., 1991; Mamula, Fatenejad, & Craft, 1994). The majority

of patients with RA produce anti‐cyclic citrullinated peptide antibodies

as well as rheumatoid factor (anti‐IgG). While there are limited data on

autoantibodies and their contribution to hypertension in RA, several

clinical studies have examined the association between anti‐cyclic

citrullinated peptide or rheumatoid factor with incidence of CVD in

various cohorts, ultimately yielding conflicting evidence on the poten-

tial link (Ajeganova, Andersson, Frostegård, & Hafström, 2013; Barra

et al., 2017; Mackey et al., 2015). Further studies are needed to corre-

late blood pressure data with autoantibody titers in RA. Autoanti-

bodies to various nuclear components are found in ~95% of SLE
patients, and anti‐dsDNA antibodies have been detected in 70% of

patients (Reveille, 2004). Various other autoantibodies, including those

that bind to endothelial cells and could induce vascular damage, are

also present in subsets of SLE patients. Because of the potential role

of autoantibodies in essential hypertension discussed previously in

this review, our laboratory has undertaken studies to elucidate the

role of B cells and autoantibody production in the pathogenesis of

SLE hypertension. We treated NZBWF1 mice with an anti‐CD20 anti-

body to deplete B cells. Anti‐CD20 is the mouse equivalent of rituxi-

mab, which has been used in treatment of SLE. A chronic, 14‐week

treatment with anti‐CD20 was sufficient to prevent the development

of hypertension in NZBWF1 mice, lower CD45R+ B cell percentages in

the spleen, and reduce the concentration of circulating anti‐dsDNA

autoantibodies. However, a short (4‐week) treatment with anti‐

CD20 did not alter blood pressure, which suggests that once autoan-

tibodies are being produced, B cell depletion is ineffective at lowering

blood pressure (Mathis et al., 2014). A similar study was undertaken by

Chan et al. (2015), who found that anti‐CD20 treatment or the

absence of B cells (BAFF‐R−/− mice) prevents the development of

hypertension in response to chronic angiotensin II infusion. The

authors also noted increased aortic antibody deposits of IgG2b and

IgG3 in mice receiving angiotensin II , which was ameliorated by the

anti‐CD20 treatment (Chan et al., 2015). Recently, we aimed to more

specifically target autoantibody production by depleting plasma cells,

which are differentiated B cells responsible for the majority of serum

immunoglobulin production and SLE autoantibodies. After a 4‐week

treatment with the proteasome inhibitor bortezomib, NZBWF1 mice

had significantly reduced IgG and anti‐dsDNA levels in their plasma

as well as attenuated hypertension (Taylor et al., 2018). Figure 1

depicts potential immune pathways that contribute to the develop-

ment of hypertension in autoimmunity.
5 | RENAL HAEMODYNAMICS

Renal disease is one of the most common and severe manifestations

of many rheumatic diseases, including SLE, RA, SSc, and PsA. Because

of the important role of the kidneys in long‐term blood pressure reg-

ulation and the fact that they are commonly affected in rheumatic dis-

eases, it is important to consider how renal haemodynamic function

changes during autoimmune diseases and how this function is affected

by immune system activation and inflammation. SLE is characterized

by immune‐complex‐mediated glomerulonephritis, tubular lesions,

and glomerular and interstitial scarring (Moulton et al., 2017). It is esti-

mated that at least 50% of patients with SLE have renal involvement,

which markedly increases the risk of developing end stage renal dis-

ease (Boumpas et al., 1995). Studies have shown that both GFR and

renal plasma flow are impaired in hospitalized SLE patients during

active and inactive disease using urinary clearance methods (Nakano

et al., 1998), but whether these changes promote SLE hypertension

is unknown. However, studies in humans show that hypertension

and nephritis are not necessarily linked. For example, Shaharir et al.

(2015) reported that 53% of SLE patients were hypertensive in the
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FIGURE 1 Immune system dysfunction in
autoimmunity contributes to the development
of hypertension. The crosstalk between the
innate and adaptive immune systems leads to
a chronic inflammatory state that affects the
kidney, vasculature, and CNS, all promoting
the development of autoimmune‐associated
hypertension
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absence of nephritis. In addition, we recently reported that there is no

relationship between hypertension and urinary albumin excretion or

glomerulosclerosis scores in the NZBWF1 female mice with SLE

(Taylor et al., 2018).

Patients with SSc experience renal impairment characterized by a

reduction in renal functional reserve and lower renal blood flow lead-

ing to a reduction in GFR. Patients can also develop scleroderma renal

crisis (SRC), which is an acute vascular manifestation characterized by

hypertension (acute onset) and renal histological findings. However,

SSc patients who are not in SRC may have the same histological find-

ings, be normotensive, and have normal renal function. Nephrotoxic

medications are thought to contribute to renal impairment in SSc

along with renal vasculopathy and glomerulonephritis, which all likely

contribute to hypertension in this patient population (Shanmugam &

Steen, 2010). Overall, patients with SSc have an estimated 60–80%

likelihood of developing slow progressive renal decline along

with hypertension, increased serum creatinine, and proteinuria

(Shanmugam & Steen, 2010). Patients with RA also have a wide range

of renal disorders, with the prevalence of kidney disease ranging from

5% to 50% depending on the study (Hickson, Crowson, Gabriel,

McCarthy, & Matteson, 2014). Reasons for the development of kidney

disease in RA include drug toxicity and chronic inflammation, with glo-

merulonephritis being a common finding (Hickson et al., 2014). Thus,

despite the known renal involvement across many autoimmune disor-

ders that have an increased prevalence of hypertension, little is known

about the mechanistic contribution of the kidneys to the pathogenesis

of hypertension in this patient population.

In general, renal haemodynamic function has been sparsely studied

in experimental models of autoimmunity. The NZBWF1 mouse model
of SLE exhibits lower estimated renal plasma flow (Salvati et al., 1995)

and GFR by 37 weeks of age (Kiberd, 1991). NZBWF1 mice also dis-

play increased plasma creatinine and blood urea nitrogen levels by

8 months of age (Corna et al., 1997; Song et al., 1998). In direct mea-

sures of renal haemodynamic function, we and others reported that

female NZBWF1 mice have reduced renal blood flow (Salvati et al.,

1995; Venegas‐Pont et al., 2011) and increased renal vascular resis-

tance (Venegas‐Pont et al., 2011) when active renal disease is present.

NZBWF1 mice have a parallel hypertensive rightward shift in the pres-

sure natriuresis relationship, suggesting that impaired renal sodium

handling is an important factor in autoimmune‐associated hyperten-

sion (Mathis, Venegas‐Pont, Masterson, Wasson, & Ryan, 2011).

Importantly, the parallel shift in the pressure natriuresis relationship

is consistent with a renal vascular contribution to the hypertension.

The role of the RAS and blood pressure control is well known

(Ghazi & Drawz, 2017; Hall, 1991), but its role in autoimmune‐

associated hypertension is poorly understood despite the common

use of ACE inhibitors to help control blood pressure and attenuate

renal disease. Some patients with LN have been reported to display

increased plasma renin activity (Herlitz, Edenö, Mulec, Westberg, &

Aurell, 1984; Metsärinne, Nordström, Konttinen, Teppo, & Fyhrquist,

1992), and there is evidence suggesting that some patients with SLE

or RA display increased serum levels of ACE (Sheikh & Kaplan,

1987). The increased ACE activity has the potential to contribute to

hypertension by increasing angiotensin II , which can act both system-

ically and locally within the kidney to increase pressure. Elevated renin

levels have also been reported in SRC in SSc (Shanmugam & Steen,

2010) and in PsA (Ena, Madeddu, Glorioso, Cerimele, & Rappelli,

1985). In many autoimmune rheumatic diseases, immune complex
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deposition may be an important trigger causing increased inflamma-

tory cells that lead to a local increase in ACE and angiotensin II pro-

duction. Therefore, the local RAS activation has the potential to

contribute to renal haemodynamic alterations and subsequently

hypertension (Teplitsky, Shoenfeld, & Tanay, 2006). Another path-

way by which angiotensin II could promote hypertension during

SLE is via stimulating the production of endothelin‐1 (ET‐1), a pep-

tide important for vasoconstrictive and natriuretic actions within

the kidney. Patients with SLE, RA, and SSc have been reported to

have higher plasma levels of ET‐1 (Ena et al., 1985; Julkunen,

Saijonmaa, Grönhagen‐Riska, Teppo, & Fyhrquist, 1991; Pache

et al., 2002) and studies in the NZBWF1 model show that ET recep-

tor blockade lowers blood pressure, mortality, and prevents renal

injury (Nakamura, Ebihara, Tomino, & Koide, 1995). Therefore, an

increase in ET‐1 may contribute to renal haemodynamic changes

that could promote blood pressure increases.

The immunological changes that occur during autoimmunity are

likely to be key mediators of renal haemodynamic function that

could promote hypertension, although the role of different immune

cells has not been fully elucidated. Renal leukocyte infiltration is

directly associated with hypertension and renal injury and is likely

to contribute mechanistically by promoting inflammatory cytokine

production within the kidneys. Furthermore, inflammatory cytokines

may directly change renal sodium excretion, renal blood flow, and

GFR (Imig & Ryan, 2013). For example, TNF‐α can not only cause

both renal vasoconstriction and reduced GFR through a

superoxide‐mediated mechanism but also promote natriuresis in

the kidney, suggesting that the localization of TNF‐α in the kidney

may have important implications in regulating renal function (Shahid,

Francis, & Majid, 2008). Our laboratory previously showed that

blockade of TNF‐α biological activity in the NZBWF1 mouse model

of SLE attenuated hypertension in association with reduced renal

oxidative stress (Venegas‐Pont et al., 2010).

Many other cytokines have been implicated in regulating renal

function that are potentially involved in autoimmune disease pro-

cesses. The cytokine TGF‐β has been shown to impair afferent arte-

riolar autoregulatory responses (Sharma, Cook, Smith, Valancius, &

Inscho, 2005) as well as drive fibrosis by increasing extracellular

matrix deposition and inhibiting MMP activity (Border, 1994;

Douthwaite, Johnson, Haylor, Watson, & El Nahas, 1999; Mozes,

Böttinger, Jacot, & Kopp, 1999). Inflammatory cytokines including

IL‐17A, IFN‐γ, and IL‐1β can also affect renal sodium transporters.

IL‐1 can increase sodium excretion independent of GFR or renal

blood flow (Beasley, Dinarello, & Cannon, 1988; Kohan, Merli, &

Simon, 1989). Angiotensin II up‐regulates the activity of the sodium

chloride symporter (NCC; SLC12A3) in the distal nephron, and the

expression of the sodium hydrogen exchanger (NHE3) in cultured

proximal tubule cells. These changes do not occur in angiotensin II

infused IL‐17A−/− mice, suggesting an important renal mechanism

by which IL‐17 can promote hypertension (Norlander et al., 2016).

IFN‐γ also promotes sodium reabsorption via the NHE3 exchanger

in the proximal tubule as well as the NKCC2 and sodium chloride

symporter found in the distal portion of the nephron (Kamat et al.,
2015). Despite reports pointing to important physiological roles for

cytokines to regulate renal vascular and tubular function, the mech-

anistic contribution of these cytokines to autoimmune‐associated

hypertension are not clear.

Many cytokines promote the production of ROS leading to oxi-

dative stress. The effects of ROS on renal vascular and tubular func-

tion have been well documented and are reviewed elsewhere

(Araujo & Wilcox, 2014; Gonzalez‐Vicente & Garvin, 2017; Harrison

& Gongora, 2009). In general, ROS directly act on vascular smooth

muscle cells and promote renal vasoconstriction (Wilcox, 2002). In

the renal medulla, ROS generally promote increased sodium reab-

sorption. Thus, under pathological conditions, renal oxidative stress

plays an important mechanistic role in promoting hypertension. Dis-

ease activity in patients with SLE directly correlates with circulating

levels of ROS (Taysi, Gul, Sari, Akcay, & Bakan, 2002) making them

a likely contributor to the prevalent hypertension. We previously

reported that treatment of female NZBWF1 mice with antioxidants

in the drinking water ameliorates the hypertension associated with

SLE (Mathis et al., 2012). A summary of potential immune pathways

involved in the alteration of renal haemodynamics is summarized in

Figure 2.
6 | SEX HORMONES

A common feature of autoimmune diseases is the strong bias towards

the female sex (Gleicher & Barad, 2007; Ngo, Steyn, & McCombe,

2014). However, the bias is not equally severe among all autoimmune

diseases. The diseases with the strongest predilection (80–90%

female) are Sjogren's syndrome, Addison's disease, SLE, and autoim-

mune thyroid disease. RA, multiple sclerosis, and myasthenia gravis,

all displaying a strong female preference of 60–75%, while other auto-

immune diseases, such as Type 1 diabetes, psoriasis, and Crohn's

disease, affect males and females at similar rates (Berrih‐Aknin, Panse,

& Dragin, 2018). The sex differences in these diseases are likely to

result from genes encoded on the sex chromosomes, gender‐specific

environmental influences, and the milieu of sex steroids. Prolonged

exposure to treatment for severe manifestations of autoimmune disor-

ders involving corticosteroids and cyclophosphamide is also known to

modulate the gonadal hormone milieu in patients with SLE and SSc

(Arnaud et al., 2017). Oestrogen, progesterone, and testosterone are

all part of this hormonal milieu, and it is likely that a complex interac-

tion between the hormones may influence autoimmune disease

progression.
6.1 | Oestrogen

The fact that oestrogen is a powerful regulator of immune system

function is supported by extensive evidence (Hughes & Choubey,

2014; Straub, 2007). For example, oestrogen receptors (ER‐α and

ER‐β) have been identified in immune cell populations of both human

and murine origin, including thymocytes, thymic epithelial cells, B cells

residing within the bone marrow, T and B cells within the peripheral
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FIGURE 2 The role of the immune system in renal haemodynamic
function. Autoantibodies and immune complexes, renal leukocytes,
and inflammatory cytokines promote specific changes in the kidney
leading to altered renal haemodynamics, impaired pressure natriuresis,
and the development of hypertension.
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blood, and macrophage and mononuclear cells (Straub, 2007).

However, the role of oestrogens in the sex bias associated with

autoimmune diseases and how it can influence disease progression

remains surprisingly unclear. There has been speculation that the

relapsing–remitting clinical course characteristic of many autoimmune

diseases could correspond to fluctuations in sex hormones that occur

throughout the female reproductive lifespan (Mcmurray & May, 2003).

Some studies suggest that there is a decrease in the frequency of

disease flares after menopause or ovarian failure in patients with

SLE (Mok, Wong, & Lau, 1999; Urowitz, Ibañez, Jerome, & Gladman,

2006). However, the use of oestrogens in clinical trials as hormone

replacement therapy or as combined oral contraceptive has

shown no direct link to SLE disease activity (Buyon et al., 2005; Petri

et al., 2005).

Much of what is known about oestrogens in SLE has come from

studies in experimental models. The development of an SLE‐like dis-

ease in NZBWF1 mice is strongly influenced by sex hormones; disease

develops earlier leading to a significantly shortened lifespan in female

compared to male NZBWF1 mice (Andrews et al., 1978; Howie &
Helyer, 1968). The administration of exogenous oestrogen accelerates

autoantibody production in female NZBWF1 mice and promotes auto-

antibody production in male NZBWF1 mice (Carlsten & Tarkowski,

1993; Roubinian, Talal, Greenspan, Goodman, & Siiteri, 1978;

Roubinian, Talal, Siiteri, & Sadakian, 1979; Walker & Bole, 1973).

Pharmacological blockade of oestrogen early in life results in

reduced disease activity, as evidenced by lowered anti‐dsDNA auto-

antibody levels, reduced renal injury, and decreased mortality

(Sthoeger, Zinger, & Mozes, 2003; Wu, Lin, Su, Suen, & Chiang,

2000). The autoantibody production promoting effect of oestrogen

appears to be mediated by ER‐α rather than ER‐β in this mouse

model, as genetic deletion of ER‐α results in amelioration of disease

(Bynote et al., 2008). Conversely, propyl pyrazole triol, an ER‐α

selective agonist, promoted disease activity and increased albumin-

uria in young NZBWF1 female mice ovariectomized at 6 weeks of

age. The treatment also increased serum concentrations of total

IgG, anti‐dsDNA, IgG3, IgG2a, and IgG2b compared to vehicle‐

treated ovariectomized NZBWF1 mice (Li & Mcmurray, 2007). Taken

together with the link between elevated IgG or autoantibody pro-

duction and the development of both essential hypertension and

SLE associated hypertension in the NZBWF1 mouse, it is plausible

that oestrogens may have a permissive role in the development of

hypertension by increasing immunoglobulin production. However,

data from our laboratory provide support for the concept that

oestrogen might have distinct temporal effects on SLE and CVD pro-

gression. Early‐life ovariectomy delayed the onset of autoantibody

production and albuminuria but had no effect on blood pressure in

the NZBWF1 mouse model of SLE (Gilbert & Ryan, 2014). Interest-

ingly, ovariectomy during adulthood at 30 weeks of age exacerbated

the hypertension in female NZBWF1 mice, and oestradiol repletion

following ovariectomy in 30‐week‐old NZBWF1 mice prevented

the rise in mean arterial pressure that was seen in vehicle‐treated

ovariectomized mice (Gilbert, Mathis, & Ryan, 2014).

Although hypertension and CVD does not develop in the CIA

model of RA, examination of the oestrogen‐mediated effects on

arthritis revealed that treatment of mice with ethynyl estradiol before

collagen immunization slows disease development in association with

lower levels of anti‐collagen Abs and decreased expression of pro‐

inflammatory factors by collagen peptide‐specific T cells (Subramanian

et al., 2005). Treatment of ovariectomized DBA/1 mice with

17β‐estradiol in the CIA model of RA resulted in a decrease in Th17

cell migration to joints (Andersson et al., 2015). There is also some

evidence to suggest that oestrogen may play a protective role

in Sjogren's syndrome, as oestrogen replacement reversed an

ovariectomy‐induced increase in inflammation in the lacrimal glands

in an adult female in a mouse model of Sjogren's syndrome (Brandt,

Priori, Valesini, & Fairweather, 2015).
6.2 | Progesterone

Progesterone is a hormone required for pregnancy with known immu-

noregulatory properties, but its role in autoimmune diseases is not

well understood (Hughes, 2012). Progesterone is a known vasoactive
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hormone that has predominantly vasodilatory actions on several vas-

cular beds, although there are some conflicting data (dos Santos, da

Silva, Ribeiro, & Stefanon, 2014). One study suggests that administra-

tion of progesterone lowers blood pressure in humans (Rylance et al.,

1985). Studies examining the effect of progesterone in the NZBWF1

mouse model of SLE have provided some conflicting results (Hughes,

2012). Keisler, Kier, and Walker (1991) saw no significant effect on

either survival or serum anti‐dsDNA reactivity in pre‐morbid female

NZBWF1 mice following treatment with any of the three synthetic

progestins, includingmedroxyprogesterone acetate, a commonly used

form of hormonal birth control used worldwide. Hughes et al. (2009),

however, saw an increase in survival and a decrease in renal injury,

along with suppressed renal and serum levels of pathogenic Th1‐

related anti‐dsDNA IgG2a following treatment with continuous

medroxyprogesterone acetate in pre‐morbid female NZBWF1 mice.

It is not clear whether progesterone might have unique temporal roles

in SLE disease progression similar to that observed with oestrogen.

Fewer studies have been conducted examining the effects of proges-

terone in other autoimmune rheumatic diseases. In a rat model of CIA,

Ganesan et al. (2008) found that progesterone did not modify disease

progression in this particular model and that if progesterone was

administered in combination with oestrogen, the beneficial effects of

oestrogen treatment were diminished. Little is known about how pro-

gestins affect autoimmune disease activity or blood pressure control in

Sjogren's syndrome (Hughes, 2012). Additional studies are required to

understand the significance of progesterone in autoimmune disease

progression and the development of hypertension.
6.3 | Oral contraceptives and hormone therapy

The results from studies looking at cohorts designed to examine the

effect of oestrogens and progesterones in patients with autoimmune

diseases, or hormone therapy in patients with SLE, have thus far been

inconclusive. For example, while oestrogen therapy may benefit post‐

menopausal women with SLE by alleviating symptoms of the peri‐

menopausal transition (Cravioto et al., 2011), there is some concern

that the use of exogenous oestrogens may exacerbate disease activity

through increased autoantibody production, immune‐complex forma-

tion, and further tissue damage. SLE patients might be at increased

risk for disease flares or other adverse effects commonly associated

with hormone therapy, such as an increased risk of venous thrombo-

embolism or cerebrovascular thrombosis (Khafagy et al., 2015).

Despite this potential risk, a recent review suggests that hormone

therapy for post‐menopausal women with SLE is well tolerated with

no clear association between the use of exogenous oestrogens and

instances of severe disease flares (Khafagy et al., 2015). In the largest

randomized clinical trial to date, Buyon et al. (2005) examined the

effect of hormone therapy on disease activity in patients with SLE as

part of the Safety of Estrogens in Lupus Erythematosus National

Assessment trial. This study included 350 patients with 173 patients

receiving oestrogen daily plus medroxyprogesterone and 177 patients

receiving placebo. The results of this clinical trial showed that mild to
moderate flares were significantly increased in the hormone treatment

group compared to placebo (P = 0.01); however, there was no

significant difference in the rate of severe flares, as defined by the

SLE‐disease activity index composite (Buyon et al., 2005).

Data are limited concerning the safety of combined‐oral contra-

ceptive (COC) hormone therapy in women with RA (Drossaers‐Bakker,

Zwinderman, van Zeben, Breedveld, & Hazes, 2002), although the use

of COC in RA appears to be considered safe. Some forms of

progesterone‐only contraception are also considered safe in RA and

not associated with an increase in flares; however, the impact of these

hormonal‐based contraceptives on blood pressure has not been

reported. The safety of COC and progesterone‐only contraceptives

in women with SLE is much more controversial.

6.4 | Testosterone

Generally, testosterone is considered to be anti‐inflammatory. In sup-

port of this concept, animal models of SLE, RA, and multiple sclerosis

showed increased disease activity following castration (Bebo et al.,

1998; Ganesan et al., 2008; Panchanathan, Shen, Bupp, Gould, &

Choubey, 2009). Testosterone decreases secretion of the pro‐

inflammatory cytokines IL‐1β and IL‐6 as well as TNF‐α by monocytes

and macrophages, increases T‐cell production of anti‐inflammatory IL‐

10, and inhibits NFκB activation of the gene promoter for IL‐6 in

human fibroblasts and T cell proliferation in animal models (Bove,

2013). Although relative androgen deficiency has been observed in

some (Mok & Lau, 2000), this is not a consistent finding and there

have been no reported trials examining the effects of testosterone

therapy in men with SLE. In females with SLE, androgen levels are

lower compared to their normal female counterparts (Lahita, 2016).

One randomized, double‐blind, single‐centre, placebo‐controlled trial

was designed to administer a 150‐μg testosterone patch to 34 women

with mild to moderate SLE for 12 weeks. The results showed no

increases in adverse events or changes in laboratory safety parameters

(e.g., full blood count, erythrocyte sedimentation rate, creatinine, liver

function tests, and cholesterol), but there was also no effect on SLE

disease activity (Gordon et al., 2008). In addition, the adrenal androgen

dehydroepiandrosterone was administered orally to women with SLE

in three prospective studies that showed increases in testosterone

levels and decreases in SLE disease activity and the occurrence of

flares (Chang, Lan, Lin, & Luo, 2002; Petri et al., 2004; van

Vollenhoven, Morabito, Engleman, & McGuire, 1998). However, a

review of seven randomized control trials found that patients experi-

enced little clinical benefit of dehydroepiandrosterone on disease

activity in those with mild/moderate disease (as measured by SLE‐

disease activity index; Crosbie et al., 2007). No similar studies have

been performed in women with RA, but testosterone therapy has

been tested in males with RA (Hall et al., 1996). Men with RA have

been shown to have low plasma serum testosterone (Martens et al.,

1994), but this small clinical study found that monthly injections of

testosterone enanthate did not improve disease activity (Hall et al.,

1996). Although there are numerous studies that examine the role of

androgens during autoimmune diseases, little is known about

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2879
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2858
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4975
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4975
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2370
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testosterone in blood pressure control. This is a potentially important

area to study because studies suggest that testosterone exerts bene-

ficial effects on cardiovascular function by inducing rapid vasorelax-

ation of vascular smooth muscle (dos Santos et al., 2014).
7 | CONCLUSIONS AND PERSPECTIVES

Autoimmune disorders affect a significant proportion of the popula-

tion, and many carry a significantly increased prevalence of hyperten-

sion leading to increased mortality due to CVD. Hypertension remains

one of the most important modifiable cardiovascular and renal risk fac-

tors and has clear links to immune system activation and inflammation.

Many patients with primary hypertension have increased circulating

immunoglobulins, and extensive work in experimental animal models

suggests the production of neoantigens leading to an immune

response resembling that of autoimmune disorders. While there are

many inflammatory and immunomodulatory pathways involved in

the pathogenesis of both autoimmune disorders and hypertension,

the specific mechanisms by which this occurs continue to be exam-

ined. Studies designed to understand the reasons behind the preva-

lence of hypertension in patients with autoimmune disease have

proved and will continue to be informative.

7.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived

in the Concise Guide to PHARMACOLOGY 2017/18 (Alexander,

Christopoulos et al., 2017; Alexander, Cidlowski et al., 2017;

Alexander, Fabbro et al., 2017a; Alexander, Fabbro et al., 2017b;

Alexander, Kelly et al., 2017).
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