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Abstract 

Background:  Despite a global decrease in malaria burden worldwide, malaria remains a major public health con‑
cern, especially in Benin children, the most vulnerable group. A better understanding of malaria’s spatial and age-
dependent characteristics can help provide durable disease control and elimination. This study aimed to analyze the 
spatial distribution of Plasmodium falciparum malaria infection and disease among children under five years of age in 
Benin, West Africa.

Methods:  A cross-sectional epidemiological and clinical survey was conducted using parasitological examination 
and rapid diagnostic tests (RDT) in Benin. Interviews were done with 10,367 children from 72 villages across two 
health districts in Benin. The prevalence of infection and clinical cases was estimated according to age. A Bayesian 
spatial binomial model was used to estimate the prevalence of malaria infection, and clinical cases were adjusted for 
environmental and demographic covariates. It was implemented in R using Integrated Nested Laplace Approxima‑
tions (INLA) and Stochastic Partial Differentiation Equations (SPDE) techniques.

Results:  The prevalence of P. falciparum infection was moderate in the south (34.6%) of Benin and high in the 
northern region (77.5%). In the south, the prevalence of P. falciparum infection and clinical malaria cases were similar 
according to age. In northern Benin children under six months of age were less frequently infected than children 
aged 6–11, 12–23, 24–60 months, (p < 0.0001) and had the lowest risk of malaria cases compared to the other age 
groups (6–12), (13–23) and (24–60): OR = 3.66 [2.21–6.05], OR = 3.66 [2.21–6.04], and OR = 2.83 [1.77–4.54] respectively 
(p < 0.0001). Spatial model prediction showed more heterogeneity in the south than in the north but a higher risk of 
malaria infection and clinical cases in the north than in the south.

Conclusion:  Integrated and periodic risk mapping of Plasmodium falciparum infection and clinical cases will make 
interventions more evidence-based by showing progress or a lack in malaria control.
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Background
Between 2000 and 2019, malaria incidence rates in the 
World Health Organization (WHO) African Region 
reduced from 368 to 222 per 1000 population at risk, but 
increased to 232 in 2020 [1]. During this same period, 
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malaria mortality rates decreased by 63%, from 150 to 
56 per 100 000 population at risk, before rising to 62 
in 2020 [1–3] before increasing. The use of Insecticide 
Treated Nets (ITNs) and Indoor residual Spraying (IRS) 
were considered to have made a major contribution to 
the reduction in malaria burden since 2000. ITNs was 
estimated to account for 50% of the decline in para-
site prevalence among children aged 2–10 years in sub-
Saharan Africa between 2001 and 2015 [4, 5]. However, 
indigenous malaria cases remain high in most African 
countries and need more attention and intervention [6]. 
Children under five years of age are particularly suscepti-
ble to malaria illness, infection and death [1].

Evaluating the impact of interventions is essential to 
designing more efficient and sustainable strategies for 
malaria control and elimination [7]. Frequent spatial and 
temporal mapping of malaria burden can be a valuable 
tool to measure progress in malaria control and elimina-
tion. The spatial modelling of malaria data can help the 
National Malaria Control Programme (NMCP) adjust the 
intervention.

Malaria is a major public health issue in Benin, espe-
cially among children under five years and pregnant 
women [8]. Malaria remains endemic, perennial in 
almost all regions, and seasonally dependent in the North 
[7, 9, 10]. High levels of Anopheles vectors resistance to 
insecticides were also described by many studies [11–
13]. In 2015, malaria accounted for approximately 40% 
of care-seeking among the global population and 44.5% 
among children under five years old [14]. The National 
Malaria Control Programme (NMCP) of Benin was initi-
ated in 1982. From 2006 to 2010, 2011 to 2018 and from 
2017 to 2021, NMCP defined several strategies related 
to the intensification of malaria control and elimina-
tion, which were mainly based on the use of Long-lasting 
Insecticide Treated Nets (LLINs), indoor residual spray-
ing (IRS), intermittent preventive treatment (IPTp-SP) 
with sulfadoxine-pyrimethamine, and prompt diagnosis 
and access to treatment with artemisinin-based combina-
tion therapy (ACT).

Nevertheless, the effect of malaria interventions across 
the eco-epidemiological facies remains poorly under-
stood due to the absence of an active and rigorous sur-
veillance system. In Benin, Plasmodium falciparum 
transmission shows seasonal patterns with an increase in 
the rainy season. The Demographic Health Survey (DHS) 
is carried out nationally every six years. It was conducted 
in the dry season, from November 6, 2017 to February 
28, 2018, a period of low malaria incidence. This survey 
included 6156 individuals nationwide. The DHS is not 
solely dedicated to malaria but nevertheless gives an idea 
of the epidemiology of malaria in Benin. It confirms that 
the prevalence of malaria remains very high in the north 

of Benin (40% in the DHS in the dry season versus 77.5% 
in our study in the rainy season) and average in the south 
(23% in the DHS versus 34.6% in our study in the rainy 
season). This proves that the burden of malaria has not 
considerably decreased in Benin over the last ten years. 
This is why the team decided to share this data, which is 
still relevant and can motivate the repetition of this study 
and analysis design in other regions of Benin using the 
same approaches and motivating intervention, especially 
in the rainy season, the critical period of transmission.

After ten years of control, the current study aims to 
fill knowledge gaps on the spatial distribution of malaria 
infection in two different ecological settings using age 
range and geospatial modelling techniques. The rela-
tionship between the distribution of malaria vectors (or 
parasites) and environmental factors (e.g. temperature, 
rainfall, humidity, vegetation, proximity to waterways) 
has been well-established [15, 16]. Geostatistical models 
can estimate the environment-disease relation at known 
locations over a continuous space and predict malaria 
risk and uncertainty at locations where data on transmis-
sion is unavailable [15, 16]. These models also consider 
spatial dependence within the data by incorporating loca-
tion-specific random effects since common exposures 
similarly influence disease transmission in neighbouring 
regions [17].

Methods
Study area
The study was carried out in the Ouidah–Kpomassè–Tori 
Bossito (OKT) and Djougou–Copargo–Ouaké (DCO) 
health districts in Benin, West Africa in 2011, [18]. OKT 
is located in Southwestern Benin and 50 km from Coto-
nou (Fig. 1).

DCO is located in northern Benin and is at a 381 km 
distance from Cotonou (Fig. 1). The surface areas of OKT 
and DCO are 932 km2 and 5,505 km2, respectively. The 
commune of Ouidah, Kpomassè, Tori Bossito, Djou-
gou, Ouaké and Copargo are located at 5 m, 27 m, 42 m, 
421  m, 654  m and 396  m altitude respectively. Temper-
atures range between 22° C and 35° C, with an average 
of 27° C. In the south, the primary rainy season is from 
March to July; there is a short dry season from July to 
September and a short-wet season from mid-Septem-
ber to mid-November. Northern Benin only presents 
one rainy season (May to September, with most rain in 
August) and one hot, dry season.

A location map of the two study areas relative to the 
country was already elsewhere [18]. The OKT and DCO 
populations were 286,711 and 411,835, respectively, in 
2013 [19]. Under-five years old were around 17% of the 
total population [20]. The characteristics of these areas 
have been previously described [7, 18]. The data from the 
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2020 Benin statistical health showed that malaria preva-
lence was 87% in the Donga department (DCO health 
zone) and 24% in the Atlantique department (OKT health 
zone), [21].

Malaria control program implemented in the study area
Prevention
In both health zones, malaria prevention strategies were 
implemented by Non-Governmental Organizations 
working locally to promote child health. A behavior 
change communication strategy through social mobili-
zation and home visits via various channels was used at 
the community level via messages mostly to women and 
young children. LLINs were distributed to all households, 

but the utilization rate for children under five years old 
remained low [18]. IRS was not achieved in both areas. 
The IPTp-SP for pregnant women was also promoted, but 
its use (first and second doses) was about 25%. Exclusive 
breastfeeding (EBF) for children under six months was 
also much lower than expected (16%) [20].

Diagnosis and treatment
In Benin, all clinical malaria cases were confirmed by 
RDT and microscopy where possible. At the time of the 
survey, the malaria case confirmation policy before treat-
ment with ACT was not applied to community health 
workers (CHW). About 10% of febrile children used 
ACT in the south and 17% in the North [20]. Since 2014, 

Fig. 1  Map of the two study regions in Republic of Benin
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malaria diagnosis and treatment have been made by the 
CHW and at the OKT and DCO health centres. How-
ever, care-seeking issued frequently financial, distance 
from health centers, transport and the repeated stock-out 
of Rapid Diagnostic Tests and Artemisinin-based Combi-
nation Therapy with CHWs and at health centres.

Study design
Data were extracted from a cross-sectional survey cluster 
design during the rainy season as described elsewhere in 
2016 [18, 22]. A two-stage random sampling technique 
was applied. The inclusion criterion for villages was a 
population size of 1000–1800 inhabitants. The target 
population was children aged 0–60 months, living in the 
selected villages, whose parents gave their informed con-
sent. Thirty-one and 42 villages were randomly selected 
in the OKT and DCO health zones, respectively. Each 
village’s geographic coordinates were recorded using 
a global positioning system (GPS) provided by Benin’s 
Institute of National Geography (ING). In Benin’s health 
pyramid, the local subdivision unit where health indica-
tors are calculated before being aggregated at the regional 
and national level is the health zone. It is also at this level 
that decisions are taken to improve the health conditions 
of the population.

Data collection
Parasitological and clinical data collection
Parasitological and clinical data were collected for two 
days in each village through a household survey. On the 
first day, three trained nurses assisted by three local vil-
lage helpers visited the children in their households. The 
nurse examined and recorded data (age, sex, clinical and 
parasitological information) on every child while a physi-
cian supervised the fieldwork. The CareStart™ RDT used 

the detection of the histidine-rich protein-2 (HPR2) spe-
cific to Plasmodium falciparum. Malaria infection was 
defined as asymptomatic positive RDT. A clinical malaria 
case was defined as an association between high axillary 
temperature (> = 37.5  C) plus a positive RDT. Cross-
check quality control was regularly done on a randomly 
selected sample representing 10% of RDT.

Environmental and demographic data collection 
and processing
To assess the effect of exposures on the malaria preva-
lence in the two targeted regions (OKT in Southern 
Benin and DCO in Northern Benin), climatic data (tem-
perature and humidity variables) were collected from 
the AFRICLIM database, with a higher resolution of 
30 arc-seconds (~ 1  km at the equator) [23]. These data 
were derived from the Worldclim baseline data interpo-
lated across Africa. Environmental and demographic 
data (slope, elevation, distances to waterlines/coastlines 
and population density) were recorded from the World-
Pop database [24, 25] with a spatial resolution of three 
arc-seconds (~ 100  m, at the equator) while the land 
cover covariate was recorded from Copernicus database 
[26] with a resolution of three arc-second (see the data 
sources and details in Table  1). All covariates were first 
processed with the Geographic Information System (GIS) 
software ArcGIS version 10.1 to match them to each 
region. Environmental and demographic data were resa-
mpled to the same resolution (~ 1 km) as climatic covari-
ates using “Spatial analysis tools” of ArcGIS.

Data analysis
Exploratory analysis
Data from the 2011 EVALUT project [18, 22], the 
prevalence of malaria infection and clinical cases were 

Table 1  Covariates used for modelling malaria prevalence in the study regions

Covariates code Signification Resolution Sources

ben_ppp Population density 3 arcseconds Worldpop

bio1_w30s Annual temperature 30 arcseconds Africlim

bio12_wc30s Annual rainfall 30 arcseconds Africlim

bio4_wc30s Temperature seasonality 30 arcseconds Africlim

bio16_wc30s Rainfall wettest quarter 30 arcseconds Africlim

mimq_wc30s Moisture index of moist quarter 30 arcseconds Africlim

pet_wc30s Potential evapotranspiration 30 arcseconds Africlim

miaq_wc30s Moisture index of arid quarter 30 arcseconds Africlim

dst_coastline Distance to coastline 3 arcseconds Worldpop

dst_waterways Distance to waterways 3 arcseconds Worldpop

srtm_slope Slope 3 arcseconds Worldpop

Srtm_topo Topography 3 arcseconds Worldpop

landcover Land cover 3 arcseconds Copernicus
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considered. The number of uncomplicated malaria clini-
cal cases and the proportion of infection per the total 
population, have been used in this study. The difference 
in the prevalence of infection and clinical cases among 
age groups was tested using the Chi-Square test of good-
ness-of-fit. Mapping the observed prevalence of malaria 
infection and clinical cases was performed using the 
ggplot2 library of R software [27].

Model specification
The prevalence of malaria infection and cases were esti-
mated using clinical data aggregated at the community 
level (i.e. village). Let Yi be the number of malaria infec-
tion (i.e. the number of individuals with positive blood 
test) or the number of cases (i.e. the number of individu-
als with malaria symptoms and with a positive blood test) 
within a selected village of location si (i = 1,…, n) from a 
given study region. Let Nit denote the number of children 
tested within each village si.

Let Xit be a vector of p environmental and demographic 
covariates at the centroid of the village i. We assume 
that the disease counts Yi follow a binomial distribu-
tion. Yi ~ Binomial (Ni t, Pi), where Pi is the proportion of 
clinical cases or malaria infection in the population. The 
prevalence, Pi of malaria is assumed to be associated with 
exposures (environmental and population covariates) 
through a logit link such that: logit (Pi) = X ′

iβ , where β 
is a vector of regression coefficients to estimate from the 
data.

Random components were incorporated into the model 
to account for heterogeneity within the data (malaria 
clinical cases or infection prevalence) over a given study 
region to account for the effects of spatial autocorrelation 
between communities. Thus, spatially-structured ran-
dom effects associated with spatial dependence between 
villages were modelled using a Gaussian Random Field 
(GF), U (s), which has a multivariate normal distribution 
with null vector as mean and a covariance matrix, Ʃ [17, 
28]: U (s) ~ Gaussian (0, Ʃ). This formulation is linked to 
the Generalised linear spatial model (GLSM) that is com-
pletely specified as below [29, 30]:

where φ is a scale parameter (i.e. the range) and σ 2
u the 

variance (or the sill) of the process to be estimated from 
the data. The vector v(s) are community-specific ran-
dom effects that account for the non-spatial variation or 
measurement error at each location (known as the nugget 

(1)

Yi|β ,Xi,u(si), θ ∼ Binomial(Ni,Pi), i = 1, . . . , n
logit(Pi) = X ′

iβ + u(si)+ v(si)
u(s) ∼ Gaussian(0,�)

cov[u(si),u(sj)] ∝ σ 2
uρ

||si−sj||
φ

,

effect in geostatistics), while θ is a vector of all hyperpa-
rameters of random effects.

The popular covariance function assumed for GF in 
spatial statistics is the Mátern covariance which was 
shown to be the solution of a Stochastic Partial Differen-
tial Equations (SPDE) [31] and is defined as follows:

where Kv is the Bessel function of order v > 0, repre-
senting a smoothing parameter ( v = 1 in this case). The 
practical range φ is defined as 

√
8v/k and represents the 

distance at which the autocorrelation is low (i.e. close to 
0.10).

The prior distribution is assigned to other model 
parameters to complete the hierarchical Bayesian spa-
tial model defined in  Eq. (1). An identically independ-
ent distributed (iid) Gaussian prior with zero mean and 
precision τv is assumed for the random vector v, while a 
Gaussian prior with large variance is assumed for regres-
sion coefficients β. We assigned a Gamma prior on 
hyperparameters τu = 1/σ 2

u , and τv = 1/σ 2
v  using their 

default values on the log-scale. Though there are other 
extensions for SPDE to account for non-stationarity in 
the latent field [31], we assumed the spatial process U(s) 
to be stationary and isotropic for each study region, i.e. 
its statistical properties are invariant via translation and 
rotation [17].

Data analysis and model validation
Covariates values were extracted at observed locations 
and standardized to facilitate model stability. Correla-
tion analysis was performed on pre-selected covariates 
to remove those showing strong correlation (|r|> 0.8) 
(see Supplementary file 1). Model selection was per-
formed by running first a binomial regression model 
(i.e. GLMs with binomial family, see Supplementary 
file 2 and Supplementary file 3) on the disease counts 
and using the Akaike information criterion (AIC) to 
select the parsimonious model. For each response 
variable, full models (with all covariates) were cali-
brated. Variables that were not significant at the 10% 
threshold were removed while taking into account 
their similarity group (the inclusion in the model of 
two covariates belonging to the same group for a cor-
relation coefficient greater than 0.80 in absolute value 
was avoided). t Covariates satisfying inclusion crite-
ria were used to perform the Bayesian analysis  [30]. 
The set of parsimoniously selected covariates associ-
ated with malaria prevalence is presented in Table  1. 
The deviance information criterion (DIC), the Bayes-
ian counterpart of AIC, was used to select the parsi-
monious spatial Bayesian models. To assess the spatial 

(2)c(si, sj , k) ∝ σ 2
s (k

∣
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autocorrelation within the data, we calculated Moran’s 
I from the residuals of the GLM models fitted to the 
observed data (infection and clinical cases) and tested 
its significance using 99 permutations. Moran’s I meas-
ures the similarity between data points as a function 
of the spatial lag distance, and its value is close to null 
in the absence of spatial autocorrelation [32]. All these 
descriptive analyses were performed using the R soft-
ware version 3.6.

The spatial modelling process was performed within 
the Bayesian framework using INLA-SPDE techniques 
instead of the long-runs of Markov chain Monte Carlo 
(MCMC), which are computer-intensive in the case 
of hierarchical modelling [33]. All Bayesian analysis 
were performed using the R-INLA package. Moreover, 
we predicted the prevalence of malaria infection and 
cases from the selected model at grid locations of size 
approximately one km2 covering the whole extent of 
each region using a projector matrix to interpolate a 
functional of the random field (i.e. the posterior dis-
tribution of malaria prevalence computed at the mesh 
nodes). Standard deviation and Bayesian credible 
interval (BIC) of the prediction were also derived to 
assess the uncertainty associated with the estimates of 
disease prevalence [30].

Results
Population description and sources
A total of 10,367 children aged 0 to 60  months were 
included. In OKT, 4,348 children were recruited from 
31 villages. The median age was 29 (1stqtle = 14; 
3rdqtle = 45). In DCO, 6,019 children were included 
from 42 villages. The median age was 29 (1stqtle = 12; 

3rdqtle = 46). The male /female ratio was 1:1 and 
1.1:1.0 in OKT and DCO, respectively.

Sources of infection
P. falciparum and P. malariae species were present in 
both areas. In OKT, among 198 positive thick films, 
82.3% were positive with P. falciparum, 16.7% were posi-
tive with P. malaria and 0.5% co-infection with P. falci-
parum + P. malaria species. In DCO, among 331 positive 
thick films, 96.3% were positive with P. falciparum, 2.7% 
positive with P. malaria and 0.6% co-infection with P. fal-
ciparum + P. malaria species. The mean parasite density 
of P. falciparum in children was 1113 (CI95%). As P. fal-
ciparum was a dominant species, the following analysis 
focused on this species.

Plasmodium falciparum infection and clinical cases 
according to age
OKT health district
The prevalence of P. falciparum infection was moderate 
in OKT 34.57% (1503/4348) (CI95% 33.17–35.99) and 
did not vary according to age, p = 0.8961, (Fig.  2a). The 
prevalence of P. falciparum infection among asympto-
matic children was 28.65% (902/3148) [CI95% 27.10% 
– 30.26%].

Among 1,450 pathological episodes detected 457 were 
febrile (temperature >  = 37°5 C). A total of 267 (58.4%) 
clinical cases were confirmed with RDT and attributed 
to malaria (positive RDT plus signs). The prevalence of 
clinical malaria cases did not vary according to age group 
(p = 0.3918) (Fig. 2b).

Fig. 2  Prevalence rate of Plasmodium falciparum infection and prevalence rate of malaria clinical cases in OKT and DCO health districts—(a) 
represent the prevalence of P. falciparum according to the age groups, and (b) represent the prevalence of malaria clinical cases according to the 
age groups
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DCO health district
The prevalence rate of P. falciparum infection was 
high in the north, 77.5% (4665/6019). Contrary to the 
south, the prevalence of infection increased with age 
in the DCO district (p < 0.0001). Children aged less 
than six months were less frequently infected than 
children aged 6–11, 12–23, 24–60  months OR = 4.92 
[CI95% 3.75–6.45], OR = 6.99 [CI95% 5.33–9.17], and 
OR = 18.75 [CI95% 14.67–23.96] respectively (Fig. 2a). 
The proportion of P. falciparum infection in asymp-
tomatic children was 64.03% (2348/3667) [CI95% 
62.46%– 65.57%] in the DCO.

Among 1,770 pathological episodes identified at 
the health district level, 553 were febrile (tempera-
ture > 37°5 C). A total of 527 (95.3%) were attributed 
to malaria (RDT + signs). The prevalence of clinical 
malaria cases varied according to age groups. Children 
aged less than six months had a low risk of suffering 
from malaria compared to other age groups (6–12), 

(13–23) and (24–60): OR = 3.66 [CI95% 2.21–6.05], 
OR = 3.66 [CI95% 2.21–6.04], and OR = 2.83 [CI95% 
1.77–4.54] respectively, p < 0.0001 (Fig. 2b).

Mapping of malaria prevalence and clinical cases 
at observed locations and analysis of the spatial 
dependence
Mapping of the observed prevalence
From the raw maps of the malaria prevalence at the 
observed villages in the OKT region (Fig. 3), there is no 
location with unstable or very low transmission level 
(hypo-endemic areas), i.e. area with a prevalence of infec-
tion (PrevInf ) less than 10%. Also, 77.41% of the sampled 
villages (24/31) have a prevalence of infection comprised 
between 10 and 50% (i.e. mesoendemic areas). About 
16% (5/31) of the sampled villages are with hyperen-
demic transmission (50 < PrevInf < 75%), while only 3.22% 
of them are holoendemic (PrevInf > 75%). The number 

Fig. 3  Raw maps of malaria prevalence at the observed locations—(a) and (c) prevalence of infection, (b) and (d) number of cases
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of malaria cases (Ncas) varied between 10 and 40, with 
a higher number in some villages located in the munici-
pality of Kpomassè (Fig. 3a-b). However, the prevalence 
of infection is very high in the DCO region and var-
ies between 45 and 90%. In contrast, malaria cases vary 
between 20 and 80, with the highest value in Djougou 
municipality (Fig. 3c-d).

Analysis of spatial dependence within the observed data
In the OKT health district, a clustering of observed data 
points (positive autocorrelation) around 1 km and 4.5 km 

and repulsion around 8.5  km (negative autocorrelation) 
for the prevalence of infection was noticed (Fig. 4a). For 
the observed clinical cases, there was clustering of data 
at a distance of around 6 km and repulsion at distances 
of 8 km and 11 km (Fig. 4b). Regarding the DCO health 
district, we noticed some significant autocorrelation 
coefficients showing both clustering and repulsion of the 
observed data at short distances. Clustering occurred 
at distances of 1  km, 5  km and 22  km, while repulsion 
occurred at 4  km, 25  km and 36  km for the prevalence 

Fig. 4  Correlograms for visualizing and testing the spatial autocorrelation within the observed data—(a) and (b) represent the plots of Moran’s I 
coefficients as function of distance for the prevalence of malaria infection and clinical cases, respectively in the OKT health district while (c) and (d) 
are Moran’s I plots as function of distance in the DCO health district. Blue color points represent the significant autocorrelation coefficients and the 
red line represents the overall trend of coefficients with distance
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of infection (Fig.  4c). The prevalence of clinical cases 
showed a significant clustering at 3 km (Fig. 4d).

Prevalence of malaria with environmental 
and demographic exposures
The results of non-spatial and spatial models fitted to 
data revealed that the prevalence of malaria infection is 
affected by environmental and demographic exposures 
within the two regions (OKT and DCO). Exposures such 
as annual rainfall "bio12_wc30s", moisture index of the 
moist quarter “mimq_wc30s’’, distance to the coastlines 
“dst_coastlin”, topography “srtm_topo” and land cover 
influence significantly the prevalence of malaria infec-
tion within the OKT health district since the 95% cred-
ibility intervals of their mean estimates do not contain 0 
(Table 2). These risk factors except the land cover showed 
a significant effect on malaria prevalence when consid-
ering the Bayesian binomial model without spatial com-
ponent (Supplementary file 4 and Supplementary file 5). 
For the prevalence of malaria cases in the OKT region, 

moisture index of moist quarter “mimq_wc30s’’, moisture 
index of arid quarter and topography covariates were 
significant as all of their 95% credibility intervals do not 
contain 0.

Regarding the DCO region, apart from the local mean 
prevalence (i.e. the intercept computed at the original 
scale), the population density "ben_ppp" is the only risk 
factor that significantly affects the prevalence of malaria 
infection. None covariate significantly affects the esti-
mated prevalence of malaria cases since the 95% credibil-
ity interval of their effects contains 0 (Table 3). Contrarily 
to the OKT region, only GLM model showed significant 
effects of covariates on the estimates of malaria cases in 
DCO region (Supplementary file 3).

Variation of the prevalence of malaria infection and clinical 
cases within the study regions
Bayesian Generalised linear spatial models implemented 
using stochastic partial differential equations (SPDE) 
combined with the INLA approach revealed that the 

Table 2  Results of Bayesian spatial binomial model fitted to the OKT data

Sources of variation Mean SD 2.5% 50% 97.5%

Prevalence of infection
  Intercept -0.594 0.471 -1.550 -0.617 0.496

  ben_ppp 0.198 0.223 -0.247 0.200 0.634

  bio12_wc30s -5.842 1.996 -9.771 -5.851 -1.865

  bio4_wc30s -0.202 0.174 -0.545 -0.202 0.142

  mimq_wc30s 9.628 3.326 2.991 9.646 16.156

  miaq_wc30s -0.437 0.371 -1.182 -0.435 0.294

  dst_coastlin 5.153 2.113 0.880 5.185 9.255

  landcover 0.290 0.113 0.072 0.289 0.517

  srtm_topo 0.916 0.321 0.276 0.918 1.548

Hyperparameters
  Theta1 for U(s) -4.726 0.265 -5.205 -4.745 -4.16

  Theta2 for U(s) 3.477 0.401 2.606 3.507 4.209

  Precision τv 18317.257 1.82E + 04 1260.762 12930.477 66416.689

Prevalence of cases
  Intercept -1.624 0.231 -2.081 -1.643 -1.052

  ben_ppp 0.141 0.120 -0.102 0.142 0.375

  bio12_wc30s -2.194 1.094 -4.325 -2.208 0.006

  bio4_wc30s -0.189 0.115 -0.414 -0.189 0.039

  mimq_wc30s 3.982 1.793 0.385 4.001 7.487

  miaq_wc30s -0.405 0.186 -0.785 -0.401 -0.046

  dst_coastlin 2.149 1.118 -0.106 2.165 4.325

  landcover 0.126 0.076 -0.021 0.125 0.276

  srtm_topo 0.539 0.177 0.184 0.541 0.885

Hyperparameters
  Theta1 for U(s) -4.048 0.622 -5.263 -4.052 -2.812

  Theta2 for U(s) 3.738 0.777 2.195 3.743 5.254

  Precision τv 19057.593 18750.000 1300.696 13531.915 68259.237
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prevalence of malaria infection varies locally within vil-
lages throughout the two study regions (Figs.  5 and  6). 
Malaria infection prevalence is predicted to be mesoen-
demicity or hyperendemicity (between 40 and 60%) in 
most locations in the study region, namely the villages 
within Ouidah and Tori Bossito communes. In compari-
son, a patch of holoendemicity (> 75%) is predicted to 
occur in the north-eastern part of Tori Bossito and the 
western part of Kpomassè (Fig. 5a). Globally, the malaria 
infection is expected to be low at the south of Kpomassè 
and Ouidah communes in the OKT health district, but 
with a higher standard deviation of about 20 to 28% espe-
cially in Ouidah (Fig. 5c). Regarding the prediction of the 
prevalence of malaria cases, moderate prevalence values 
occurred within the three communes of the OKT health 
district, with more importance in Tori Bossito than 
Ouidah and Kpomassè (Fig.  5b). A relatively low stand-
ard deviation of the estimates (1.6 to 14.0%) has been 

observed for the prevalence of clinical cases in the region 
with the highest values in Ouidah (Fig. 5d).

A contrarily, in the DCO region, a very high level of 
malaria infection was observed throughout the study 
area. Some areas located in the central and northern part 
of Djougou and Copargo communes had an estimated 
prevalence between 60 and 75% (i.e. hyperendemic 
areas), and others (extreme north of Djougou) had an 
estimated prevalence greater than 75% (i.e. holoendemic 
areas). However, some areas located at Ouaké and the 
south-eastern part of Djougou in the DCO health district 
has a mesoendemic transmission of malaria infection (10 
to 50%) (Fig.  6a). The predicted prevalence of malaria 
cases was relatively high (40 to 65%) in some locations of 
the DCO health district, especially in the extreme north 
of Djougou (Fig. 6b). Moreover, the standard deviations 
were relatively low for the estimates of malaria infection 
(6% < SD < 28%), while they were relatively high for the 
calculations of malaria cases (1% < SD < 39%) (Fig. 6c-d).

Discussion
Half part of care-seeking is attributable to malaria in 
Benin despite the high intervention packages imple-
mented throughout the country. Routine data exist and 
help decision making but seem insufficient. Spatial mod-
elling can help to observe disease indicators from new 
angles, allow for finer analysis and thus help to make 
more relevant decisions. The main objectives of this 
study were to address the spatial distribution of P. falci-
parum infection prevalence and clinical cases in children 
under five years old and to identify the importance of 
malaria burden in earlier infant age groups between two 
different ecological settings: southern Benin (two rainy 
seasons) and northern Benin (one rainy season).

Spatial epidemiology as decision making tool
WHO recommended ensuring access to malaria preven-
tion, diagnosis and treatment as part of universal health 
coverage by determining the most effective mix of inter-
ventions according to the local context and needs. This 
induce data collection or using existing data that reflect a 
need for subnational level [34]. Recent reforms are being 
introduced in the health department in Benin in order to 
reduce the burden of AIDS, Tuberculosis, Malaria, Hepa-
titis, Sexual Transmitted Infections and epidemic-prone 
diseases. Their effects are not yet measurable.

This is the first-time spatial analysis of malaria infec-
tion and morbidity focused on the OKT and DCO health 
districts. The two ecological regions do not have the same 
epidemiological profile. The OKT district was a mesoen-
demic and/or hyperendemic area with a perennial trans-
mission [7]. Heterogeneity of P. falciparum infection has 
already been described in the OKT district in a previous 

Table 3  Results of Bayesian spatial binomial model fitted to the 
DCO data

Source of variation Mean SD 2.5% 50% 97.5%

Prevalence of infection
  Intercept 1.043 1.240 -1.483 1.059 3.481

  ben_ppp -0.291 0.137 -0.560 -0.291 -0.017

  bio12_wc30s 0.257 0.559 -0.870 0.264 1.342

  bio16_wc30s -0.476 0.682 -1.801 -0.484 0.900

  dst_coastlin 0.318 0.432 -0.552 0.323 1.158

  dst_waterway 0.180 0.137 -0.085 0.178 0.458

  landcover -0.073 0.098 -0.266 -0.073 0.119

  pet_wc30s -0.223 0.290 -0.784 -0.227 0.366

  srtm_slope 0.062 0.090 -0.116 0.062 0.238

Hyperparameters
  Theta1 for U(s) -2.557 1.742 -6.075 -2.515 0.785

  Theta2 for U(s) 3.573 2.457 -0.974 3.450 8.703

  Precision τv 5.765 1.890 2.784 5.538 10.105

Prevalence of cases
  Intercept -0.614 0.137 -0.873 -0.618 -0.330

  ben_ppp -0.016 0.170 -0.339 -0.022 0.336

  bio4_wc30s 0.287 0.164 -0.035 0.285 0.615

  bio12_wc30s 0.413 0.308 -0.192 0.411 1.027

  dst_waterway 0.301 0.214 -0.120 0.299 0.729

  miaq_wc30s -0.122 0.154 -0.428 -0.122 0.181

  mimq_wc30s -0.272 0.321 -0.907 -0.272 0.361

  srtm_slope -0.031 0.119 -0.267 -0.032 0.205

  srtm_topo 0.148 0.215 -0.282 0.150 0.570

  landcover 0.132 0.130 -0.124 0.131 0.390

Hyperparameters
  Theta1 for U(s) -5.452 2.164 -9.214 -5.638 -0.796

  Theta2 for U(s) 4.814 0.971 2.769 4.878 6.559

  Precision τv 8.888 7.911 1.679 6.604 29.850
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study and was not surprising [7, 35]. A contrarily, the 
prevalence rate of P. falciparum was very high in north-
ern Benin. The DCO district remained a hyperendemic 
area. The Malaria Atlas Project confirmed a similar pat-
tern in the spatial epidemiology of P. falciparum [36, 37]. 
In Côte d’Ivoire, a West African country, a higher preva-
lence rate of P. falciparum infection was also predicted 
in the north compared to the south [38]. Vectors density, 
coverage in vector control tools, drugs, immunity, human 
genetics, social, demographic, and environmental fac-
tors could explain the difference in P. falciparum preva-
lence between northern and southern regions. National 
malaria programmes should determine the appropriate 
package of interventions for local level considering trans-
mission intensity, as well as a good understanding of each 
area’s ecological, epidemiological, and social features. 
Interventions should be adapted and tailored to specific 
geographical areas within each country [39]. The lack of 
qualified human resources in data modelling was a huge 

obstacle in decision making. Challenges remain in con-
vincing national institutions to actively participate and 
provide financial support.

Constraints of malaria control
A 2010 study conducted at the national level in Benin 
showed that 34.5% of households in the north versus 
28.3% in the south owned at least two LLINs. In opposite, 
55.9% of children under five years slept under the LLINs 
the night before in the north compared to 68.1% in the 
south [40]. This coverage of vector control tools remains 
poor and can explain the high prevalence of malaria 
infection and clinical cases found.

The vector resistance to insecticide was high in all the 
studied health districts. Anopheles gambiae, the main 
malaria vector, is highly resistant to the standard insec-
ticides [9, 13]. Data collected during the study showed 
that use of an LLIN was low (17–57%) and gave only 40 
to 50% effectiveness against malaria clinical cases [18].

Fig. 5  Mapping of the predicted prevalence of malaria within OKT (Ouidah—Kpomassè—Tori) health district—(a) and (b) mean posterior 
distribution of the estimates, (c) and (d) standard deviation of the estimates
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During the 2011 and subsequent campaigns, com-
munity awareness of LLIN use was mainly addressed 
to mothers, pregnant women and children. The under-
standing or perception induced by the communication 
campaigns is that the LLINs is to be used by women of 
childbearing potential and the children with whom they 
usually sleep. A large part of children was kept out from 
intervention by the messages delivered during awareness 
campaigns. The malaria awareness campaigns should 
therefore be reviewed in order to improve LLINs use 
rates among elder children and adult males.

In Benin, malaria control tools (LLINs, ACT, SP etc.) 
are available at the health facilities. The index of avail-
ability of malaria control tracers among health facilities 
offering this service provided by SARA survey was 82% 
in Donga department (DCO health zone), compared to 
71% in Atlantique department (OKT health zone). How-
ever, stock-out of anti-malarial drugs were often noticed 
in certain health centres. Care-seeking at health centres 
and utilization of recommended treatment of malaria 

remains a challenge. One major reason is to be self-med-
ication by herbal tea and other non-recommended drugs 
such as chloroquine, quinine and paracetamol [41].

Age effect
Studies suggest a protective effect of maternal breast-
milk against P. falciparum [42, 43]. So, in theory, children 
under six months of age are supposed to be protected 
against infection compared to the elder children due to 
EBF [44]. In the current study, in the south OKT district, 
the infection prevalence was similar among the four age 
groups. Children under six months of age (supposed to 
be exclusive to breastfed) were similarly infected than the 
oldest children. The same observation was seen among 
clinical cases. In the north, the prevalence of P. falcipa-
rum infection and the proportion of clinical patients 
were higher than in the south. The prevalence rate of 
infection was lower among children under six months 
of age than in the oldest. According to knowledge, the 

Fig. 6  Mapping of the predicted prevalence of malaria within DCO (Djougou—Copargo—Ouaké) health district—(a) and (b) mean posterior 
distribution of the estimates, (c) and (d) standard deviation of the estimates
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prevalence of parasitemia increases sharply beginning at 
about 20 weeks of age [44].

Nevertheless, children remain extraordinarily resist-
ant to high parasitemia, fever, and severe malaria until 
about six months of age. This protection is associated 
with maternal immunoglobulin G (IgG) antibodies spe-
cific to Plasmodium antigens, as IgG levels decrease from 
birth over the first year of life. Another assumption is that 
the protection of infants may be associated with parasite 
growth-inhibitory factors such as lactoferrin and secre-
tory IgA found in breast milk and maternal and infant 
sera [44, 45]. Further, data from the Democratic Republic 
of the Congo showed that EBF reduced the risk of clinical 
malaria in children under six months of age [43]. How-
ever, the assumption that maternal antibodies against 
malaria antigens were the basis of this protection was 
contradicted by at least one study [46]. We did not ver-
ify this association in the present study. However, in the 
DHS data from Benin, children under five years received 
EBF or breastfeeding accompanied by water and/or 
other liquids (without milk) for 4.5 months in the DCO 
area and only 3.0 months in OKT [20]. Thus, breastfeed-
ing seems less important in the south than in the north. 
After the age of peak of the prevalence rate of infection, 
the number of clinical attacks of malaria per year dra-
matically declines. For example, in the DCO district, 
the prevalence of P. falciparum clinical cases decreased 
after 23  months, suggesting the beginning of immu-
nological premonition acquisition [47, 48]. Then, from 
23 to 60  months, the frequency of clinical cases dimin-
ishes. The age of onset of this protection is somewhat 
earlier with heavier transmission [42, 43], but protection 
rarely occurs before the age of two years [44]. In south-
ern Benin, the prevalence rate of infection did not vary 
according to age group, probably due to the moderate 
level of malaria endemicity [7, 18]. To fully understand 
the link between EBF and malaria infection and disease 
burden, more studies should be carried out in Benin.

Limitations
This study assessed the spatial heterogeneity of malaria 
risk in two ecological regions in Benin by using 2011 
database. It estimated the disease prevalence adjusted 
for environmental and population covariates and found a 
significant relationship between temperature seasonality, 
rainfall, population density, moisture index and distance 
to the nearest waterways. However, the data were aggre-
gated at village location in place of household. When GPS 
coordinates are available at the household level, similar 
models could be implemented to improve the smooth-
ness of malaria risk prediction in the study regions. Con-
sidering household or individual-level data can allow 
the inclusion of other socio-demographic or personal 

characteristics (e.g. age, sex, access to a mosquito bed 
net, etc.) that are likely to influence disease transmission 
but not easy to obtain for aggregated data collected in 
village or county-level. The climate changes and the vari-
ations of temperature and precipitations change signifi-
cantly with a cycle of 30 years average. However, mayor 
events like catastrophes and crisis can affect diseases epi-
demiology. Benin country did not experience this kind 
of event the last decade. Finally, more complex models 
could be implemented by assuming a non-stationary spa-
tial process to evaluate its influence on models’ outcomes 
[29].

Conclusion
The spatial analysis concerns malaria infection and dis-
ease distribution among children under five years across 
two endemic and various areas in Benin. A higher risk 
of malaria infection and clinical cases were found in the 
north than in the south. The surveillance by geospatial 
approach and capacity building in modelling needs to be 
systematic and periodic to facilitate decision-making on 
the cost-effectiveness and global impact of malaria con-
trol efforts.
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