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Abstract: Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can
increase whenever the balance between formation and scavenging of free radicals is impaired. Under
normal conditions, uptake and degradation represent the physiological cellular response to oxLDL
exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act
as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular
smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular
accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression
of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and
oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation,
apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response
to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs
may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus
elevating the role of oxLDLs to that of signaling molecules with physiological relevance.

Keywords: scavenger receptor CD36; PPARγ; NFκB; Nrf2; PI3K; PKB/Akt; α-tocopherol; vitamin E;
atherosclerosis; inflammation; neurodegeneration; stem cells; noncoding RNAs

1. Introduction

Oxidative stress occurs during the progression of several diseases. In the cardiovas-
cular system, oxidative stress leads to the formation of oxidized low-density lipoproteins
(oxLDLs) with immunogenic and atherogenic properties. In vivo, levels of oxLDLs are
usually low but can increase when the balance between the formation of free radicals and
their scavenging by antioxidant enzymes and micronutrients is impaired. Under normal
conditions, however, a physiological response aimed at removing oxLDLs from circulation
is mainly carried out by phagocytes of the reticuloendothelial system, Kupffer cells of
the liver, sinusoidal endothelial cells, and macrophages [1]. Under pathologic conditions,
these cells become overwhelmed by oxLDLs and the excessive accumulation of lipids
transforms them into foam cells, which are a hallmark of atherosclerosis progression [2].
The uptake of oxLDLs is mediated by scavenger receptors that also act as signaling recep-
tors [3]. Indeed, oxLDLs were found to modulate different signal transduction cascades
leading to gene expression, apoptosis, adhesion, inflammation, differentiation, migra-
tion, and senescence [4,5]. In circulating monocytes, for example, exposure to oxLDLs
alters gene expression, stimulates adhesion to the endothelium, and subsequent migration
into the intima, where transformation into macrophages and then into foam cells takes
place [6]. Circulating oxLDLs can be used as biomarkers since their levels rise in patients
with advanced atherosclerosis and also reflect early atherosclerotic changes and metabolic
disorders including diabetes and obesity [7].
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This review addresses the mechanisms of oxLDL formation, the relevance of oxLDLs
in cell signaling and gene expression, and the resulting physio/pathological impact.

2. Formation of oxLDLs In Vitro and In Vivo

LDLs are composite molecules consisting of a hydrophobic core of polyunsaturated
fatty acids and esterified cholesterol surrounded by phospholipids, unesterified cholesterol,
and one molecule of apolipoprotein B-100 (apoB) (Figure 1). Based on physiochemical
properties, LDLs can be classified into three or four subclasses, including large (LDL I),
intermediate (LDL II), small (LDL III), and, in some studies, very small LDL (LDL IV), with
the latter being able to easily penetrate the vascular wall and, therefore, be more prone
to oxidation. All components of LDL can undergo oxidation [1], generating oxysterols,
oxidized phospholipids, and end products of lipid peroxidation such as malondialdehyde
(MDA) and 4-hydroxynonenal (HNE) that can be used as markers of LDL oxidation
(reviewed in [8]). Adducts between ε-amino groups of lysine residues in apoB and reactive
aldehydes such as MDA or HNE can also form, thereby reducing oxLDLs’ affinity for the
LDL receptor and increasing their recognition by scavenger receptors [9]. When acting as
signaling molecules in distant cells, these different types of oxLDLs may carry information
on the severity of lesions and oxidative stress and trigger different responses.
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For in vitro experiments, fully (80–100%) oxidized LDLs are usually prepared by
exposure to transition metal ions such as Cu2+ [10,11] or Fe2+ [12]. Incubation with cells
producing reactive oxygen species (ROS), or exposure to the myeloperoxidase secreted
by activated macrophages, leads to minimally oxidized LDLs, which appear to be bet-
ter related to the degree of oxidation in vivo [13,14]. Macrophages can oxidize LDL by
generating ROS and reactive nitrogen species (RNS) via NADPH-oxidase, lipooxygenase,
myeloperoxidase, and nitric oxide synthase (reviewed in [15]). Activated mast cells can also
contribute to foam cells and fatty streak formation by stimulating LDL modification and
uptake by macrophages [16], by secreting a variety of inflammatory mediators (histamine,
leukotrienes, prostaglandins, platelet activating factor) and enzymes (tryptase, chymase,
carboxypeptidase and cathepsin G) (reviewed in [17]), likely leading to the weakening and
rupture of atherosclerotic plaques [18].

In vivo, LDL oxidation occurs mainly within the subendothelial space of the arte-
rial wall, while other reactions, such as glycation or homocysteinylation, also occur in
plasma [19]. In line with this, levels of oxLDLs detectable by immunohistochemistry are
higher in arterial lesions and plaques [20], and elevated levels of oxLDL in plasma are
thought to originate from the sites of vascular injury [21]. Increased levels of oxLDLs
in plasma have been measured during the development of hypertension as well as in
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uremic and diabetic patients, as evidenced by the presence of autoantibodies against
oxLDLs [22–24]. Interestingly, in hypercholesterolemic rabbits, the increased expression of
the CD36 scavenger receptor in peripheral blood mononuclear cells reflects its levels in
aortic lesions and can be used as a diagnostic biomarker for atherosclerosis [25,26].

In addition to professional phagocytes, vascular wall cells, such as endothelial and
vascular smooth muscle cells (VSMCs) can also catalyze oxLDL formation both in vivo
and in vitro. Two main species of oxLDLs can be distinguished: fully (or extensively)
oxidized and minimally oxidized LDLs, the latter being produced in an early atherosclerotic
stage and with a longer half-life since they are less efficiently recognized by scavenger
receptors [5]. Depending on the concentration and degree of oxidation, oxLDLs may
elicit dual cellular responses resulting in the stimulation or inhibition of inflammation,
angiogenesis, and survival [5].

Circulating oxLDLs can be used as a marker of oxidative stress [8,27–29], which may
to some extent be related to the risk of cardiovascular disease. A valid measure of in vivo
oxLDL formation is represented by the susceptibility to oxidation of isolated plasma LDLs,
as assessed by the lag time of Cu2+-induced formation of conjugated dienes [30] that can
be spectrophotometrically detected at 234 nm. Another method is to evaluate the acid
hydrolysis products of lipoperoxides such as MDA, which reacts with thiobarbituric acid
(TBA) to form MDA–TBA adducts. The TBA-reactive substances (TBARS) can be measured
spectrophotometrically, fluorometrically, or by high-pressure liquid chromatography. In
addition, several immunoassays with antibodies against oxLDLs, MDA-modified LDLs,
lysine-substituted LDLs, and oxidized phospholipids have been developed and widely
used to measure oxLDLs in biological samples.

3. Removal of oxLDLs from the Circulation

The amount of oxLDLs in plasma and tissues is given by the ratio between their
formation and the efficiency of their removal. Elimination of oxLDLs from the circula-
tion occurs mainly through the phagocytes of the reticuloendothelial system, including
macrophages, dendritic cells, sinusoidal endothelial cells, and Kupffer cells in the liver, or
via preformed anti-oxLDL antibodies [1]. In tissues, macrophages and nonprofessional
phagocytes remove oxLDLs via internalization by scavenger receptors.

4. Atherogenic Effects of oxLDLs and Their Prevention

Oxidized low-density lipoproteins stimulate the expression of endothelial adhesion
molecules, have chemotactic effects, and inhibit the migration of macrophages outside
the subendothelial space, thus increasing the number of leukocytes and proinflammatory
elements involved in atherogenesis [31]. They also stimulate the expression of the scav-
enger receptors CD36 and SR-A in monocytes, macrophages, and VSMCs. These receptors
internalize the oxidized lipoproteins in a specific manner, until foam cells are formed [32].
Moreover, oxLDLs can promote the proliferation of VSMCs, followed by the narrowing of
the vascular lumen. For these reasons, strategies to prevent atherosclerosis aim to lower
the cholesterol load of lipoproteins and to reduce inflammation and oxidative stress, conse-
quently reducing the atherogenic properties of oxLDLs. When acting as signaling molecules
at distant sites (such as the liver and cells of the reticuloendothelial system), the resulting
upregulation of scavenger receptors can be seen as a cellular response to stress (e.g., acute
injury stress or post-prandial stress [30]) that prepares for the defense and removal of
more oxLDLs to come. Accordingly, in monocytes (that normally express low levels of
scavenger receptors), oxLDL exposure induces differentiation into macrophages [33,34],
whereas in CD36 knockout mice [35] or in human monocytes/macrophages from CD36-
deficient patients with a lower capacity to bind and internalize oxLDLs [36,37], decreased
NFκB activation after oxLDL stimulation results in a lower expression of inflammatory
cytokines [38], suggesting a role of CD36 in oxLDL-stimulated signal transduction.

Given that (1) the rate of oxLDL generation is strictly related to the levels of ROS and
RNS and (2) oxLDLs are key determinants of cardiovascular disease [39], the search for effec-
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tive antioxidant strategies both in vitro and in vivo has been strongly implemented. While
LDL oxidation can be chemically prevented in vitro by molecules with antioxidant proper-
ties, in vivo antioxidant supplementation has not yet shown clear effects against cardiovas-
cular events. Vitamin E (α-tocopherol), α-tocopheryl quinone/ubiquinone, flavonoids, and
β-carotene seem to be the main antioxidant molecules in the hydrophobic core of LDLs,
whereas vitamin C (L-ascorbic acid) and uric acid are found in the surrounding plasma
(reviewed in [40–42]). LDL protection from oxidation also occurs in the subendothelial
space, where vitamin E promotes the paraoxonase activity that hydrolyzes and reduces
lipid peroxides [43].

4.1. Antioxidant Effects of α-Tocopherol

Low plasma levels of α-tocopherol, the major form of vitamin E in plasma, were found
to correlate with an increased risk of atherosclerosis [44]. The presence of α-tocopherol in
lipoproteins (mainly LDLs) and subendothelial compartments is assumed to play a central
role in preventing lipid peroxidation and the consequent vascular damage, as indicated
by a number of studies showing that vitamin E prevents the endothelial injury resulting
from ROS, oxLDLs, or lipid peroxides [45–48]. Oral vitamin E supplementation increases
the α-tocopherol content in LDLs, the resistance of LDLs to oxidation, and decreases the
cytotoxicity of oxLDLs on endothelial cells [49]. In line with this, α-tocopherol and trolox
(a more hydrophilic homolog) block early intracellular events such as lipid peroxidation
and calcium rise elicited by oxLDLs or linoleic acid hydroperoxide [50,51].

The inflammatory action of oxLDLs in the vascular wall is enhanced by C. pneumoniae
infection, which leads to cell necrosis that is prevented by vitamin E via inhibition of ROS
production and promotion of endothelial cell survival [52]. Furthermore, endothelial cells
exposed to oxLDLs exhibit an increased expression of adhesion molecules such as VCAM-1
and ICAM-1, which can be reduced by pretreatment with α-tocopherol [53].

At noncytotoxic concentrations, oxLDLs stimulate VSMCs proliferation and DNA
synthesis [54], effects that are expected to be reduced by preventing the oxidation of
LDLs via α-tocopherol (reviewed in [55]). Actually, in quiescent VSMC cultures, oxLDLs
and lysophosphatidylcholine induced a more than 10-fold increase in DNA synthesis
and strongly stimulated cell cycle re-entry. These events were prevented either by α-
tocopherol [56,57] or by antioxidant enzymes such as superoxide dismutase and catalase,
confirming that the increased cell proliferation in response to oxLDLs was the result of
oxidative stress [58,59].

4.2. Non-Antioxidant Effects of α-Tocopherol

Alternative mechanisms of α-tocopherol in protection against atherosclerosis have
been described, such as modulation of gene expression and cell signaling (reviewed
in [60–64]). In vascular endothelial cells, for example, oxLDL/oxysterol-induced necro-
sis/apoptosis is associated with the generation of intracellular ROS and activation of
caspase-3. However, while both of these effects are inhibited by α-tocopherol, β-tocopherol
does not affect caspase-3, while maintaining the same efficacy as α-tocopherol against
ROS production, thus supporting the idea that α-tocopherol can inhibit caspase-3 in a
non-antioxidant manner [65].

In rabbit VSMCs, DNA synthesis is stimulated by oxLDLs, and α-tocopherol limits
this effect by both inhibiting oxidation and interfering with the cell signaling elicited by
oxidized lipids. In support of this latter mechanism, vitamin E prevented the activation of
PKC and the formation of cholesterol-induced atherosclerotic lesions, while the powerful
antioxidant probucol was not effective. In that study, a group of animals received a vitamin-
E-poor diet containing 2% cholesterol, while another group received the same diet plus
vitamin E or probucol intramuscularly for 4 weeks. The obtained results showed that the
protective effect of vitamin E against atherosclerosis was not mimicked by probucol and,
therefore, may not be due to the antioxidant properties of vitamin E [66].
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Another important piece of evidence related to the non-antioxidant effects of vitamin E
concerns its ability to lower the expression of the scavenger receptor CD36. In VSMCs, this
effect reduced oxLDL uptake and oxLDL-mediated signal transduction, possibly resulting
in decreased hyperplasia [34,67]. Signaling in response to oxLDLs is primarily related to
the activation of protein kinase C (PKC) and protein kinase B (PKB/Akt), both of which
are inhibited by vitamin E. In murine macrophages, activation of PKC by oxLDLs leads to
stimulation of peroxisome proliferator receptor gamma (PPARγ) and CD36 expression [68].
In THP-1-derived macrophages, the increased expression of CD36 and SR-A, and the
consequent cholesterol uptake and foam cell formation, occurs following activation of
PKCδ, PI3K/PKB, and ERK by oxLDLs [69]. Vitamin E inhibits PKCα in VSMCs [70–72],
but in other cell types, it appears to inhibit PKCδ as well [73]. In monocytes, inhibition of
PKC by vitamin E affects superoxide production by preventing the assembly of NADPH-
oxidase; again, an effect that has not been mimicked by vitamin E analogs with similar
antioxidant potential [74]. Among others, cellular events modulated by the vitamin include
proliferation, migration, and adhesion [75,76].

4.3. Prooxidant Effects of α-Tocopherol

It has been reported that lipid peroxidation of LDL can be significantly accelerated
by increasing their vitamin E content. Peroxidation is assumed to be propagated by the α-
tocopheroxy radical of vitamin E [31,77], but the in vivo relevance of pro-oxidant reactions
of α-tocopherol has yet to be clarified.

5. The oxLDL Signaling

The scavenger receptors LOX-1, SR-A, SR-B1, and CD36 are at the forefront of the
response to oxLDLs, although they recognize lipoproteins modified not only by oxida-
tion but also by glycation, alkylation, and nitration and internalize them promoting their
removal and degradation [3,78–80]. Professional phagocytes of the reticuloendothelial
system including macrophages, dendritic cells, and Kupffer cells of the liver are primarily
responsible for the scavenger receptor-mediated removal of oxLDLs. LOX-1, in partic-
ular, is the foremost receptor recognizing oxLDLs in the cells of the reticuloendothelial
system. Many other cell types, however, express scavenger receptors able to internalize
oxLDLs, such as VSMCs, endothelial cells, neuronal cells, and keratinocytes. Though these
“nonprofessional” phagocytes mediate the local clearance of oxLDLs, an excessive uptake
without an efficient degradation machinery may lead to cellular deregulation, apoptosis,
and formation of foam cells [81]. As described below, scavenger receptors can mediate the
oxLDL signal through two main pathways that can actually occur in combination: (1) by
internalization of oxLDL and release of their content with signaling functions and (2) by
themselves acting as signaling receptors, often together with co-receptors and intracellular
proteins.

5.1. Signaling by the Oxidized Lipid Content of oxLDLs

Uncontrolled uptake of oxLDLs and lipids ultimately converts monocytes/macrophages
and VSMCs to foam cells. In this process, scavenger receptors play a critical role due to
their ability to internalize oxLDLs and transport lipids and cholesterol in and out of
cells [81,82]. In fact, scavenger receptors are highly expressed at the atherosclerotic lesion,
where macrophages show increased SR-AI/II, SR-BI, and CD36 levels [83–85], whereas
VSMCs and endothelial cells overexpress CD36 and LOX-1 [67,86–89].

The increased expression of CD36 in oxLDL-treated cells is mediated by PPARγ,
PKB/Akt, and NF-E2-related factor (Nrf2) (Figure 2A) [33,90,91], although PKC has also
been involved in the process [68]. On the other hand, cholesterol and cholesterol acetate in-
duce CD36 through the activation of sterol regulatory binding proteins (SREBP-1/2) [92,93].
After internalization by target cells, oxLDL degradation products (oxysterols, oxidized
phospholipids, HNE, etc.) interfere with mitogen-activated protein kinases (MAPKs), as
well as the survival-associated PI3K/Akt pathway and transcription factors such as AP-1
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and PPARγ [94], which can lead to signals implicated in vascular cell apoptosis and plaque
instability, adhesion of circulating blood cells, foam cell formation, and fibrogenesis [95,96].
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Oxidized LDLs also reduce the proteasome activity [97], possibly explaining the
increased levels of ubiquitinated proteins in unstable atherosclerotic plaques [98,99]. In-
hibition of the proteasome is associated with an increased expression of CD36 [100–102];
however, it is still unclear whether vitamin E, which is known to reduce CD36 levels
and oxLDL uptake, can restore the cellular proteasome activity [101–104]. Proteasome
inhibition may result from the formation of adducts between HNE, which is increased in
vitamin E deficiency [105], and one specific proteasomal subunit (i.e., Rpt4), leading to a
biphasic response to oxLDLs, characterized by an early transient activation followed by
inhibition [97,106]. Accordingly, CD36 is upregulated by HNE and some specific lipids
through the involvement of Nrf2, a transcription factor relevant to establish the senescent
phenotype [91,107–110]. In endothelial cells, senescence is induced by HNE of macrophage-
derived foam cells [111], and atherosclerotic lesions in LDL receptor knockout mice show
an increased number of senescent cells contributing to inflammation and plaque instabil-
ity [112]. Of note, the oxLDL-induced cellular senescence can be counteracted by vitamin E
through downregulation of CD36 expression, ROS scavenging, and inhibition of NADPH
oxidase membrane translocation [113]. A role for CD36 in cellular senescence has also
recently been described in relation to the senescence-associated secretory phenotype (SASP)
and lysosomal β-galactosidase (SA-β-gal) [114,115].

5.2. Signaling by oxLDL-Activated Scavenger Receptors

Binding of oxLDLs to scavenger receptors can trigger a number of intracellular events
that depend on the type of cell and scavenger receptor involved (Figure 2B) (reviewed
in [3,116,117]). Here, we highlight the signaling related to CD36, which has been extensively
investigated.

Several events, such as inflammation, angiogenesis, phagocytosis, and energy home-
ostasis have been related to the activity of CD36 [118]. This scavenger receptor modulates
the uptake of a number of lipids (anionic phospholipids, long-chain fatty acids, diacyl-
glycerides, vitamin E, vitamin D, vitamin A), but it also mediates their effects by acting
as a co-receptor (e.g., with Toll-like receptor 4/6) and/or allowing the lipid transfer to
other receptors, or via a short intracellular domain that interacts with kinases such as
Lyn, Fyn, and Lck [117]. In addition to oxLDLs, CD36 has numerous other ligands with
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important physiological functions ranging from the detection of flavors in olfactory ep-
ithelial cells to the phagocytosis of pathogens and to the regulation of lipid uptake and
storage [117,119,120]. Of relevance may be the competition of these ligands with oxLDLs for
CD36 binding, the ligand-induced downregulation of CD36 on the cell surface [34,67,121–
124], and the CD36-mediated induction of endoplasmic reticulum stress by oxLDLs in
various cell types [125].

5.3. Signaling of oxLDL to Cells Close to the Atheroma

In monocytes/macrophages and VSMCs nearby the atherosclerotic lesion, oxLDLs
can increase the expression of scavenger receptors as a result of a positive feedback
loop [85,86,90,126]. Experiments performed in THP-1-derived macrophages demonstrated
that exposure to oxLDLs induces CD36 expression [127,128] that, in turn, sustains the
uptake of oxLDLs [128,129]. Consequently, phenotypic polarization of macrophages, as
reflected by the gene expression pattern, is drastically modified [130]. In line with this,
human monocytes/macrophages from CD36-deficient patients showed a lower capacity
to bind and internalize oxLDLs [36,37], together with a decreased NFκB activation and a
lower expression of inflammatory cytokines after oxLDL stimulation [38]. In addition, in
mice, disruption of the CD36 gene, or transplantation of stem cells in which CD36 had been
knocked down, prevented the development of atherosclerotic lesions [35,131]. In mouse
bone marrow-derived macrophages, anti-apoptotic and pro-survival effects of oxLDLs
have also been described [132].

In VSMCs, oxLDLs activate PKB/Akt inducing cell proliferation [133]. Moreover, low
concentrations of oxLDLs are capable of triggering the transition of primary VSMCs to
a proinflammatory phenotype characterized by changes in the expression of contractile
proteins and myocardin. In particular, these effects were abolished by the downregulation
of the multifunctional urokinase receptor (uPAR) which, in response to oxLDLs, associates
with CD36 or TLR4 to form a receptor cluster capable of mediating changes in VSMC
protein expression [134].

In endothelial cells and THP-1 monocytes, oxLDLs upregulate vascular endothelial
growth factor (VEGF), a critical angiogenic factor for atherosclerosis, as it induces endothe-
lial cell proliferation, vascular permeability, and macrophage migration. The expression
of VEGF implies the activation of PPARγ [135], which is elicited by oxidized components
of oxLDLs such as 9-hydroxyoctadecadienoic acid (9-HODE), 13-hydroxyoctadecadienoic
acid (13-HODE), 15-deoxy-delta12,14 prostaglandin J2 (15d-PGJ2), and retinoic acid (RA).
Activation of PPARγ also increases the expression of the adipocyte lipid-binding protein
(ALBP/aP2) that serves as a lipid shuttle, delivering hydrophobic fatty acids to their targets.
In THP-1 macrophages, oxLDL-induced ALBP/aP2 gene expression requires activation of
both NFκB and PKC signaling pathways [135–137].

Platelets have been shown to internalize oxLDLs, followed by lowered eNOS activ-
ity and enhanced human platelet aggregation, whereas LOX-1 antibody administration
decreased arterial thrombus formation in an in vitro setting [138].

The removal of oxidized lipids operated by the lymphatic vessels seems to play a
significant anti-atherogenic role, although the precise mechanism remains to be identified.
A very recent study demonstrated that, in human atherosclerotic arteries, oxLDLs especially
accumulate in the adventitial layer, which is particularly rich in lymphatic vessels [139].
Treatment of human lymphatic endothelial cells with oxLDLs inhibited the in vitro tube
formation, an effect that was prevented by siRNA-mediated knockdown of CD36 [139].

Although the anti-angiogenic actions of oxLDLs are quite well known, a number of
studies provide the opposite evidence, indicating a stimulatory effect of low oxLDL concen-
trations on the formation of new vessels. Incubation of human umbilical vein endothelial
cells (HUVECs) with oxLDLs activates LOX-1 expression leading to the upregulation
of adhesion molecules, inflammatory proteins, tissue factors, and remodeling proteins
that promote angiogenesis [140]. Moreover, Dandapat and colleagues demonstrated that
oxLDLs (<5 µg/mL) stimulate capillary tube formation from endothelial cells via LOX-1-
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dependent activation of the NADPH oxidase/MAPK/NFκB pathway [141]. Despite the
beneficial effects in ischemic tissues, angiogenesis sustains plaque development in early
stages of atherosclerosis [142] and can induce plaque vulnerability by hemorrhagic events
in the microvasculature of advanced atheroma [143].

5.4. Signaling of oxLDLs to Distant Tissues

Unlike the vascular wall, where the overexpression of scavenger receptors favors the
atherosclerotic process, in nonvascular cells of distant tissues it could help lower plasma
lipids, as CD36/FAT mediates the uptake of long-chain fatty acids [144,145]. However,
although several independent studies have reported reduced lipid levels in the plasma of
transgenic mice overexpressing CD36 [37,146–151], a larger analysis clearly suggests that
CD36 and oxLDLs form a pathogenic pair in different tissues.

In liver, the oxidized lipid load of oxLDLs contributes to nonalcoholic steatohepatitis
(NASH) by increasing lipid accumulation (steatosis) along with inflammation (hepati-
tis) [152]. Higher levels of CD36 in the female liver, compared to that in the male liver,
may contribute to gender differences in susceptibility to diseases such as hyperlipidemia
and insulin resistance [153]. Interestingly, the liver x receptor (LXR), which responds
to cholesterol and oxysterols, upregulates the alpha-tocopherol transfer protein (α-TTP),
suggesting that increased oxLDLs and oxidative stress may signal the need for increased
vitamin E retention [154–156]. Increased liver vitamin E levels may also prevent liver
fibrosis mediated by lipid peroxidation products (e.g., HNE) after carbon tetrachloride
exposure [157].

In adipose tissue, CD36 acts as a fatty acid transporter, but it can also mediate endocy-
tosis of oxLDLs as in professional phagocytes [158]. Indeed, in vivo studies performed in
mice revealed that oxLDL can induce a CD36-dependent inflammatory paracrine loop be-
tween adipocytes and their associated macrophages [159]. In cultured murine adipocytes,
oxLDLs inhibited the expression of leptin, an effect that was prevented by anti-CD36
antibodies and the ROS inhibitor N-acetylcysteine [160]; moreover, exposure to oxLDLs re-
duced the recruitment of glucose transporter 4 (GLUT4) to the plasma membrane, resulting
in impaired insulin signaling [161]. Data obtained with human visceral fat from nonobese
subjects strengthened this evidence, indicating that adipocytes exposed to oxLDLs assume
an inflammatory phenotype with decreased leptin secretion, low insulin-induced glucose
uptake, and altered expression of genes involved in apoptosis, autophagy, necrosis, and
mitophagy [162].

In the heart, oxLDLs have been reported to reduce GLUT4 expression [163]. It is
worth noting that, in addition to reduced insulin signaling, cardiomyocytes showed intra-
cellular accumulation of ceramides and Ca2+, irregular electrical activity, and rapid ATP
depletion [164–166].

A wealth of data also links oxLDLs to pancreatic beta cell damage, a process that can be
neutralized by HDLs, VLDLs, and antioxidants [167]. Studies performed in vitro, for exam-
ple, demonstrated that oxLDL (but not native LDL) treatment induces a specific signaling
cascade resulting in impaired insulin production and increased apoptosis [168,169].

In the kidney, glomerular and tubulointerstitial lesions have been related to the effects
of oxLDLs on podocytes and mesangial and tubular cells. Oxidized LDLs promote cell
proliferation [170], adhesion of monocytes to mesangial cells, and production of matrix
components in the mesangium [171], ultimately leading to glomerulosclerosis. LDLs
incubated with human mesangial cells undergo peroxidation and stimulate collagen mRNA
expression that can be reduced by treatment with vitamin E or anti-oxLDL antibodies [172].
Moreover, in cultured human podocytes, oxLDLs induce apoptosis and decrease the
expression of nephrin, a slit diaphragm-associated protein, resulting in cell retraction and
increased diffusion of albumin through their monolayer [173]. Notably, the main receptor
responsible for the uptake of oxLDLs in podocytes is CXCL16 [174], whereas CD36 is more
involved at the mesangial and tubular level.
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A role for oxLDLs in the pathophysiology of bone disorders has also been suggested.
A recent study conducted on human mesenchymal stem cells reported that exposure to
oxLDLs inhibits osteoblast differentiation. As an underlying mechanism, the authors
proposed that oxLDLs interfere with the canonical Wnt signaling pathway in a CD36-
dependent manner, leading to the inhibition of osteoblastogenesis [175]. In fact, a study
published ten years earlier had led to similar conclusions, showing that oxLDLs (but not
native LDLs) inhibit stromal cell osteoblastic differentiation and stimulate adipogenesis,
supporting the “lipid hypothesis of osteoporosis”. These events were found to involve
PPARα and PPARγ [176].

In both breast and ovarian cancer, patients showed increased oxLDL levels compared
to controls, suggesting a possible role of oxLDLs in the process of malignancy [125,177].
Certainly, in human breast mammary epithelial cells, oxLDLs triggered the upregulation of
proliferative and pro-inflammatory signaling. Interestingly, as in vascular cells, LOX-1 and
CD36 scavenger receptors, NADPH oxidase, lipoxygenases-12 and -15, and cytoplasmic
(but not mitochondrial) SOD were upregulated by oxLDLs. Furthermore, oxLDLs stimu-
lated p44/42 MAPK, PI3K and Akt, while intracellular PTEN was found to decrease. The
effect on PTEN was attributed to the induction of hsa-miR-2, which leads to the activation
of the PI3K/Akt pathway [178].

In the sub-retinal pigment epithelium (sub-RPE) space of the macula, deposits of
oxLDLs are considered contributors to the onset and development of age-related macular
degeneration (AMD). In fact, a recent study found that, in a human-derived RPE cell line, ex-
posure to oxLDLs induces a rapid response involving over 400 genes, including antioxidant
and detoxifying genes regulated by Nrf2 and aryl hydrocarbon receptor [179]. However,
no correlation was observed between serum levels of oxLDLs and AMD, indicating that
RPE is more likely to be affected by locally formed oxLDLs [180].

In the brain, an increase in oxLDLs has been associated with hyperlipidemia and
impaired blood–brain barrier, which could contribute to neurodegenerative events and
vascular dementia [181,182]. In this context, increased serum oxLDL levels have been
detected in Alzheimer’s patients and have been suggested as biomarkers for the disease
(reviewed in [125]). In cultured embryonic neurons, astrocytes, and microglia, both oxLDLs
and oxHDLs induced lethal oxidative stress that was amplified by amyloid-beta or gluta-
mate [183,184].

5.5. Signaling of oxLDLs to Stem Cells

Most diseases in which an increased plasma oxLDL level is a certified biomarker (e.g.,
coronary heart disease, metabolic syndrome, and systemic autoimmune disorders) are
often associated with low levels of circulating endothelial progenitor cells (EPCs). This
observation was confirmed by a series of experimental tests on various types of progenitor
cells that are distributed throughout the body. In vitro exposure of EPCs to oxLDLs
suppressed survival, proliferation, migration, and vasculogenesis [185]. Nevertheless,
more recent studies indicated the existence of a dose-dependent biphasic effect of oxLDLs
on human EPC tube formation, both in vitro and in vivo [186]. The toxicity of oxLDLs
was related to activation of LOX-1 and MAPKs, hyper production of ROS, inhibition of
the PI3K/Akt pathway, and downregulation of eNOS (reviewed in [187]). Many of these
deleterious effects were prevented by statin administration, but hyperglycemia has shown
synergistic action with oxLDLs on survival and EPC function [187].

Under experimental conditions, mesenchymal stem cells (MSCs) are the preferred
source for stem cell transplant therapy in various diseases [188] due to their ability to
differentiate into different cell types. In mouse MSCs, properties important for engraftment
(e.g., proliferation, migration, and adhesion) were stimulated by oxLDLs through activation
of LOX-1 and expression of the monocyte-1 chemoattractant protein (MCP-1) [189,190].
In addition, oxLDLs were able to induce cardiac differentiation of cultured MSCs via
activation of ERK1/2 signaling pathway [191].
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Interestingly, MSCs interfere with a number of atherogenic and cardiotoxic events
induced by oxLDLs. In human and mouse endothelial cell cultures, for example, the
presence of human MSCs reversed the effects of oxLDLs by restoring Akt/eNOS activity,
while MSC-infused apoE-/- mice showed lower endothelial dysfunction and reduced
plaque formation [186]. In lipopolysaccharide-injured cardiomyocytes, exosomes derived
from MSCs inhibited LOX-1 expression and significantly reduced apoptosis and autophagic
response [192].

In neurodegenerative diseases related to oxidative stress and high plasma levels
of oxLDLs, a decline in neuronal progenitor cells (NPCs) results in a reduced capacity
for neural regeneration [193]. In line with this, in vitro administration of oxLDLs exerts
suppressive influences on NPC differentiation by inhibiting activation of PKB/Akt and
CREB (cAMP response element binding protein) [194].

5.6. Signaling of oxLDL to Noncoding RNAs

Recent studies are testing the hypothesis that the effects of oxLDLs on signaling and
gene expression may involve a series of noncoding RNAs (ncRNAs). Indeed, oxLDLs
modulate important microRNAs (miRs) implicated in vascular cell homeostasis and re-
lated to endothelial function, inflammation, and lipid uptake [195]. In VSMCs, for ex-
ample, the oxLDL-induced migration is orchestrated through epigenetic modification of
the MMP2/MMP-9 genes following miR-29b upregulation [196]. Furthermore, oxLDLs
interfere with signal transduction in VSMCs and macrophages by reducing the expression
of miR-let-7g through stimulation of the transcription factor Oct-1 [195,196].

Interestingly, oxLDLs have been suggested as a common pathogenic factor of atheroscle-
rosis and tumors [197], indicating miR-210A upregulation as a likely mechanism under-
lying this association [198], although other miRs, such as miR-21, have been involved in
oxLDL-related carcinogenesis [178]. Additionally, miR-21, among other effects, appears to
contribute, together with miR-9, to the alteration of insulin secretion induced by oxLDLs in
pancreatic cells, an effect that was prevented by co-incubation with HDL [199].

On the other hand, some miRs have shown vascular protective effects, most of which
offer valuable perspectives for therapy. Upregulation of miR-155 after oxLDL treatment,
for example, reduces the secretion of TNF-α, IL-6, and IL-8 [200,201], lowers the expression
of adhesion molecules and chemotactic factors in macrophages and dendritic cells, and
inhibits scavenger receptors and lipid uptake [202,203]. Similarly, in oxLDL-stimulated
macrophages, exogenous miR-146a lowered the cholesterol burden and the release of
inflammatory factors by inhibiting the activation of TLR4-dependent signaling [204]. More-
over, miRs shuttled by extracellular vesicles have been shown to contribute to the anti-
atherosclerotic effects of MSCs. In particular, miR-221 delivered in this way could reduce
atherosclerotic plaque formation in mice [205], while miR-512-3p protected endothelial
cells against oxLDLs by targeting the Kelch-like ECH-associated protein 1 (Keap1) [206].
Finally, in a human brain microvascular endothelial cell line (HBMEC), the pathogenic
effects of oxLDLs on proliferation, migration, apoptosis, and ROS and NO production were
counteracted by miR-25-5p overexpression [207,208] and miR155 knockdown [209].

One particular type of ncRNA is circular RNA (circRNA), so named because of its
unique covalent closed-loop structure. CircRNAs are stable and rich in miR-binding sites
that serve as miR sponges or competitive endogenous RNAs. Currently, it has been shown
that they are able to modulate the proliferation, migration, inflammatory response, and
apoptosis of oxLDL-stimulated endothelial cells [210–212], macrophages [213,214], and
VSMCs [215,216].

Large numbers of long noncoding RNAs (lncRNAs) have also been identified in
oxLDL-treated monocytes, endothelial cells, and VSMCs (reviewed in [217]), and some of
them interfere with cholesterol efflux and cholesterol/oxLDL-mediated inflammation [218,219].
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6. Concluding Remarks

LDL oxidation occurs mainly locally, at the site of oxidative stress, in response to free
radicals with a short half-life and limited range of action. However, as described here
(Figure 3), oxLDLs can function as signaling molecules at distant sites and are likely to play
an important role in maintaining the systemic response to oxidative damage. Furthermore,
oxLDL-induced changes in the interactome network could serve as biomarkers to follow
the physio/pathological relevance of these signaling events [175,220]. In conclusion, as has
happened with other “bad” molecules (e.g., amyloid-beta) [221], future studies may reveal
that oxLDLs have hormetic effects, being useful in low concentrations and harmful in high
quantities.
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