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ABSTRACT

A flexible statistical framework is developed for
the analysis of read counts from RNA-Seq gene ex-
pression studies. It provides the ability to analyse
complex experiments involving multiple treatment
conditions and blocking variables while still taking
full account of biological variation. Biological vari-
ation between RNA samples is estimated separ-
ately from the technical variation associated with
sequencing technologies. Novel empirical Bayes
methods allow each gene to have its own specific
variability, even when there are relatively few bio-
logical replicates from which to estimate such vari-
ability. The pipeline is implemented in the edgeR
package of the Bioconductor project. A case study
analysis of carcinoma data demonstrates the ability
of generalized linear model methods (GLMs) to
detect differential expression in a paired design,
and even to detect tumour-specific expression
changes. The case study demonstrates the need
to allow for gene-specific variability, rather than
assuming a common dispersion across genes or
a fixed relationship between abundance and vari-
ability. Genewise dispersions de-prioritize genes
with inconsistent results and allow the main
analysis to focus on changes that are consistent
between biological replicates. Parallel computation-
al approaches are developed to make non-linear
model fitting faster and more reliable, making the
application of GLMs to genomic data more conveni-
ent and practical. Simulations demonstrate the
ability of adjusted profile likelihood estimators to
return accurate estimators of biological variability

in complex situations. When variation is gene-
specific, empirical Bayes estimators provide an
advantageous compromise between the extremes
of assuming common dispersion or separate
genewise dispersion. The methods developed here
can also be applied to count data arising from
DNA-Seq applications, including ChIP-Seq for epi-
genetic marks and DNA methylation analyses.

INTRODUCTION

The cost of DNA sequencing continues to decrease at a
staggering rate (1). As it does, sequencing technologies
become more and more attractive as platforms for
studying gene expression. Current ‘next-generation’
sequencing technologies measure gene expression by
generating short reads or sequence tags, that is, sequences
of 35–300 base pairs that correspond to fragments of the
original RNA. There are a number of technologies and
many different protocols. Popular approaches are either
tag-based methods including Tag-Seq (2), deepSAGE (3),
SAGE-Seq (4), which sequence from one or more
anchored positions in each gene, or RNA-Seq (5–8),
which sequences random fragments from the entire tran-
scriptome. Both approaches have proven successful in
investigating gene expression and regulation (9–11). In
this article, we will use the term RNA-Seq generically
to include any of the tag-based or RNA-Seq variants in
which very high-throughput sequencing is applied to RNA
fragments.

For the purposes of evaluating differential expression
between conditions, read counts are summarized at the
genomic level of interest, such as genes or exons.
Although RNA-Seq can be used to search for novel
exons or for splice-variants and isoform-specific
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expression (7,12–14), transcript assembly (15) or allele-
specific expression (16,17), our focus in this article is on
differential expression for pre-determined genomic
features. Nevertheless, the methods developed here are
relevant for inferring isoform-specific differential expres-
sion when applied to sub-gene features such as exons or
exon-junctions.

Linear modelling methods have been highly successful
for analysing microarray experiments with multiple ex-
planatory factors (18,19). It is becoming common-place
for RNA-Seq to be used for similar experiments, so
there is a pressing need for statistical methods that can
provide the same flexibility and rigor for complex
RNA-Seq experiments (20).

One strategy for RNA-Seq data analysis is to standard-
ize and transform the read counts to approximate normal-
ity, then analyse as for microarray data (3,6,21). This
approach is however not fully tuned to the characteristics
of read count data. One issue is that very small counts are
far from normally distributed, even after transformation,
although this issue is rapidly mitigated for larger counts.
A more pervasive and important problem is that count
data typically shows a strong mean–variance relationship
which is not respected by existing normal-based analyses,
leading to potentially inefficient statistical inferences.
Transformations such as square-root (3) can reduce but
do not remove the mean–variance dependence entirely.
Calculating exact probabilities for the read counts using
appropriate distributions therefore gives the possibility of
more sensitive statistical procedures than simply trans-
forming to normality (22–25). Simulations suggest that
count models give more statistical power to detect differ-
ential expression than approximate normal models (26).
Another advantage of explicit count models is that they
give more refined possibilities for separating biological
from technical variability (22,23).

Despite decreasing sequencing costs, RNA-Seq experi-
ments remain expensive for many researchers, often
limiting RNA-Seq studies to only a small number of
libraries. There is often very little replication. Yet the
basic scientific need to assess differential expression
relative to biological variation remains undiminished
(27). There is therefore a need to estimate biological vari-
ation as reliably as possible from a very small number of
replicate libraries. The problem is further complicated by
the fact that different genes or transcripts may have dif-
ferent degrees of biological variation. In microarray
analysis, this problem has been solved by regularized
t-tests (28) or more formally by empirical Bayes or
related methods that share information between genes
(18,19,29).

A DNA sample can be thought of as a population of
cDNA fragments, and each genomic feature can be
thought of as a species for which the population size is
to be estimated. Sequencing a DNA sample can be
thought of as random sampling of each of these
species, with the aim of estimating the relative abundance
of each species in the population. If each cDNA fragment
has the same chance of being selected for sequencing,
and the fragments are selected independently, then the
number of read counts for a given genomic feature

should follow a Poisson variation law across repeated
sequence runs of the same cDNA sample. The Poisson
model implies that the mean equals the variance, a rela-
tionship that has been validated in one of the early
RNA-Seq studies using the same initial source of RNA
distributed across multiple lanes of an Illumina GA se-
quencer (30).
The Poisson model does not take account of biological

variability or any technical sources that might cause the
relative abundance of different genes to vary between dif-
ferent RNA samples. When abundance is not constant
between samples, read counts will be over-dispersed
relative to Poisson, i.e. the variance must be higher than
the mean. Over-dispersed binomial (31,32) or Poisson
(32–36) models have been proposed for Serial Analysis
of Gene Expression (SAGE) or RNA-Seq data. None of
the these proposals have the ability to share information
between genes, restricting them to experiments with large
numbers of replicate libraries.
A very simple method to share information between

genes is to assume that all genes follow the same mean–
variance relationship, so all genes with the same expected
count have the same variance (23,25,37). This is almost
certainly too simple, because it does not allow for the
possibility that some genes may be more variable than
others. Robinson and Smyth (22,24) developed a
promising empirical Bayes approach using weighted like-
lihood to estimate biological variation in a genewise
fashion, implemented in the Bioconductor package
edgeR. Other more explicitly Bayesian methods have
been proposed for SAGE (38,39) or RNA-Seq data (40),
the latter implemented in the Bioconductor package
baySeq. Comparisons, on both simulated and real data,
show that edgeR and baySeq outperform alternative
methods that do not allow for gene-specific variability or
do not share information between genes (40). These
approaches are however limited to comparisons between
groups in a one-way layout.
Generalized linear models (GLMs) have been sug-

gested for count data from SAGE or RNA-Seq experi-
ments, with the counts treated as over-dispersed
binomial (31,32,37), Poisson (21,41), over-dispersed
Poisson (32,34) or Poisson with random effects (33).
GLMs are non-linear models requiring iterative fitting,
so an issue common to all these approaches is computa-
tional time and algorithmic failure for some genes for
some datasets.
This article develops GLM algorithms for multifactor

RNA-Seq experiments. Statistical methods are de-
veloped for estimating biological variation on a
genewise basis and separating it from technical vari-
ation. Parallel computational approaches are developed
to make GLM model fitting faster and more reliable.
An empirical Bayes approach is developed for sharing
information between genes, allowing for gene-specific
variation even when only a few biological replicates
are available. The methodology provides a pipeline for
analysing arbitrarily complex RNA-Seq experiments
provided that there is some degree of biological
replication.
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MATERIALS AND METHODS

Biological coefficient of variation

RNA-Seq profiles are formed from n RNA samples. Let
pgi be the fraction of all cDNA fragments in the i-th
sample that originate from gene g. Let G denote
the total number of genes, so

PG
g¼1 �gi ¼ 1 for each

sample. Let
ffiffiffi
�
p

g denote the coefficient of variation (CV)
(standard deviation divided by mean) of pgi between the
replicates i. We denote the total number of mapped reads
in library i by Ni and the number that map to the g-th gene
by ygi. Then

EðygiÞ ¼ �gi ¼ Ni�gi:

Assuming that the count ygi follows a Poisson distribution
for repeated sequencing runs of the same RNA sample, a
well known formula for the variance of a mixture distri-
bution implies:

varðygiÞ ¼ E� varðyj�Þ½ � þ var� Eðyj�Þ½ � ¼ �gi þ �g�
2
gi:

Dividing both sides by �2
gi gives

CV2
ðygiÞ ¼ 1=�gi þ �g:

The first term 1/mgi is the squared CV for the Poisson
distribution and the second is the squared CV of the un-
observed expression values. The total CV2 therefore is the
technical CV2 with which pgi is measured plus the bio-
logical CV2 of the true pgi. In this article, we call fg the
dispersion and

ffiffiffiffiffi
�g

p
the biological CV although, strictly

speaking, it captures all sources of the inter-library vari-
ation between replicates, including perhaps contributions
from technical causes such as library preparation as well
as true biological variation between samples.

GLMs

GLMs are an extension of classical linear models to
non-normally distributed response data (42,43). GLMs
specify probability distributions according to their
mean–variance relationship, for example the quadratic
mean–variance relationship specified above for read
counts. Assuming that an estimate is available for fg, so
the variance can be evaluated for any value of mgi, GLM
theory can be used to fit a log-linear model

log�gi ¼ xTi �g þ logNi

for each gene (32,41). Here xi is a vector of covariates
that specifies the treatment conditions applied to RNA
sample i, and bg is a vector of regression coefficients by
which the covariate effects are mediated for gene g. The
quadratic variance function specifies the negative binomial
GLM distributional family. The use of the negative
binomial distribution is equivalent to treating the pgi as
gamma distributed.

Fitting the GLMs

The derivative of the log-likelihood with respect to the
coefficients bg is XTzg, where X is the design matrix with
columns xi and zgi=(ygi� mgi)/(1+fgmgi). The Fisher

information matrix for the coefficients can be written as
Ig=XTWgX, where Wg is the diagonal matrix of working
weights from standard GLM theory (43). The Fisher
scoring iteration to find the maximum likelihood
estimate of bg is therefore �newg ¼ �oldg þ � with
d=(XTWgX)

�1 XTzg. This iteration usually produces an
increase in the likelihood function, but the likelihood can
also decrease representing divergence from the required
solution. On the other hand, there always exists a
stepsize modifier a with 0< a< 1 such that
�newg ¼ �oldg þ �� produces an increase in the likelihood.
Choosing a so that this is so at each iteration is known
as a line search strategy (44,45).

Fisher’s scoring iteration can be viewed as an approxi-
mate Newton-Raphson algorithm, with the Fisher infor-
mation matrix approximating the second derivative
matrix. The line search strategy may be used with any
approximation to the second derivative matrix that is
positive definite. Our implemention uses a computationally
convenient approximation. Without loss of generality, the
linear model can be parametrized so that XTX= I. If this is
done, and if the mgi also happen to be constant over i for a
given gene g, then the information matrix simpifies consid-
erably to mg/(1+fgmg) times the identity matrix I. Taking
this as the approximation to the information matrix, the
Fisher scoring step with line search modification becomes
simply d= aXTzg, where the multiplier mg/(1+fgmg) has
been absorbed into the stepsize factor a. In this formula-
tion, a is no longer constrained to be less than one. In our
implementation, each gene has its own stepsize a that is
increased or decreased as the iteration proceeds.

Cox–Reid adjusted profile likelihood

The adjusted profile likelihood (APL) for fg is the
penalized log-likelihood

APLgð�gÞ ¼ ‘ð�g; yg; �̂gÞ �
1

2
log det Ig:

where yg is the vector of counts for gene g, �̂g is the
estimated coefficient vector, ‘() is the log-likelihood
function and Ig is the Fisher information matrix. The
Cholesky decomposition (46) provides a numerically
stable and efficient algorithm for computing the determin-
ant of the information matrix. Specifically, logdet Ig is the
sum of the logarithms of the diagonal elements of the
Cholesky factor R, where Ig=RT R and R is upper tri-
angular. The matrix R can be obtained as a by product of
the QR-decomposition used in standard linear model
fitting. In our implementation, the Cholesky calculations
are carried out in a vectorized fashion, computed for all
genes in parallel.

Simulations

Artificial data sets were generated with negative binomial
distributed counts for a fixed total number of 10 000 genes.
The expected count size varied between genes according to
a gamma distribution with shape parameter 0.5, an ad hoc
choice that happened to mimic the size distribution of the
carcinoma data. The average dispersion was set to 0.16
(BCV=0.4). In one simulation, all genes had the same
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true dispersion. In the other simulation, true dispersions
were randomly generated around 0.16 according to an in-
verse chisquare distribution with 20 degrees of freedom.

RESULTS

Technical and biological variation

The starting point for an RNA-Seq experiment is a set of n
RNA samples, typically associated with a variety of treat-
ment conditions. Each sample is sequenced, short reads
are mapped to the appropriate genome, and the number
of reads mapped to each genomic feature of interest is
recorded. For simplicity of terminology, we will assume
in this article that counts are summarized at the gene level,
although in practice the genomic features might just as
well be transcripts, exons, SAGE-tags, exon-junctions or
non-coding RNAs. The number of reads from sample i
mapped to gene g will be denoted ygi. The set of
genewise counts for sample i makes up the expression
profile or library for that sample. The expected size of
each count is the product of the library size and the
relative abundance of that gene in that sample.

Two levels of variation can be distinguished in any
RNA-Seq experiment. First, the relative abundance of
each gene will vary between RNA samples, due mainly to
biological causes. Second, there is measurement error, the
uncertainty with which the abundance of each gene in each
sample is estimated by the sequencing technology. If
aliquots of the same RNA sample are sequenced, then the
read counts for a particular gene should vary according to a
Poisson law (30). If sequencing variation is Poisson, then it
can be shown (‘Materials and Methods’ section) that the
squared coefficient of variation (CV) of each count between
biological replicate libraries is the sum of the squared CVs
for technical and biological variation respectively,

Total CV2
¼ Technical CV2

þ Biological CV2:

Biological CV (BCV) is the coefficient of variation with
which the (unknown) true abundance of the gene varies
between replicate RNA samples. It represents the CV that
would remain between biological replicates if sequencing
depth could be increased indefinitely. The technical CV
decreases as the size of the counts increases. BCV on the
other hand does not. BCV is therefore likely to be the
dominant source of uncertainty for high-count genes, so
reliable estimation of BCV is crucial for realistic assess-
ment of differential expression in RNA-Seq experiments.
If the abundance of each gene varies between replicate
RNA samples in such a way that the genewise standard
deviations are proportional to the genewise means, a
commonly occurring property of measurements on
physical quantities, then it is reasonable to suppose that
BCV is approximately constant across genes. We allow
however for the possibility that BCV might vary
between genes and might also show a systematic trend
with respect to gene expression or expected count.

The magnitude of BCV is more important than the
exact probabilistic law followed by the true gene abun-
dances. For mathematical convenience, we assume that

the true gene abundances follow a gamma distributional
law between replicate RNA samples. This implies that the
read counts follow a negative binomial probability law.

Linear models for multifactor experiments

The use of linear models to describe multifactor micro-
array experiments is well established (18,19). While
linear models are associated with normally distributed
data, negative binomial count data can be analysed
using GLMs in a way that is closely analogous to
normal linear models in all important respects. We
assume a log-linear model for the expected read counts
in terms of explanatory covariates that capture the treat-
ment conditions applied to each RNA sample (‘Materials
and Methods’ section). The total library size Ni serves as
an offset in the linear model predictor, capturing the de-
pendence of counts on sequencing depth. The library size
may be defined as the total number of mapped reads, or it
may be estimated from the data to effect some relative
normalization between the different libraries (26).
GLMs are non-linear models for which the parameters

must be estimated iteratively for each individual gene. An
intuitive iterative computational algorithm was proposed
to fit GLMs when they were first formulated (42), and
almost all available GLM software uses this algorithm.
Each iteration can be thought of as a least squares regres-
sion in which each count is weighted inversely to the total
CV2 defined above (43,45). The model fitting process must
be repeated until convergence is achieved. Previous appli-
cations of GLMs to RNA-Seq data have made genewise
calls to standard univariate GLM software. Although the
usual GLM algorithm is fairly reliable for univariate data,
there is no guarantee that it will converge successfully,
especially for very small or poorly fitting data sets.
In the RNA-Seq context, the usual GLM algorithm fre-
quently fails and is not sufficiently reliable for our
purposes. We solve this problem by embellishing the
usual algorithm with a line search modification (45).
This modification checks for convergence at each iter-
ation, reducing the step size to avoid divergence. The
step size is repeatedly halved until an increase in the
log-likelihood is achieved. This ensures convergence of
the algorithm, unless floating point errors intervene. The
line search algorithm is in practice extremely reliable.
The second issue with iterative model fitting is compu-

tational time. The usual GLM algorithm requires a matrix
decomposition to be formed at each iteration for each
gene, a substantial computational burden. To address
this issue, we have implemented a novel, simplified
pseudo-Newton algorithm that can be more readily
parallelized across genes than other algorithms. In our
pseudo-Newton algorithm, a fixed approximation is used
for the second-derivative matrix of the model coefficients.
The linear model parametrization is first transformed so
that the columns of the design matrix are orthogonal.
Then the second-derivative matrix is approximated by
the expected information matrix that would arise if the
fitted values for each gene were equal. This is conveniently
just a multiple of the identity matrix, eliminating the com-
putational overhead of matrix factorizations entirely.
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Although the pseudo-Newton algorithm requires slightly
more iterations on average than true Newton-Raphson or
the customary Fisher scoring algorithm for GLMs, the
pseudo-Newton algorithm remains competitive in con-
junction with our line-search strategy, and the computa-
tional gains that arise from the simplification are
enormous. The algorithm is implemented in R in such a
way that the iteration is progressed for all genes in parallel
rather than for one gene at a time. Our pure R implemen-
tation fits GLMs to most RNA-Seq data sets in a few
seconds, whereas genewise calls to the glm() function in
R typically require minutes at least, and indeed may fail
entirely due to iterative divergence for one or more genes.

Hypothesis tests

Our software allows users to test the significance of any
coefficient in the linear model, or of any contrast or linear
combination of the coefficients in the linear model.
Genewise tests are conducted by computing likelihood-
ratio statistics to compare the null hypothesis that the
coefficient or contrast is equal to zero against the
two-sided alternative that it is different from zero.
The log-likelihood-ratio statistics are asymptotically chi
square distributed under the null hypothesis that the co-
efficient or contrast is zero. Simulations show that the
likelihood ratio tests hold their size relatively well and
generally give a good approximation to the exact test
(23) when the latter is available (data not shown). Any
multiple testing adjustment method provided by the
p.adjust function in R can be used. By default, P-values
are adjusted to control the false discovery rate by the
method of Benjamini and Hochberg (47).

Estimation of biological CV

The remaining issue is to obtain a reliable estimate of the
BCV for each gene. An estimator that is approximately
unbiased and performs well in small samples is required.
Maximum likelihood estimation of the BCV would under-
estimate the BCV, because of the need to estimate the
coefficients in the log-linear model from the same data.
Our earlier work used exact conditional likelihood to
estimate the BCV (22,23). This approach has excellent
performance, but does not easily generalize to GLMs.
Instead we use an approximate conditional likelihood
approach known as APL (48). APL is a form of penalized
likelihood. Again, we have implemented the APL compu-
tation in a vectorized and computationally efficient
manner, rather than computing quantities gene by gene.

Estimating common dispersion

Estimating the BCV for each gene individually should not
be considered unless a large number of biological repli-
cates are available. When less replication is available,
sharing information between genes is essential for
reliable inference. Regardless of the amount of replication,
appropriate information sharing methods should result in
some benefits.
Let fg denote the squared BCV for gene g, which

we call the dispersion of that gene. The dispersion is the
coefficient of the quadratic term in the variance function.

The simplest method of sharing information between
genes is to assume that all genes share the same dispersion,
so that fg=f (23). The common dispersion may be
estimated by maximizing the shared likelihood function

APLSð�Þ ¼
1

G

XG

g¼1

APLgð�Þ:

where APLg is the adjusted profile likelihood for gene g
(‘Materials and Methods’ section). This maximization can
be accomplished numerically in a number of ways, for
example by a derivative-free approximate Newton algo-
rithm (49).

Estimating trended dispersion

A generalization of the common dispersion is to model the
dispersion fg as a smooth function of the average read
count of each gene (25). Our software offers a number
of methods to do this. A simple non-parametric method
is to divide the genes into bins by average read count,
estimate the common dispersion in each bin, then to fit
a loess or spline curve through these bin-wise dispersions.
A more sophisticated method is locally weighted APL. In
this approach, each fg is estimated by making a local
shared log-likelihood, which is a weighted average of the
APLs for gene g and its neighbouring genes by average
read count.

Estimating genewise dispersions

In real scientific applications, it is more likely that indi-
vidual genes have individual BCVs depending on their
genomic sequence, genomic length, expression level or bio-
logical function. We seek a compromise between entirely
individual genewise dispersions fg and entirely shared
values by extending the weighted likelihood empirical
Bayes approach proposed by Robinson and Smyth (22).
In this approach, fg is estimated by maximizing

APLgð�gÞ þ G0 APLSgð�gÞ;

where G0 is the weight given to the shared likelihood and
APLSg(fg) is the local shared log-likelihood. This
weighted likelihood approach can be interpreted in empir-
ical Bayes terms, with the shared likelihood as the prior
distribution for fg and the weighted likelihood as the pos-
terior. The prior distribution can be thought of as arising
from prior observations on a set of G0 genes. The number
of prior genes G0 therefore represents the weight assigned
to the prior relative to the actual observed data for gene g.
The optimal choice for G0 depends on the variability of
BCV between genes. Large values are best when the BCV
is constant between genes. Smaller values are optimal
when the BCVs vary considerably between genes. We
have found that G0=20/df gives good results over a
wide range of real data sets, where df is the residual
degrees of freedom for estimating the BCV. For
multigroup experiments, df is the number of libraries
minus the number of distinct treatment groups. The
default setting implies that the prior has the weight of 20
degrees of freedom for estimating the BCV, regardless of
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the actual number of libraries n or the complexity of the
experimental design.

A desirable consequence of the empirical Bayes
approach is that genewise dispersions are squeezed
towards the prior value more or less strongly depending
on how reliably the individual genewise dispersion can be
estimated. Genes for which the counts are very low
provide relatively little statistical information for
estimating their own dispersion so, in these cases, the
prior value dominates and the genewise dispersions are
squeezed heavily towards the overall trend.

For computational convenience, the genewise and
shared APL functions are evaluated on a grid of
possible dispersion values. A cubic spline curve is used
to interpolate the APL values on the grid for each gene,
and the maximum of the spline curve is taken as the
genewise dispersion estimate. Computing both the
common and genewise dispersions for tens of thousands
of genes takes around 20 s on a laptop computer.

Oral squamous cell carcinoma

A recent study investigated differential gene expression in
oral squamous cell carcinomas (OSCC) (50). The study
used the Applied Biosystems SOLiD System to construct
RNA-Seq profiles of tumor and matched normal tissue
from three patients with OSCC. The original analysis
used an intuitive but ad hoc procedure to identify differ-
entially expressed genes. Genes were first ranked by
fold-change between tumour and normal for each
patient. The top 300 up-regulated and top 300 down-
regulated genes by median rank over the three patients
were selected as differentially expressed (50). This simple
analysis requires a gene to be highly ranked in two
patients and then ignores the fold-change in the third
patient. It was sufficient to obtain interesting biological
results, but did not permit any assessment of statistical
significance. It also treated all fold-changes as equally
reliable regardless of the magnitude of the counts.

Here, we describe a more formal analysis that assesses
statistical significance relative to biological variation. First
we downloaded the read count data from Supplementary
Table S1 of Tuch et al. (50). The table gives read counts
summarized by RefSeq transcript, and filtered to include
only those transcripts with at least 50 aligned reads for at
least one tissue (tumour or normal) in all three patients.
The full sequence data from the study is available from the
GEO database (www.ncbi.nlm.nih.gov/geo, accession
number GSE20116), but working from the summarized
counts ensures that our analysis is based on the identical
counts used for the original analysis. We mapped the
RefSeq identifiers to the latest official gene symbols
using the Bioconductor annotation package org.Hs.eg.db
(version 2.5.0), discarding any RefSeq identifiers no longer
in the database. The RefSeq transcript with the greatest
number of exons was chosen to represent each unique
gene, and redundant RefSeq transcripts were removed.
This left 10 464 transcripts each representing a unique
gene. Effective library sizes were then estimated using
the weighted trimmed mean of M-values scale-
normalization method (26).

The overall (common) BCV between the three normal
tissue profiles is estimated as 40% (Figure 1). The BCV
between the three tumour tissue profiles is distinctly higher
at 52%, showing that the tumours are more heterogeneous
than the normal tissues. It is therefore of interest to detect
at least two classes of differentially expressed genes: first,
those that are consistently different in all the tumours
versus matched normal tissue, and second, those that
show expression changes specific to one or two out of
the three tumours.
The study design has two explanatory factors, one being

patient ID, with three levels, and the other being the tissue
type, with two levels (normal or tumour). The data is
analysed by fitting three successive log-linear models to
the read counts for each gene (Table 1). The first model
represents baseline expression differences between the
three patients. The second, an additive model, allows for
consistent relative expression changes in tumour versus
normal tissue. The third, an interaction model, allows
for patient-specific tumour effects.
Our first analysis looks for genes that are consistently

differentially expressed in cancer as compared to normal
tissue. For this analysis, dispersion estimation is based on
the additive model, which has two residual degrees of
freedom. A common BCV across all genes was found to
be too simple, with 39 genes showing strong evidence of
greater variability than implied by the common BCV
(Figure 2) at a family-wise error rate of 0.05 (51).
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Figure 1. Multidimensional scaling plot of the squamous cell carcin-
oma profiles in which distances correspond to BCV between pairs of
samples. Pairwise BCVs were computed from the 500 most heteroge-
neous genes. Samples are labelled with patient number and either ‘T’
for tumour or ‘N’ or normal. The first plot dimension roughly corres-
ponds to tissue source (normal or tumour) and the second to patient
differences. The tumour samples are more heterogeneous than the
normals.

Table 1. Log-linear models fitted to the oral carcinoma data

Model Interpretation Genes detected

Patient Baseline patient differences
Patient + tissue Consistent tumour differences 1276
Patient � tissue Patient-specific tumour differences 202

Differentially expressed genes are detected by likelihood ratio tests
between successive models (FDR<0.05).
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Allowing an abundance trend on the BCV did not reduce
the number of outlier genes for which the BCV is rejected
(Figure 2). On the other hand, permitting genewise BCV,
with empirical Bayes moderation with prior G0=10,
shows no remaining lack of fit (Figure 2). This provides
a statistical justification for the use of genewise BCVs in
the following analysis. There is also a biological justifica-
tion, which is that genes that have inconsistent tumour
versus normal differences in the three patients will
receive higher BCV estimates, and hence be demoted in
the list of differentially expressed genes. The use of
genewise BCV therefore allows us to focus on genes that
have consistent tumour versus normal differences.
Using the genewise BCV values, we test for differential

expression between tumour and normal tissue by
comparing the additive with the baseline model. This
analysis adjusts for baseline differences between the
patients, in a way that is analogous to computing a
paired t-test for each gene, but adapted to count data.
It yielded 1276 genes at false discovery rate (FDR)
< 0.05 (Table 1, Supplementary Table S1). Included prom-
inently among these genes are those previously identified
as differentially expressed between tumour and normal
tissues in head and neck squamous cell carcinoma
studies. Of 25 genes reported by Yu et al. (52), 18 were
included in our list at FDR< 0.05 (Supplementary Table
S2). Another two (TNC and FN1) show fold-changes
greater than two-fold and FDR around 0.4. The remain-
ing five genes show small fold-changes and no evidence of
differential expression (Supplementary Table S3). Tuch et
al. (50) discussed nine genes of particular biological
interest. Six of the genes (CASQ1, INHBA, MMP1,
HMGA2, SHANK2 and WIF1) are confirmed to be
strongly differentially expressed in our analysis with
FDR< 0.001 (Supplementary Tables S4 and S5). This
includes one gene (HMGA2) validated by RT-qPCR.
Note that the original study (50) validated 16 genes by
PCR, but only HMGA2 was identified by name.
To demonstrate further the biological relevance of the

detected genes, we tested for enrichment of curated gene

sets from the MSigDB database (53) using the mean-rank
gene-set enrichment test (54). At FDR< 0.05 this yielded
417 gene sets enriched in the up-regulated genes and 268
gene sets enriched in the down-regulated genes.
Significantly enriched sets were overwhelmingly cancer
related and concordant, suggesting an enhanced WNT1
pathway in the tumours, and an expression signature
similar to other cancers such as basal-like breast cancer
(Supplementary Tables S7 and S8). Gene ontology
analysis (55) found 146 GO terms enriched for
up-regulated genes and 264 terms enriched for down-
regulated genes. The GO terms for up-regulated genes
tend to be associated with cell development, proliferation
and differentiation and associated processes concordant
with tumour development (Supplementary Tables S9
and S10).

Next, we looked for genes with heterogeneous tumour
versus normal differences. Ideally this analysis should be
conducted relative to BCV between independent tissue
extracts from the same patients. However, the interaction
model fully fits the available data, leaving no residual
degrees of freedom, hence cannot be used to estimate
the BCV. Instead we conduct this analysis using
genewise BCVs estimated from differences between the
three normal patients. These BCVs represent inter-patient
rather than intra-patient differences, and so should
over-estimate somewhat the desired BCV. Hence our
analysis will be conservative to some extent in terms of
P-values and FDRs. The BCVs between the normal
patients are generally similar in size to the BCVs from
the additive model, so the conservatism may be relatively
minor. Using these conservative BCVs, a comparison
of the interaction and additive models yields 202 differen-
tially expressed genes at FDR< 0.05. The top-ranked gene
in this analysis is CDKN2B, which was identified by Tuch
et al. (50) as of biological interest based on correlation of
expression level with copy number variation in Patient 8.
The other two genes (CCND1, CTTN) similarly identified
by Tuch et al. (50) have FDR around 0.1 in our inter-
action analysis (Supplementary Table S6).
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Figure 2. QQ-plots of goodness of fit statistics using common, trended or empirical Bayes genewise (tagwise) dispersions. Genewise deviance
statistics were transformed to normality, and plotted against theoretical normal quantiles. Points in blue are those genes with a significantly poor
fit (Holm-adjusted P-value < 0.05). When using genewise dispersions, no genes show a significantly poor fit.
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Simulation study

Simulations were used to investigate the performance of
our dispersion estimators. The first scenario simulated was
the simplest design with a single group of three replicate
libraries, with a constant true BCV of 0.4 for all genes,
chosen to match the carcinoma data. In this simple
scenario, conditional likelihood provides the least biased
and most accurate estimation of dispersion, with Cox–
Reid closely comparable (Figure 3a). Other estimators
commonly used for generalized linear models based on
Pearson or deviance residuals do not perform as well.
These results agree with previous simulations (23).

The second scenario matches the carcinoma case study,
with six libraries and with a 2� 3 additive log-linear
model fitted to each gene. In this case, conditional likeli-
hood is not applicable, and Cox–Reid APL is the best
performer of the remaining possibilities (Figure 3b).

Next we generated random true dispersions (BCV2) ac-
cording to an inverse-chi square distribution, using the
same 2� 3 design as previously. In this case, empirical
Bayes provides the most precise estimators of the
genewise dispersions. The genewise dispersions were
estimated most accurately when the prior weight G0 was
in the range 10–12, corresponding to 20–24 prior degrees
of freedom (Figure 4). Neither separate genewise estima-
tion (G0=0) nor common dispersion (G0=1) perform
as well.

DISCUSSION

The methods described in this article are implemented in
the software package edgeR (24), available as part of the
Bioconductor project for open-source genomic software
(56). The methods provide a flexible and powerful
approach to analyse read counts from gene expression
experiments using RNA-Seq technologies. Models based
on the negative binomial distribution facilitate an intui-
tively interpretable separation of biological from technical
variation. Generalized linear models allow for arbitrarily
complex experiments. Empirical Bayes methods allow for
gene-specific variability, in a way that remains useful even
when relatively few biological replicates are available.
The case study analysis of carcinoma data demons-

trated the ability of generalized linear model methods to
detect differential expression in a paired design, and even
to detect tumour-specific expression changes. The results
were more detailed and richer than provided by more ad
hoc methods. The case study also demonstrated the need
to allow for gene-specific variability, rather than
assuming constant BCV or a constant abundance–vari-
ability relationship. Apart from other advantages, estim-
ation of genewise BCV allows the main analysis to focus
on changes that are consistent between biological
replicates, by de-prioritizing genes with inconsistent
results.
The estimation of biological variation is crucially im-

portant. Statistical methods based on Poisson models,
for example, would drastically underestimate the amount
of variability in data from biological replicates and poten-
tially result in large numbers of false discoveries. The
pipeline developed here provides a defensible means to
incorporate biological variation into the analysis, even
for the smallest possible experiments when only one con-
dition is replicated. This is not to downplay the import-
ance of obtaining a scientifically appropriate number of
replicates for the experiment at hand (27,34). Rather the
methods provided allow data analysts to make the best use
of whatever data is available.
The BCV of 40% observed in the carcinoma case study

is typical of what we have observed in other RNA-Seq or
deepSAGE studies with human subjects. On the other
hand, experiments with genetically identical model organ-
isms tend in our experience to yield smaller variability
between replicates, typically around 10% BCV (data not
shown).
Our numerical implementations solve many common

problems associated with fitting non-linear models to
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genomic data. Our models fits are very fast and have
reliable convergence. For a typical data set, fitting
genewise generalized linear models, hypothesis testing
and fold-change estimation takes only a second on a
laptop computer. Empirical Bayes estimation of
genewise dispersions, a process requiring many model
fits, takes around 20 s on a laptop computer.
Simulations demonstrate the ability of Cox–Reid
adjusted profile likelihood and empirical Bayes estimators
to return accurate estimators of BCV in complex situ-
ations. When biological variation is gene-specific, empir-
ical Bayes estimation can provide an advantageous
compromise, superior to either of the extremes of
common dispersion or separate genewise dispersion.
We have focused on genewise analyses in this article,

but the software may just as well be used to perform
exon-level analyses, or indeed analyses of read-counts
for other genomic features. This article has focused on
RNA-Seq and gene expression, but the methodology
and software is applicable to differential count analyses
for other types of genomic data. Such applications include
the search for differentially methylated promoters using
methylated DNA immunoprecipitation sequencing
(MeDIP-Seq) (57,58), ChIP-Seq for finding differentially
enriched regions for either transcriptional factor binding
or for epigenetic histone marks, differential analysis of
spectral counts in tandem mass spectrometry (59) or the
analysis of species counts in metagenomics studies (60).
All these technologies produce genome-scale count data
on which the methods described here could fruitfully be
brought to bear.
The edgeR software contains many features and options

in addition to those described in this article, and opens up
flexible possibilities for RNA-Seq data analysis. For
example, the use of offsets in the log-linear models can
easily accommodate non-linear normalization procedures,
including those based on quantile normalization or
GC-sequence content (61). The use of generalized linear
models also provides the potential to incorporate quanti-
tative weights, and hence to integrate quality weights for
RNA samples into a differential expression analysis as has
been done for microarrays (62).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–10.
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