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Large genome-wide association studies have identified hundreds of single-nucleotide
polymorphisms associated with increased risk of prostate cancer (PrCa), and many of
these risk loci is presumed to confer regulatory effects on gene expression. While eQTL
studies of long RNAs has yielded many potential risk genes, the relationship between PrCa
risk genetics and microRNA expression dysregulation is understudied. We performed an
microRNA transcriptome-wide association study of PrCa risk using small RNA sequencing
and genome-wide genotyping data from N = 441 normal prostate epithelium tissue
samples along with N = 411 prostate adenocarcinoma tumor samples from the
Cancer Genome Atlas (TCGA). Genetically regulated expression prediction models
were trained for all expressed microRNAs using the FUSION TWAS software. TWAS
for PrCa risk was performed with both sets of models using single-SNP summary statistics
from the recent PRACTICAL consortium PrCa case-control OncoArray GWAS meta-
analysis. A total of 613 and 571 distinct expressedmicroRNAswere identified in the normal
and tumor tissue datasets, respectively (overlap: 480). Among these, 79 (13%) normal
tissue microRNAs demonstrated significant cis-heritability (median cis-h2 = 0.15, range:
0.03–0.79) for model training. Similar results were obtained from TCGA tumor samples,
with 48 (9%) microRNA expression models successfully trained (median cis-h2 = 0.14,
range: 0.06–0.60). Using normal tissue models, we identified two significant TWAS
microRNA associations with PrCa risk: over-expression of mir-941 family microRNAs
(PTWAS = 2.9E-04) and reduced expression of miR-3617-5p (PTWAS = 1.0E-03). The TCGA
tumor TWAS also identified a significant association with miR-941 overexpression (PTWAS =
9.7E-04). Subsequent finemapping of the TWAS results using a multi-tissue database
indicated limited evidence of causal status for each microRNA with PrCa risk (posterior
inclusion probabilities <0.05). Future work will examine downstream regulatory effects of
microRNA dysregulation as well as microRNA-mediated risk mechanisms via competing
endogenous RNA relationships.
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INTRODUCTION

Prostate cancer (PrCa) is a highly heritable complex disease, and
large genome-wide association studies (GWAS) and meta-analyses
have identified hundreds of single-nucleotide polymorphisms
(SNPs) associated with increased risk of PrCa (Gudmundsson
et al., 2007; Yeager et al., 2007; Salinas et al., 2008; Schaid et al.,
2010; Kote-Jarai et al., 2011; Akamatsu et al., 2012; Cheng et al., 2012;
Al Olama et al., 2013; Kote-Jarai et al., 2013; Al Olama et al., 2014;
Hazelett et al., 2014; Yang et al., 2014; Amin Al Olama et al., 2015;
Hoffmann et al., 2015; Teerlink et al., 2016). However, the majority
of these risk loci are intergenic and few causal genes for PrCa have
been explicitly identified (Eeles et al., 2014). For many identified loci,
the underlying causal variants are presumed to confer regulatory
effects on expression of nearby genes. Follow-up expression
quantitative trait locus (eQTL) studies have begun to explore
putative regulatory targets of PrCa risk SNPs (Thibodeau et al.,
2015; DeRycke et al., 2019). Recent methodological advancements in
colocalization of disease-associated SNPs and eQTLs have yielded
powerful transcriptome-wide association study (TWAS) approaches
to disease-gene discovery, which have been highly successfully in
translating single-SNP GWAS hits into gene-level associations with
PrCa risk (Mancuso et al., 2018; Liu et al., 2022).

Most eQTL-based functional studies of PrCa risk loci have
focused primarily on protein-coding genes, and classes of non-
coding RNA transcripts remain understudied. An important class
of small non-coding RNAs is microRNAs (miRNAs), which
contribute to transcriptome regulation via post-transcriptional
silencing mechanisms of translational repression, and RNA
degradation. MiRNAs are initially expressed as long precursor
primary miRNA (pri-miRNA) transcripts before multiple post-
processing steps yield short mature miRNAs typically 20–22
nucleotides in length. These mature miRNAs in turn bind to
miRNA response elements (MREs) located primarily in the 3-
prime untranslated regions (3′UTRs) of target RNA transcripts.
There is a large body of evidence demonstrating the roles of
miRNAs in cancer (Peng and Croce, 2016). Specific to PrCa,
upregulation of miR-124 has been shown to repress PrCa growth
and inhibit invasion of PrCa tumor cells (Kang et al., 2014), and
circulating miRNA expression profiles demonstrate diagnostic
value for aggressive PrCa (Alhasan et al., 2016). Previous multi-
omic analyses in the Cancer Genome Atlas (TCGA) prostate
adenocarcinoma (PRAD) samples also identified associations of
unsupervised miRNA expression clusters and tumor Gleason
score (Cancer Genome Atlas Research, 2015).

Recent eQTL studies have also shown pri-miRNA transcripts
are subject to the same cis-acting SNP regulatory effects as other
long RNAs (Huan et al., 2015), and PrCa risk SNPs may confer
systemic impacts on the prostate transcriptome through miRNA
expression dysregulation. However, large miRNA expression
datasets in relevant tissue types are necessary for eQTL-based
disease gene discovery, and such data for normal prostate tissue
are lacking. In this study, we present data from a large miRNA
sequencing dataset in normal prostate tissue, explore cis-based
predictive modeling of miRNA expression, and evaluate potential
associations between PrCa risk genetics and expression
dysregulation of miRNAs by performing a miRNA-based

TWAS (miTWAS) of expressed miRNAs in normal and tumor
prostate tissue, which may respectively reveal key risk gene
associations relevant to various stages of tumorigenesis.

METHODS

Normal Prostate Tissue Samples
Information on study tissue sample selection has been described in
greater detail elsewhere (Larson et al., 2015; Thibodeau et al., 2015).
Briefly, normal prostate tissue was acquired from an archive
collection of fresh frozen material obtained from patients with
either radical prostatectomy or cystoprostatectomy. After rigorous
evaluation of sample tissue quality, DNA was extracted using the
Puregene tissue extraction while RNA was extracted using the
QIAGEN miRNeasy Mini Kit and the QIAcube instrument.
Informed consent was obtained from all subjects, and the study
was approved by the Mayo Clinic Institutional Review Board.

Normal Prostate eQTL Dataset
Descriptions on genome-wide genotyping and RNA sequencing
(RNA-Seq) have been provided elsewhere (Larson et al., 2015;
Thibodeau et al., 2015; DeRycke et al., 2019), and these data are
publicly available on dbGaP (accession: phs000985. v1. p1). Briefly,
genome-wide genotyping was performed using the Illumina
Infinium 2.5 M bead arrays (Illumina, San Diego, CA). Quality
control excluded variants with low call rate (<95%) and
Hardy–Weinberg equilibrium testing (P < 1E-05). Untyped and
missing autosomal and chrX SNP genotypes were imputed via
SHAPEIT (Delaneau et al., 2013) and IMPUTE2(Howie et al.,
2012) using the hg19/GRCh37 1,000 Genomes Phase I reference
panel. Imputation quality was assessed using the dosage r2 metric
calculated by BEAGLE v3 utilities (Browning and Browning, 2009),
and SNPs with an r2 ≤0.3 were excluded from further analysis.
After imputation and quality filtering, a total of 9,915,470 variants
were available for analysis.

RNA libraries for sequencing were prepared using the TruSeq
RNA Sample Prep Kit v2. Paired-end sequencing was performed
on an Illumina HiSeq 2000 using TruSeq SBS sequencing kit
version 3 and HCS v2.0.12 data collection software. A minimum
of 50 million total reads per sample was required for analysis; 234
samples with <50million total reads were re-sequenced and BAM
files were merged if no quality issues were identified. RNA-seq
data were processed using the MAP-R-Seq pipeline (Kalari et al.,
2014) and gene counts were generated based on ENSEMBL
release 78 gene annotation. Conditional quantile normalization
(Hansen et al., 2012) was applied to account for GC-bias and
sequencing depth. Normalized expression values were then
processed using probabilistic estimation of expression residuals
(PEER) (Stegle et al., 2012), adjusting for known sample
histologic characteristics of percent lymphocytic population
and percent epithelium present. PEER residuals were used as
the final expression values for all subsequent analyses.

Normal Prostate Small RNA Sequencing
Among the N = 471 Mayo normal tissue samples with available
genome-wide genotyping and RNA-Seq data, we identified
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N = 444 total samples with sufficient residual material for small
RNA extraction. RNA was extracted using the Qiagen miRNAeasy
Mini Kit and the QIAcube instrument. Small RNA sequencing was
performed on an Illumina HiSeq 4,000 instrument using
NEBNext® Multiplex Small RNA Library Prep Kit, multiplexing
up to 48 samples per lane. Sequencing output was processed using
the CAP-Mirseq (Sun et al., 2014) bioinformatics pipeline using
miRBase v21 (Griffiths-Jones et al., 2006) miRNA reference. An in-
house developed RNA-Seq QC (RNASEQQC) pipeline was then
applied to identify potential issues based on measures of post-
normalization quality (Mahoney et al., 2013).

Mature miRNAs were identified as expressed if ≥ 5 aligned
reads were identified in >25% of samples, and raw expression
counts for expressed miRNAs were normalized using trimmed
mean of M (TMM) normalization (Robinson and Oshlack, 2010).
Leading principal components from the genotyping data did not
indicate associations with miRNA expression levels (min P > 1e-
05). Normalized expression values were then processed using
probabilistic estimation of expression residuals (PEER) (Stegle
et al., 2012), adjusting for known sample histologic characteristics
of percent lymphocytic population, and percent epithelium
present. PEER residuals were used as the final expression
values for all subsequent analyses.

TCGA Tumor Data
To additionally explore associations in cancer tissue and provide
potential replication of normal tissue discoveries, we also
considered miTWAS analyses using miRNA expression data
from TCGA prostate adenocarcinoma (PRAD) tumor tissue.
Information on the sample preparation and small RNA
sequencing are presented in greater detail elsewhere (Chu
et al., 2016). To reduce underlying technical differences
between our normal tissue miRNA expression dataset and the
TCGA small RNA sequencing results, TCGA PRAD small RNA-
Seq BAM files were downloaded from the Genomic Data
Commons (GDC), of which N = 411 were identified to
correspond to tumor tissue. BAM files were reverted to
unaligned FASTQ files and reprocessed using the identical
miRNA bioinformatics workflow described above. With
respect to PEER analyses, sample estimated tumor percentage
was used as an adjusting covariate.

Raw genome-wide genotyping Birdseed files from the
Affymetrix 6.0 genotyping panel were similarly retrieved from
the GDC online portal for all TCGA PRAD samples. We
identified one unique non-tumor file per subject (either whole
blood or normal tissue), with preferential selection of whole blood
data where available. This yielded N = 496 samples (439 blood, 57
normal tissue), which were processed for genotype calling using a
genotype confidence threshold of 0.5. Genotype data were then
further processed for SNP- and sample-level QC as similarly
described for the normal tissue genotyping data. Based on output
from STRUCTURE, N = 415 samples were identified that
corresponded to subjects of European descent (Caucasian
probability>0.8). The resulting genome-wide genotyping
dataset was then imputed using the Michigan Imputation
Server (Das et al., 2016) based on the hg19/GRCh37
Haplotype Reference Consortium (McCarthy et al., 2016) hrc.

r1.1.2016 reference panel, with phasing performed using
Eagle v2.4.

miRNA Transcriptome-wide Association
Study
Our miTWAS was based on PrCa case-control GWAS meta-
analysis summary statistics from the PRACTICAL Consortium
(Schumacher et al., 2018), downloaded from the PRACTICAL
website (http://practical.icr.ac.uk). For the respective Mayo and
TCGA miRNA eQTL datasets, genetically-regulated expression
(GReX) prediction models were trained using the TWAS software
FUSION (Gusev et al., 2016). Eligibility for GReX model training
was determined based on a cis-heritability (cis-h2) test p-value <0.
01 and corresponding cis-h2 estimate >0, and training was
performed using elastic-net with a 1 Mb buffer for cis-variant
inclusion, with all other settings left at default values. Similar
methods were used to train GReX models for all expressed long
RNAs (coding and non-coding) from the previously mentioned
Mayo normal tissue RNA-Seq data for purposes of comparison
and downstream TWAS finemapping at significant miTWAS
loci. Expressed miRNAs overlapping the major
histocompatibility complex (MHC) region, defined as hg19/
GRCh37 positions chr6:28,477,797–33,448,354, were excluded
from analysis due to the complex LD structure in this region.

FUSION was then used in conjunction with the PRACTICAL
PrCa risk GWAS meta-analysis summary statistics to generate
miTWAS results for all expressed miRNAs that had successfully
trained GReX models. The corresponding LD reference was
derived from the normal tissue genotyping dataset previously
described. Results were declared statistically significant separately
for normal and tumor tissue analyses based on a
Benjamini–Hochberg false discovery rate (FDR) criterion of
FDR<0.05.

TWAS Finemapping
Significant non-causal TWAS results may cluster at a given risk
region due to LD and/or shared regulatory regions. TWAS
finemapping methods can help resolve which gene(s) may be
causal by simultaneously evaluating multiple genes in a given
region. For significant normal tissue miTWAS associations, we
applied the TWAS finemapping software FOCUS(Mancuso et al.,
2019) using a customized version of the FOCUS multi-tissue
GReX database (focus.db, downloaded November 2020) that was
augmented by additionally including all miRNA and mRNA
GReX models derived from the Mayo normal tissue dataset.
FOCUS was otherwise run under default settings per
chromosome, which included output for marginal posterior
inclusion probabilities and inclusion in the 90% credible set.

RESULTS

Small RNA sequencing yielded a median total throughput of 8.0
million reads per sample, with a range of 1.2–22.8 million reads.
Of the N = 444 normal tissue samples processed for small RNA
sequencing, 441 (99.3%) passed sample-level quality control
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thresholds for analysis. There was a median of 4.1 million mature
miRNA-aligned reads per sample (range: 0.3–15.5 million;
Supplementary Figure S1). A total of 613 distinct mature
miRNAs were identified as expressed per our criterion of ≥5
aligned reads in >25% of samples. Among the 411 TCGA PRAD
tumor samples with reprocessed miRNA expression data, no QC
sample exclusions were made, and there was a median 7.5 (range
1.9–34.6 million; Supplementary Figure S2) million miRNA-
aligned reads. A total of 571 distinct expressed miRNAs were
identified (overlap with normal prostate expression data: 480). A
total of 3 and 2 expressed miRNAs overlapped theMHC region in
the normal and tumor tissue datasets, respectively, and were
excluded from further analysis.

MiRNA GReX Models
Among the remaining 610 non-MHC miRNAs expressed in
normal prostate tissue, cis-h2 testing via FUSION was
successfully performed for 596 (97.7%) and 79 miRNAs passed
our training eligibility criteria (Table 1). The median estimated
cis-h2 among this subset was 0.151 and interquartile range (IQR)
was [0.096, 0.233]. Similarly, for the TCGA tumor miRNA
expression data, 560/569 (98.4%) had cis-h2 testing results and
48 met GReX training criteria (overlap with normal: 22). The
median estimated cis-h2 among this subset was 0.143 (IQR =
[0.106, 0.267]). Supplementary Figure S3 compares the cis-h2

estimates and corresponding Wald 95% confidence intervals for
all miRNAs expressed in both datasets and where GReX models
were trained in at least one dataset. A total of 77/79 normal tissue
GReX models and 47/48 tumor tissue GReX models
corresponded to at least one non-zero SNP weight and were
considered for further miTWAS analysis, resulting in successful
GReX model training proportions of 12.6 and 8.3% for the
normal and tumor tissue data, respectively.

To provide relative context on miRNA training, we compared
these GReX training results to those for protein-coding genes in
our comparably sized normal prostate tissue RNA-Seq expression
dataset. Among 16,592 expressed protein-coding genes, GReX
models were successfully trained for 7,088 genes (43%), nearly 3-
4X that of the respective miRNA data. Among genes with trained
models, the distribution of cis-h2 estimates was comparable
(median = 0.171; IQR = [0.112, 0.288]).

MiRNA TWAS Analyses
TWAS analyses were performed on all unique miRNAs with
successfully trained GReX models (77 Mayo, 47 TCGA), of which
22 were shared across datasets. Initial review of these results
revealed a number of instances of miRNAs from the same
miRNA cluster and identical TWAS output (e.g., hsa-miR-
3910 and hsa-miR-3910.1). To reduce redundancy, results
were reviewed for members of the same family and, if
identical (i.e., same GReX model characteristics, same TWAS
statistics), a representative finding was carried forward to the final
set of results. This yielded 71 and 39 miTWAS results in the
normal and tumor tissue datasets, respectively, with 18 expressed
miRNAs shared. Comparison of the TWAS Z-statistics among
the 18 miRNAs analyzed revealed fairly consistent findings across
datasets (Supplementary Figure S4).

Using the FDR< 0.05 significance criterion, we identified two
significant miTWAS results on chr20 in at least one expression
dataset (Table 2): hsa-miR-941 (Pnormal = 2.9e-04 in normal;
Ptumor = 1.0e-03) and hsa-miR-3617-5p (Pnormal = 1.5e-04; not
expressed in tumor). A Hudson plot of the complete miTWAS
results across the Mayo normal and TCGA tumor prostate
samples is presented in Figure 1, while complete TWAS
results across both datasets are presented in Supplementary
Table S1.

Top miTWAS result hsa-miR-3617-5p was evaluated solely in
normal tissue (not considered expressed in tumor data), with the
TWAS Z-score = −3.80 indicating reduced miR-3617-5p
expression associated with increased PrCa risk. The best
GWAS PrCa risk SNP result reported by FUSION was
rs432448 (chr20:44332298.G.T), located approximately 1.5 kb
from the MIR3617 gene stem-loop sequence.

The miRNA hsa-miR-941 corresponded to a notably high
expression level heritability in the Mayo normal tissue (cis-h2 =
0.79), which was similarly well-captured by the trained GReX
model (cross-validated R2 = 0.71). The top GWAS PrCa risk SNP
was consistent across miRNA expression datasets (rs1058319;
chr20.62374389.C.T). TWAS Z-scores were also consistent in
direction across datasets (TWAS Znormal = 3.62, TWAS Ztumor =
3.28), indicating higher predicted miR-941 expression associated
with increased PrCa risk. Themature miRNA originates from one
of five tightly clustered stem-loop sequences within a ~500 bp
region, located at the 62.5 Mb region of chr20, approximately
177 kb from rs1053819.

TWAS Finemapping Results
We first examined previously reported multi-tissue PrCa risk
TWAS results by Mancuso et al. (Mancuso et al., 2018) for
protein-coding mRNAs to determine if associations had been
previously identified in proximity to (i.e., within 1 Mb) hsa-miR-
941 and hsa-miR-3617-5p. For hsa-miR-941, multiple results
were reported for a variety of genes and source tissues about
the 62.3 Mb region of chr20, with the best GWAS SNP also
identified for the majority of results to be rs1058319. The top
overall result wasARFRP1 in CMC. BRAIN.RNASEQ (TWAS p =
2.03E-20), while the top prostate-specific result was ZGPAT in the
TCGA PRAD tumor dataset (TWAS p = 2.5E-11). No results
were reported in proximity to miR-3617-5p.

Finemapping results from FOCUS for chr20 encompassed the two
significant miRNA discoveries from our miTWAS analyses. The
corresponding fine-mapping regions were chr20:
42680754–44838826 (hsa-miR-3617-5p) and 20:62190180–62964897
(hsa-miR-941). The null model p-value for the hsa-miR-3617-5p
region was the leading result, with a posterior inclusion probability
(PIP) of 0.078. The PIP for hsa-miR-3617-5p was 0.0117, with no
strong result for any given gene (leading gene result: L3MBTL1 from
brain in GTEx with PIP = 0.054). The 90% credible set was also
relatively large (345 GReX models), which included hsa-miR-3617-5p.
For the hsa-miR-941 region, a total of 10 genes comprised the 90%
credible set, with the leading result corresponding to DIDO1 from the
brain_cortex in GTEx (PIP = 0.658). No prostate tissue GReX models
were included in the credible set. Complete FOCUS output for the two
relevant loci is presented in Supplementary Table S2.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8368414

Larson et al. Prostate Cancer Risk miRNA TWAS

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DISCUSSION

In this study, we leveraged large prostate normal and tumor
small RNA sequencing datasets to explore miRNA-based TWAS
associations with genetic risk of PrCa and identified two
significant associations: miR-941 and miR-3617-5p. Through

the GReX training process, we observed a substantially lower
overall proportion of miRNAs with successfully trained
expression prediction models relative to protein-coding
genes. This may be attributable to both biological and
technical factors. First, the absolute expression levels were
generally much lower in our normal tissue miRNA

TABLE 1 | Summary of miRNA GReX model training for tumor and normal expression datasets.

Number of mature miRNAs GReX trained models

MiRNA source Expresseda Failed Eligible for
GReXb

Trainedc cis-h2 # SNPs

N (%) N (%) Mean (range) Mean (range)

Mayo (Normal) 610 14 79 (13%) 77 (12.6%) 0.154 (0.032, 0793) 27 (1, 82)
TCGA (Tumor) 569 9 48 (8.4%) 47 (8.3%) 0.144 (0.061, 0.598) 30 (4, 94)

aExpressed mature miRNAs were identified as ≥ 5 reads in >25% of samples. Excludes miRNAs in the MHC region.
bMiRNAs with estimated cis-heritability > 0 and heritability test p-value < 0.01 were considered eligible for GReX training.
cMiRNAs with at least one non-zero SNP weight in the final GReX model.

TABLE 2 | MiTWAS results for miRNAs identified as significant (FDR<0.05) in at least one miRNA expression dataset.

TWAS results

Dataset Mature
miRNA

MiRNA
Gene

Chr Start
(hg19)

cis-h2 Best GWAS SNP Z p-value Q-value

Normal hsa-miR-3617-5p MIR3617 20 44333789 0.323 rs432448 chr20:44332298.G.T −3.80 1.47E-04 0.0103
hsa-miR-941 MIR941 20 62551155 0.793 rs1058319 chr20.62374389.C.T 3.62 2.92E-04 0.0103

Tumor hsa-miR-941 MIR941 20 62551155 0.267 rs1058319 chr20.62374389.C.T 3.28 1.04E-03 0.0406

FIGURE 1 | Hudson-style plot of miTWAS results, displaying−log10(P) for miRNA GReX models trained on eQTL datasets from Mayo normal prostate tissue (top)
and TCGA PRAD tumor tissue (bottom). Significant results based on FDR<0.05 are labeled by miRNA.
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expression dataset than our much deeper sequenced long RNA-
Seq data, which may reduce heritability testing power and
predictive modeling performance. Moreover, there is
evidence that the cis-regulatory contributions to overall
heritability for miRNAs may be relatively modest compared
to mRNAs. In the large multi-generational miRNA expression
analysis of N = 5,239 Framingham Heart Study participants by
Huan et al. (Huan et al., 2015), only 9/247 (3.6%) of expressed
miRNAs corresponded to a narrow-sense h2 estimate >0.3, of
which the mean single cis-eQTL contribution to explained
variation was 0.08. As miRNAs are also regulatory non-
coding RNAs, they are subject to sponging effects of target
mRNAs and may be more susceptible to overall transcriptomic
variability. Finally, as similarly speculated in Huan et al., it is
likely that evolutionary pressures may constrain cis-regulatory
effects on pri-miRNAs, given the roles of miRNAs on critical
biological processes.

We also noted a sizable difference in number of trained
models by dataset (77 for normal vs. 47 for tumor). We believe
this may be again driven by both biological and technical
differences between datasets. Firstly, the microRNA
transcriptome can be heavily dysregulated in the tumor
environment, which substantially increases the variance of
expression and reduces the relative contribution of cis-acting
genetic effects. Second, the relative density of the respective
genotyping platforms could yield differential imputation
efficiency for key eQTL SNPs, potentially yielding more
accurate GReX models derived from the normal tissue
samples. Despite these caveats, we did observe consistent
results across the independent tumor and normal tissue
miRNA expression datasets, both with respect to identified
expressed miRNAs and miTWAS test statistics.

Our top miTWAS finding was miR-3617-5p, encoded by
MIR3617, identified in the normal prostate tissue analysis.
This miRNA was only identified as expressed in normal
prostate tissue, with reduced levels corresponding to
increased PrCa risk. Upon literature review, little is
currently known regarding the biology of miR-3617-5p and
its potential involvement to tumorigenic processes. A previous
study of small-cell lung cancer identified downregulation of
miR-3617-5p to be associated with chemoresitance (Kuang
et al., 2020).

The miR-941 gene family consists of a cluster of five miRNA
sequences spanning approximately 500 bp on chr20 (bp:
62550778–62551292), and hsa-miR-941 upregulation was
identified to be associated with increased PrCa risk in both
tumor and normal datasets. Hsa-miR-941 is a human-specific
miRNA that is expressed in a wide variety of tissue types, and has
demonstrated higher expression levels in cancer-derived cell lines
(Hu et al., 2012). Hu et al. identified tumor suppressor lncRNA
TP73-AS1 as a sponge transcript for hsa-miR-941, showing that
over-expression of TP73-AS1 attenuated cell migration and led to
increased expression of hsa-miR-941 targets (Hu et al., 2018).
Zhao et al. (2020) investigated serum exosomal miR-941 levels in
laryngeal squamous cell carcinoma, identifying increased
expression as a diagnostic biomarker. The authors further
demonstrated miR-941 overexpression promoted cell

proliferation and invasion via cell-line studies. These findings
are commensurate with the observed positive association with
PrCa risk in our study.

The relatively modest miTWAS associations along with
our finemapping results raise questions regarding the
potential causal relationship of PrCa genetic risk mediated
by direct expression dysregulation of these two miRNAs and,
to a larger extent, the prostate miRNA transcriptome in
general. Similarly, while both identified miRNAs have
previously reported associations with cancer in the
literature, this is true of many miRNAs and thus such
connections should be interpreted with caution.
Consequently, follow-up functional studies that can study
the direct effects of up/down-regulation of these miRNAs in
prostate cell-lines are warranted.

There are limitations to our study that warrant mention.
Firstly, no true replication dataset was available to verify
discoveries, as the two datasets we analyzed were from
normal, and tumor prostate tissue, respectively. Thus,
further validation of these findings is warranted in
independent and comparable datasets. Additionally, the
high degree of sample multi-plexing in the normal tissue
small RNA sequencing may have reduced sensitivity for
association analysis with lower expressed mature miRNAs.
However, we observed a high degree of overlap in identified
miRNAs, and the individual miTWAS results across datasets
were comparable. Our analyses were also restricted to
subjects of European ancestry, which limits the
generalizability of our results to other racial/ethnic groups.
Finally, TWAS methods focus solely on cis-regulatory effects
of trait-associated SNPs on expression. As miRNAs are
themselves regulatory in nature, trans-effects of PrCa risk
variants may be more relevant via competing endogenous
RNA (ceRNA) networks.

In conclusion, our exploration of prostate miRNA expression
and PrCa risk genetics revealed two moderate miTWAS
associations, including an association in one region with no
previously reported TWAS associations. Future efforts
studying the role of miRNAs in the genetic risk of PrCa will
focus on more sophisticated examination of ceRNA-based trans-
effects and multi-tissue analyses.
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