
molecules

Article

“On Water” Palladium Catalyzed Direct Arylation of
1H-Indazole and 1H-7-Azaindazole

Khadija Gambouz 1,2,3,†, Abdelmoula El Abbouchi 2,3,† , Sarah Nassiri 2,3, Franck Suzenet 2,
Mostapha Bousmina 3, Mohamed Akssira 1, Gérald Guillaumet 2,3,* and Saïd El Kazzouli 3,*

1 Faculty of Sciences and Technologies Mohammedia, University Hassan 2, URAC 22 FSTM University
Hassan II—Casablanca, BP 146, Mohammedia 28800, Morocco; gambouzkhadija@gmail.com (K.G.);
akssira.m@gmail.com (M.A.)

2 Institut de Chimie Organique et Analytique, University of Orléans, UMR CNRS 7311, BP 6759, CEDEX 2,
54067 Orléans, France; a.elabbouchi@ueuromed.org (A.E.A.); sarah.nassiri@femg.ueuromed.org (S.N.);
franck.suzenet@univ-orleans.fr (F.S.)

3 Euromed Research Center, Euromed Institute of Technology, Euromed University of Fes (UEMF),
Route de Meknès, Rond-point de Bensouda, Fes 30000, Morocco; m.bousmina@ueuromed.org

* Correspondence: gerald.guillaumet@univ-orleans.fr (G.G.); s.elkazzouli@ueuromed.org (S.E.K.);
Tel.: +212-6612-99-565 (S.E.K.)

† Both authors contributed equally to this manuscript.

Received: 1 June 2020; Accepted: 16 June 2020; Published: 18 June 2020
����������
�������

Abstract: The C3 direct arylation of 1H-indazole and 1H-7-azaindazole has been a significant challenge
due to the lack of the reactivity at this position. In this paper, we describe a mild and an efficient
synthesis of new series of C3-aryled 1H-indazoles and C3-aryled 1H-7-azaindazoles via a C3 direct
arylation using water as solvent. On water, PPh3 was effective as a ligand along with a lower
charge of the catalyst Pd(OAc)2 (5 mol%) at 100 ◦C, leading to C3-aryled 1H-indazoles or C3-aryled
1H-7-azaindazoles in moderate to good yields.
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1. Introduction

In recent years, the C–H activation has risen as an increasingly powerful tool for molecular
sciences with notable applications in organic synthesis [1–5]. This method has gained considerable
recent momentum as a significantly environmentally and economically attractive alternative to
classical cross-coupling such as Suzuki–Miyaura, Negishi, and Stille reactions [6–10]. With fewer
steps and accessible reagents, complex organic molecules are nowadays easily accessible with C–H
activation [11–20]. Nevertheless, this reaction usually requires high temperatures and organic solvents
to achieve new C(sp2)–C(sp2) bonds [21]. For economic and environmental concerns, we are aiming at
developing a new C–H direct arylation of 1H-indazole and 1H-7-azaindazole by using water as a green
solvent. Water is nature’s primordial solvent to carry out synthesis [22]. It is known that water can
increase the rate and affect the selectivity of a wide variety of organic reactions [23–26]. It was also
found that on watery conditions, the heterogeneous mixture of substrates and catalyst can be very
effective for direct arylation under mild conditions [27].

1H-indazoles and 2H-indazoles have widespread utility as highly bioactive molecules [28].
For such reasons, various researchers were inspired to develop and optimize new methods for their
synthesis and functionalization [29–32]. Recently, different research groups have investigated the C3
direct arylation of indazole, including our own. In 2012, our group [33] in parallel with the Itami
group [34] developed, for the first time, conditions to realize the direct arylation of 1H-indazole series.
The key of this success was the use of bidentate ligand (1,10-phenanthroline) with a high catalyst
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loading (10 to 20 mol%). Later, the reaction conditions have been optimized by the Yu group by reducing
catalyst and ligand loading [35]. In this report, only one example of C3 arylation of 1H-7-azaindazole
was reported using Pd(OAc)2 as a catalyst, and Phen as a ligand in toluene at 160 ◦C (Scheme 1).
Very recently, our group [36,37] and later Popowycz’s [38] group reported independently that the C3
direct arylation of azaindazoles was feasible but using again 1,10-phenanthroline (Phen) as a crucial
ligand in the case of 1H series for both 4-azaindazoles and 7-azaindazoles. In 2017, Doucet and his
group reported a phosphine free C3 arylation of 2H-indazoles in dimethylacetamide DMA using 5
mol% of Pd(OAc)2 as catalyst at 150 ◦C [39]. We noticed in their report that the C3 direct arylation
of 1H-indazole was feasible for the first time without the use of bidentate ligands by employing
PdCl(C3H5)(dppb) as catalyst and KOAc as base in DMA at 150 ◦C. Nevertheless, the expected
products were obtained in moderate to low yields, and the reaction was achieved in organic solvent.
It is noteworthy that all the reported methods on C3 arylation of 1H-indazole discussed above were
carried out in organic solvents and at high temperatures. In 2010, Greaney et al. [32] reported that
2-phenyl-2H-indazole could be directly arylated at the C3 position in high yields using aryl bromides
as coupling partners on water in the presence of Pd(dppf)Cl2 (5 mol%) and Ph3P (10 mol%) as catalyst
and ligand, respectively. Unfortunately, under these reaction conditions, the authors failed to achieve
direct arylation on 1-phenyl-1H-indazole, yet they concluded that, in this case, the C3 position is
non-reactive toward substitution.
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new procedure.

Herein, we reported a new path for the direct and selective C3 arylation of 1H-indazoles on water.
We showed, for the first time, that a phosphine ligand (PPh3), contrary to the bidentate (Phen) ligand
used in the case of organic solvent, is crucial to achieve the arylation reaction (Scheme 1). We are
striving also to report the first examples of “on water” C3 arylation of 1H-7-azaindazoles. We showed
as well that a low charge of the catalyst (5 mol%) and ligand (10 mol%) leads to desired products in
acceptable to good yields.

It is noticed that Knochel et al. used 3-zincated indazoles which undergo palladium-catalyzed
Negishi cross-couplings to give the C3 substituted indazole derivatives [40], while, Burton et al.
described a regioselective iridium-catalyzed C3 borylation of 1H-indazoles, followed by subsequent
Suzuki–Miyaura coupling with aryl chlorides [41]. Compared to the methodology described in our
manuscript, the two methodologies cited above are more difficult to implement and also less economical.
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2. Results

Firstly, we tested Greaney’s reaction conditions [Ag2CO3 (1 equivalent), PPh3 (10 mol%),
Pd(dppf)Cl2·DCM (5 mol%), 4-iodotoluene (1.1 equivalent), water at 50 ◦C for 16 h] [32] on
1-methyl-1H-indazole 1. The arylation reaction did not occur, and only starting material 1 was
recovered (Table 1, entry 1).

Table 1. Optimization of the ‘’on water” direct arylation of 1-methyl-7-nitro-1H-indazole.

Entry X X
(equiv) Cat (equiv) Ligand

(equiv) T ◦C Time
(h) Solvent Yield (%)

1 I 1.1 5%
Pd(dppf)Cl2·DCM 10% PPh3 50 16 Water 0 [a] (85) [b]

2 I 1.1 20% Pd(OAc)2 40% Phen 70 48 Water 0(80)
3 I 1.1 20% Pd(OAc)2 40% PPh3 70 48 Water 40 [c] (32)
4 I 1.1 20% Pd(OAc)2 40% PPh3 Reflux 48 Water 37 (29)
5 I 1.1 20% Pd(OAc)2 40% PPh3 Sealed tube 140 ◦C 48 Water 45 (28)
6 I 1.1 20% Pd(OAc)2 40% PPh3 Sealed tube 140 ◦C 48 Water 47 [d] (26)
7 I 1.1 20% Pd(OAc)2 40% PPh3 Sealed tube 140 ◦C 48 Water/EtOH 1:1 17(25)
8 I 2 20% Pd(OAc)2 40% PPh3 Sealed tube 140 ◦C 48 Water 50 (21)
9 I 3 20% Pd(OAc)2 40% PPh3 Sealed tube 140 ◦C 48 Water 86 (0)

10 I 3 10% Pd(OAc)2 10% PPh3 Sealed tube 140 ◦C 48 Water 84 (0)
11 I 3 5% Pd(OAc)2 10% PPh3 Sealed tube 140 ◦C 48 Water 81 (traces)
12 I 3 5% Pd(OAc)2 10% PPh3 Sealed tube 140 ◦C 24 Water 37 (58)
13 I 3 5% Pd(OAc)2 10% PPh3 Sealed tube 100 ◦C 48 Water 80 (traces)
14 I 3 5% Pd(OAc)2 10% Phen Sealed tube 100 ◦C 48 Water Traces (83)
15 I 3 5% Pd(OAc)2 10% PPh3 Reflux 48 Water 76 (10)
16 Br 3 5% Pd(OAc)2 10% PPh3 Sealed tube 100 ◦C 48 Water 0 (98)

[a] Greaney’s conditions, [b] Percent of recovered starting material, [c] Yield of isolated product 2a, [d] 10% Pd(OAc)2
and 20% PPh3 were used and after 24 h the same quantity of Pd(OAc)2 and PPh3 were added.

Then, in the presence of palladium(II)acetate and 1,10-phenanthroline as a bidentate ligand,
again no reaction was observed, and only starting material 1 was recovered (Table 1, entry 2).
Changing the type of the ligand to triphenylphosphine, a monodentate ligand, which may form a
stronger coordination with Pd(II) centers, led to the desired arylated product 1a in 40% yield (Table 1,
entry 3). Encouraged by this result, we decided to improve the reaction’s conversion by screening
different conditions. At first, we tried to increase the temperature and to change the heating system
with our efforts leading to no avail (Table 1, entries 4–6). Water/ethanol solution was also used to
increase the solubility, but only a decrease of the reaction yield (17%) was observed (Table 1, entry 7).
Using (2 equiv.) of iodotoluene slightly improved the reaction yield (entry 8). Luckily, increasing the
amount of iodotoluene to (3 equiv.) furnished 1a to 86% isolated yield and with a total conversion
(Table 1, entry 9). Furthermore, we succeeded in reducing the loading of both palladium and PPh3

ligand to 5 and 10% respectively (Table 1, entry 11). When the reaction was run for 24 h instead
of 48 h, the yield dramatically decreased (Table 1, entry 12). Notably, the reaction temperature can
be reduced to 100 ◦C without affecting the reaction yield (Table 1, entry 13). Using Phen instead of
Ph3P as a ligand, under the optimized reaction conditions, led to a total loss of the reactivity (Table 1,
entry 14). The reaction under reflux of water in an open flask was not total and 10% of starting material
1 was recovered (Table 1, entry 15). In addition, when 4-iodotoluene was replaced by 4-bromotoluene,
the arylation did not occur, and only starting material 1 was recovered (Table 1, entry 16).

The scope and limitation of the C3 arylation reaction of various substituted indazoles 1 and 2 were
examined (their preparation is described in the Supporting Information). We used various iodoaryl
derivatives carrying electron-donating or electron-withdrawing groups (such as methoxy, chlorine,
ester, nitro, trifluoromethyl, or methyl groups) under the most optimal reaction conditions [5 mol%
Pd(OAc)2 as the catalyst, 10% PPh3 as the ligand, and Ag2CO3 as the base in water at 100 ◦C (Scheme 2)].
The results showed that the expected C3-arylated products 1a–g were regioselectivity obtained. First,
using indazole 1 with 4-iodotoluene gave 1a in 80% yield (Scheme 2). Afterwards, the coupling
of 1 with various aryl iodides was studied. Thus, the reactions with iodobenzene, 4-iodoanisole,
4-iodobenzotrifluoride, 1-chloro-4-iodobenzene, ethyl 4-iodobenzoate, and 1-iodo-4-nitrobenzene



Molecules 2020, 25, 2820 4 of 11

afforded 1b–g in 54–87% yields (Scheme 2). A moderate yield was observed when 3-iodoanisole
was used. In this case, the desired product 1h was isolated in 45% yield. No reaction was observed when
indazole 1 was treated by 2-iodoanisole presumably as a result of its steric hindrance (methoxy group
at the 2-position of the aromatic ring) and 4-iodopyridine (Scheme 2). It is noticeable that iodoaryl,
containing electron-donating groups, was crucial for the achievement of C3 arylation reactions in good
reaction yields (63–87%). In our second attempt, we used indazole 2 in order to see if the nitro group on
position C7 affects the arylation regioselectivity. The treatment of indazole 2 with various substituted
aryl iodides as coupling partners showed that the nature of the substituents (electron-donating or
electron-withdrawing groups) did not affect the reaction yields or regioselectivity (compounds 2a–f).
Thus, the desired products 2a–f were obtained in yields ranging between 41 and 68%. As described in
the previous results, we also observed no arylation when indazole 2 was treated by 2-iodoanisole and
hetero-aryl iodide as coupling partners (compounds 2g–h) (Scheme 2).
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3 previously used without success by Greaney and his group [32]. As expected, we succeeded in
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one work has been reported by Lavard and Popowycz [38], addressing the functionalization of this
motif via direct arylation. Although this reported method is efficient, it is relatively energy-wasting,
using heating at 160 ◦C for a long period of 3 days and organic solvent. For this reason, we decided to
test our conditions developed to prepare C3-arylated pyrazolo[3,4-b]pyridine using the starting material
4 containing a benzyl group (the preparation of starting material 4 is described in the Supporting
Information) with various aryl iodides as arylating partners. As expected, this procedure also showed
a very high tolerance to various substituents on the aryl rings and the arylated products 4b–d were
isolated with yields ranging between 56 and 67% (Scheme 4).
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3. Materials and Methods

3.1. Instrumenttion

The reactions were monitored by thin-layer chromatography (TLC) analysis using silica gel
(60 F254) plates. Compounds were visualized by UV irradiation. Flash column chromatography was
performed on silica gel 60 (230–400.13 mesh, 0.040, 0.063 mm). Melting points (mp [◦C]) were taken on
samples in open capillary tubes and are uncorrected. The infrared spectra of compounds were recorded
at room temperature on a Thermo Scientific Nicolet IS50 FT-IR. 1H and 13C NMR spectra were recorded
on a Bruker Avance II 400 MHz (13C, 100 MHz) or on a Bruker Avance DPX 250 MHz (13C, 62.9 MHz).
Chemical shifts are given in parts per million from tetramethylsilane (TMS) as internal standard.
The multiplicities of the spectra are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q),
and multiplet (m). Coupling constants (J) are reported in hertz (Hz). High-resolution mass spectra
(HRMS) were performed on a Maxis Bruker 4G.

3.2. Preparation of Starting Compounds 1–4

N-Methylation of indazole [33]: the indazole (1 g, 1 equivalent) was dissolved in acetone (10 mL)
at 0 ◦C in a 50 mL flask. KOH (3 equivalent) was added, and then CH3I (1.5 equivalent) was added
dropwise. The reaction mixture was filtered and separated by flash chromatography on silica gel
(75% yield).

N-Arylation of indazole [42]: iodobenzene (204 mg, 1 mmol) and dimethyl sulfoxide 1 mL was
added to the mixture of 1H-indazole (141.7 mg, 1.2 mmol), KOH (67.3 mg, 1.2 mmol), and copper iodide
(I) (19.1 mg, 0.1 mmol), and the reaction was for 12 h at 120 ◦C. After the completion of the reaction,
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cooled to room temperature, 2 mL of water and ethyl acetate 2 mL was added, and liquid separation
was done. 1-phenyl indazole was obtained as a main component of the organic layer (80% yield).

N-Benzylation of 1H-pyrazolo[3,4-b]pyridine [33]: 1H-pyrazolo[3,4-b]pyridine (1 g, 8.39 mmol,
1.00 equivalent) was dissolved in acetone (10 mL) at 0 ◦C in a 50 mL flask, along with KOH (1.41 g,
25.19 mmol, 3.00 equivalent). After few minutes of stirring, benzyl chloride (1.59 g, 12.59 mmol,
1.50 equivalent) was added dropwise. The reaction mixture was filtered, and the two isomers N1 and
N2 were separated by flash chromatography on silica gel (N1: 50%/N2: 45%).

3.3. General Experimental Procedure for the Synthesis of Products 1a–h, 2a–f, 3a–b and 4a–d

A 5 mL sealed tube was charged with 1-methyl-7-nitro-1H-indazole 1, 1-methyl-1H-indazole 2,
1-phenyl-1H-indazole 3, or 1-benzyl-1H-pyrazolo[3,4-b]pyridine 4 (1.0 equivalent), iodoaryl
(3.0 equivalent), Pd(OAc)2 (0.05 equivalent), PPh3 (0.1 equivalent) and Ag2CO3 (1.5 equivalent).
The mixture of solids was stirred for a few seconds to ensure all solids were well mixed. Then, 3 mL
of distilled water was added, the mixture was degassed for few minutes, and the vial was covered
with a serum cap. Then, the vial and its contents were heated and stirred at 100 ◦C for 24 h. After it
was cooled to room temperature, the mixture was filtered through celite, and the organic phase was
extracted three times with ethyl acetate, dried over magnesium sulfate, and then concentrated under
reduced pressure. The residue was purified by flash chromatography to provide the desired products.

1-Methyl-7-nitro-3-(p-tolyl)-1H-indazole 1a: Yield: 80%; yellow solid; mp = 154–156 ◦C; 1H NMR (400
MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 7.23
(d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5,
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat)
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1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–203 ◦C; 1H
NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.07–7.95 (m, 2H),
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132.5, 131.0 (q, JCq-F = 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F = 3.8 Hz, 2C,
CHAr), 125.0 (q, 1JC-F = 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated mass for
C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat)
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H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 1275, 1329, 1346, 1498, 1540, 3020 cm−1.
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7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 134.9,
132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + H]+

calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat)
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7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

=763, 1336, 1358, 1488,
1510, 3018 cm−1.

Ethyl 4-(1-methyl-7-nitro-1H-indazol-3-yl)benzoate 1f: Yield: 54%; yellow solid; mp = 206–208 ◦C; 1H NMR
(400 MHz, CDCl3) δ 8.27 (dd, J = 8.1, 1.0 Hz, 1H), 8.20 (m, 2H), 8.17 (d, J = 8.1 Hz, 1H), 7.98 (m, 2H),
7.32 (t, J = 7.9 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 4.31 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz,
CDCl3) δ 166.3, 144.2, 136.3, 135.6, 132.7, 130.6, 130.3 (2 × C–H), 127.9, 127.7 (2 × C–H), 126.7, 124.8,
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120.6, 61.3, 41.2, 14.5; HRMS (m/z) [M + H]+ calculated mass for C17H16N3O4, 326.1135, mass found
326.1135; IR (neat)
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(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 1100, 1259, 1320, 1365, 1514, 1708, 2850, 2919, 2986, 3104 cm−1.

1-Methyl-7-nitro-3-(4-nitrophenyl)-1H-indazole 1g: Yield: 56%; yellow solid; mp = 242–244 ◦C; 1H NMR
(400 MHz, CDCl3) δ 8.40 (d, J = 8.9 Hz, 2H), 8.28 (dd, J = 8.1, 1.0 Hz, 1H), 8.18 (dd, J = 8.1, 1.0 Hz, 1H),
8.10 (d, J = 8.9 Hz, 2H), 7.37 (t, J = 7.9 Hz, 1H), 4.32 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 148.5, 142.8,
138.5 (2 × C–H), 132.8, 132.2, 128.4 (2 × C–H), 127.4, 124.9, 124.4 (2 × C–H), 121.2, 29.8; HRMS (m/z) [M
+ H]+ calculated mass for C14H11N4O4, 299.0775 mass found 299.0774; IR (neat)
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distilled water was added, the mixture was degassed for few minutes, and the vial was covered with 
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(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 1325, 1345, 1455,
1518, 3076, 1601 cm−1.

3-(3-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1h: Yield: 45%; yellow solid; mp = 164–166◦C; 1H
NMR (400 MHz, CDCl3) δ 8.27 (dd, J = 8.1, 1.0 Hz, 1H), 8.14 (dd, J = 8.1, 1.0 Hz, 1H), 7.51–7.37 (m,
3H), 7.28 (d, J = 7.9 Hz, 1H), 7.00 (m, 1H), 4.29 (s, 3H), 3.91 (s, 3H); 13C NMR (101 MHz, CDCl3) δ
160.2, 145.3, 133.3, 132.7, 130.2, 128.7,128.2, 126.8, 124.7, 120.5, 120.1, 114.7, 113.4, 55.5, 41.0; HRMS (m/z)
[M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1029; IR (neat)

Molecules 2020, 25, x 6 of 11 

 

 

N-Arylation of indazole [42]: iodobenzene (204 mg, 1 mmol) and dimethyl sulfoxide 1 mL was 
added to the mixture of 1H-indazole (141.7 mg, 1.2 mmol), KOH (67.3 mg, 1.2 mmol), and copper 
iodide (I) (19.1 mg, 0.1 mmol), and the reaction was for 12 h at 120 °C. After the completion of the 
reaction, cooled to room temperature, 2 mL of water and ethyl acetate 2 mL was added, and liquid 
separation was done. 1-phenyl indazole was obtained as a main component of the organic layer (80% 
yield). 

N-Benzylation of 1H-pyrazolo[3,4-b]pyridine [33]: 1H-pyrazolo[3,4-b]pyridine (1 g, 8.39 mmol, 
1.00 equivalent) was dissolved in acetone (10 mL) at 0 °C in a 50 mL flask, along with KOH (1.41 g, 
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(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 1250, 1319,
1472, 1514, 1596, 2850, 2920 cm−1.

1-Methyl-3-(p-tolyl)-1H-indazole 2a: Data for compound 2a were previously reported [35].

1-Methyl-3-phenyl-1H-indazole 2b: Data for compound 2b were previously reported [35].

3-(4-Methoxyphenyl)-1-methyl-1H-indazole 2c: Data for compound 2c were previously reported [35].

1-Methyl-3-(4-(trifluoromethyl)phenyl)-1H-indazole 2d: Data for compound 2d were previously
reported [35].

1-Methyl-3-(4-nitrophenyl)-1H-indazole 2e: Yield: 68%; white solid; mp = 209–211 ◦C; 1H NMR (400 MHz,
CDCl3) δ 8.37 (d, J = 8.8 Hz, 2H), 8.18 (d, J = 8.8 Hz, 2H), 8.03 (dd, J = 8.1, 1.1 Hz, 1H), 7.48 (d, J = 3.4
Hz, 2H), 7.30 (dt, J = 8.1, 3.4 Hz, 1H), 4.17 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 147.1, 141.7, 141.2,
140.4, 127.5 (2 × C–H), 126.8, 124.3 (2 × C–H), 122.1, 121.7, 120.9, 109.8, 29.8; HRMS (m/z) [M + H]+

calculated mass forC14H12N3O2, 254.0924, mass found 254.0922; IR (neat)
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added to the mixture of 1H-indazole (141.7 mg, 1.2 mmol), KOH (67.3 mg, 1.2 mmol), and copper 
iodide (I) (19.1 mg, 0.1 mmol), and the reaction was for 12 h at 120 °C. After the completion of the 
reaction, cooled to room temperature, 2 mL of water and ethyl acetate 2 mL was added, and liquid 
separation was done. 1-phenyl indazole was obtained as a main component of the organic layer (80% 
yield). 

N-Benzylation of 1H-pyrazolo[3,4-b]pyridine [33]: 1H-pyrazolo[3,4-b]pyridine (1 g, 8.39 mmol, 
1.00 equivalent) was dissolved in acetone (10 mL) at 0 °C in a 50 mL flask, along with KOH (1.41 g, 
25.19 mmol, 3.00 equivalent). After few minutes of stirring, benzyl chloride (1.59 g, 12.59 mmol, 1.50 
equivalent) was added dropwise. The reaction mixture was filtered, and the two isomers N1 and N2 
were separated by flash chromatography on silica gel (N1: 50%/N2: 45%). 

3.3. General Experimental Procedure for the Synthesis of Products 1a–h, 2a–f, 3a–b and 4a–d  

A 5 mL sealed tube was charged with 1-methyl-7-nitro-1H-indazole 1, 1-methyl-1H-indazole 2, 
1-phenyl-1H-indazole 3, or 1-benzyl-1H-pyrazolo[3,4-b]pyridine 4 (1.0 equivalent), iodoaryl (3.0 
equivalent), Pd(OAc)2 (0.05 equivalent), PPh3 (0.1 equivalent) and Ag2CO3 (1.5 equivalent). The 
mixture of solids was stirred for a few seconds to ensure all solids were well mixed. Then, 3 mL of 
distilled water was added, the mixture was degassed for few minutes, and the vial was covered with 
a serum cap. Then, the vial and its contents were heated and stirred at 100 °C for 24 h. After it was 
cooled to room temperature, the mixture was filtered through celite, and the organic phase was 
extracted three times with ethyl acetate, dried over magnesium sulfate, and then concentrated under 
reduced pressure. The residue was purified by flash chromatography to provide the desired 
products. 

1-Methyl-7-nitro-3-(p-tolyl)-1H-indazole 1a: Yield: 80%; yellow solid; mp = 154–156 °C; 1H NMR 
(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 2931, 1543, 1486, 1352,
1347, 1260, 780 cm−1.

3-(3-Methoxyphenyl)-1-methyl-1H-indazole 2f: Yield: 41%; white solid; mp = 112–113 ◦C; 1H NMR (400
MHz, CDCl3) δ 8.04 (d, J = 8.1 Hz, 1H), 7.57 (dd, J = 7.4, 1.4 Hz, 1H), 7.54 (d, J = 1.4 Hz, 1H), 7.49–7.37
(m, 3H), 7.22 (ddd, J = 8.1, 5.1, 2.7 Hz, 1H), 6.96 (d, J = 5.8 Hz, 1H), 4.13 (s, 3H), 3.91 (s, 3H); 13C NMR
(101 MHz, CDCl3) δ 160.1, 143.6, 141.5, 135.1, 129.9, 126.3, 121.7, 121.4, 121.0, 120.0, 113.9, 112.6, 109.3,
55.4, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H15N2O, 239.1179 mass found 239.1176; IR
(neat)
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mixture of solids was stirred for a few seconds to ensure all solids were well mixed. Then, 3 mL of 
distilled water was added, the mixture was degassed for few minutes, and the vial was covered with 
a serum cap. Then, the vial and its contents were heated and stirred at 100 °C for 24 h. After it was 
cooled to room temperature, the mixture was filtered through celite, and the organic phase was 
extracted three times with ethyl acetate, dried over magnesium sulfate, and then concentrated under 
reduced pressure. The residue was purified by flash chromatography to provide the desired 
products. 

1-Methyl-7-nitro-3-(p-tolyl)-1H-indazole 1a: Yield: 80%; yellow solid; mp = 154–156 °C; 1H NMR 
(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

=2931, 1486, 1347, 1289, 1260, 780 cm−1.

1,3-Diphenyl-1H-indazole 3a: Data for compound 3a were previously reported [34].

1-Phenyl-3-(p-tolyl)-1H-indazole 3b: Data for compound 3b were previously reported [34].

1-Benzyl-3-phenyl-1H-pyrazolo[3,4-b]pyridine 4a: Yield: 63%; white solid; mp = 133–135 ◦C; 1H NMR
(400 MHz, CDCl3) δ 8.60 (dd, J = 4.5, 1.5 Hz, 1H), 8.35 (dd, J = 8.1, 1.5 Hz, 1H), 8.04–7.95 (m, 2H), 7.52 (dd,
J = 8.3, 6.8 Hz, 2H), 7.46–7.40 (m, 3H), 7.35–7.25 (m, 3H), 7.18 (dd, J = 8.1, 4.5 Hz, 1H), 5.82 (s, 2H);
13C NMR (101 MHz, CDCl3) δ 151.45, 148.90, 143.11, 137.24, 133.33, 130.50, 128.99 (2 × C–H), 128.65
(2 × C–H), 128.38, 127.98 (2 × C–H), 127.72 (2 × C–H), 127.22, 117.20, 113.77, 50.87, 14.25; HRMS (m/z)
[M + H]+ calculated mass for C19H17N3, 286.1339, mass found 286.1338; IR (neat)
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mixture of solids was stirred for a few seconds to ensure all solids were well mixed. Then, 3 mL of 
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cooled to room temperature, the mixture was filtered through celite, and the organic phase was 
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reduced pressure. The residue was purified by flash chromatography to provide the desired 
products. 

1-Methyl-7-nitro-3-(p-tolyl)-1H-indazole 1a: Yield: 80%; yellow solid; mp = 154–156 °C; 1H NMR 
(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
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1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
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3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 3050, 3031, 1610,
1330 cm−1.

1-Benzyl-3-(p-tolyl)-1H-pyrazolo[3,4-b]pyridine 4b: Yield: 67%; Yellow solid; mp = 85–90 ◦C; 1H NMR
(400 MHz, CDCl3) δ 8.59 (dd, J = 4.5, 1.5 Hz, 1H), 8.34 (dd, J = 8.1, 1.5 Hz, 1H), 7.98–7.79 (m, 2H),
7.45–7.38 (m, 2H), 7.35–7.24 (m, 5H), 7.18 (dd, J = 8.1, 4.5 Hz, 1H), 5.80 (s, 2H), 2.44 (s, 3H); 13C
NMR (101 MHz, CDCl3) δ 151.49, 148.87, 143.25, 138.32, 137.34, 130.59, 130.54, 129.72 (2 × C–H),
128.66 (2 × C–H), 127.98 (2 × C–H), 127.70, 127.14 (2 × C–H), 117.09, 113.81, 50.84, 21.48; HRMS (m/z)
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[M + H]+ calculated mass for C20H18N3, 300.1495, mass found 300.1499; IR (neat)

Molecules 2020, 25, x 6 of 11 

 

 

N-Arylation of indazole [42]: iodobenzene (204 mg, 1 mmol) and dimethyl sulfoxide 1 mL was 
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equivalent), Pd(OAc)2 (0.05 equivalent), PPh3 (0.1 equivalent) and Ag2CO3 (1.5 equivalent). The 
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distilled water was added, the mixture was degassed for few minutes, and the vial was covered with 
a serum cap. Then, the vial and its contents were heated and stirred at 100 °C for 24 h. After it was 
cooled to room temperature, the mixture was filtered through celite, and the organic phase was 
extracted three times with ethyl acetate, dried over magnesium sulfate, and then concentrated under 
reduced pressure. The residue was purified by flash chromatography to provide the desired 
products. 

1-Methyl-7-nitro-3-(p-tolyl)-1H-indazole 1a: Yield: 80%; yellow solid; mp = 154–156 °C; 1H NMR 
(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 2922, 2852, 1735,
1465, 772, 511 cm−1.

1-Benzyl-3-(4-nitrophenyl)-1H-pyrazolo[3,4-b]pyridine 4c: Yield: 59%; Yellow solid; mp = 157–162 ◦C; 1H
NMR (400 MHz, CDCl3) δ 8.66 (dd, J = 4.5, 1.5 Hz, 1H), 8.42–8.32 (m, 3H), 8.17 (d, J = 8.8 Hz, 2H), 7.45
(dd, J = 6.7, 1.7 Hz, 2H), 7.36–7.27 (m, 4H), 5.83 (s, 2H); 13C NMR (101 MHz, CDCl3) δ 151.50, 149.39,
147.38, 140.52, 139.71, 136.70, 130.04, 128.79 (2 ×C–H), 128.17 (2 ×C–H), 128.03, 127.39 (2 × C–H), 124.35
(2 × C–H), 118.14, 113.76, 51.23; HRMS (m/z) [M + H]+ calculated mass for C19H15N4O2, 331.1190,
mass found 331.1191; IR (neat)
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products. 
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(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 2923, 2852, 1516, 1342, 771 cm−1.

1-Benzyl-3-(3-methoxyphenyl)-1H-pyrazolo[3,4-b]pyridine 4d: Yield: 56%; Yellow oil; 1H NMR (400 MHz,
CDCl3) δ 8.58 (dd, J = 4.5, 1.5 Hz, 1H), 8.35 (dd, J = 8.1, 1.5 Hz, 1H), 7.58–7.48 (m, 2H), 7.46–7.36 (m,
3H), 7.30 (t, J = 7.2 Hz, 2H), 7.19 (dd, J = 8.1, 4.5 Hz, 1H), 6.96 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 5.79 (s, 2H),
3.90 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 160.19, 151.51, 148.99, 143.02, 137.26, 134.68, 130.58, 130.06,
128.70 (2 × C–H), 128.01 (2 × C–H), 127.76, 119.78, 117.30, 114.24, 113.87, 112.63, 55.55, 50.92; HRMS
(m/z) [M + H]+ calculated mass for C20H18N3O, 316.1444, mass found 316.1443; IR (neat)
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1-Methyl-7-nitro-3-(p-tolyl)-1H-indazole 1a: Yield: 80%; yellow solid; mp = 154–156 °C; 1H NMR 
(400 MHz, CDCl3) δ 8.15 (dd, J = 8.1, 1.0 Hz, 1H), 8.06 (dd, J= 8.1, 1.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 
7.23 (d, J = 7.6 Hz, 2H), 7.20–7.12 (m, 1H), 4.18 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 145.5, 
138.9, 135.3, 132.6, 129.8 (2 × C–H), 129.1, 128.3, 127.9 (2 × C–H), 126.9, 124.7, 119.9, 40.9, 21.5; HRMS 
(m/z) [M + H]+ calculated mass for C15H14N3O2, 268.1081, mass found 268.1079; IR (neat) ῠ = 1303, 1325, 
1471, 1509, 2918, 3099 cm−1. 

1-Methyl-7-nitro-3-phenyl-1H-indazole 1b: Data for compound 1b were previously reported [11] 

3-(4-Methoxyphenyl)-1-methyl-7-nitro-1H-indazole 1c: Yield: 63%; yellow solid; mp = 182–184 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.27 (dd, J= 8.1, 1.0 Hz, 1H), 8.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 
2H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.31 (s, 3H), 3.93 (s, 3H); 13C NMR (101 MHz, 
CDCl3) δ 160.3, 145.3, 139.2, 132.7, 129.3 (2 × C–H), 128.3, 126.9, 124.7, 124.5, 119.9, 114.6 (2 × C–H), 
55.5, 29.8; HRMS (m/z) [M + H]+ calculated mass for C15H14N3O3, 284.1030, mass found 284.1030; IR 
(neat) ῠ = 1321, 1361, 1514, 1530, 1612, 2849, 2919 cm−1. 

1-Methyl-7-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole 1d: Yield: 55%; yellow solid; mp = 201–
203 °C; 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J =8.1, 1.0 Hz, 1H), 8.07–
7.95 (m, 2H), 7.85–7.73 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 4.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 
143.8, 139.4, 135.6, 132.5, 131.0 (q, JCq-F= 32.3 Hz, Cq-F), 128.1 (2 × C–H), 127.6, 126.5, 126.1 (q, 3JCHAr-F= 
3.8 Hz, 2C, CHAr), 125.0 (q, 1JC-F= 272.1 Hz, CF3), 124.8, 120.1, 29.8;HRMS (m/z) [M + H]+ calculated 
mass for C15H11F3N3O2, 322.0798 mass found 322.0796; IR (neat) ῠ = 1275, 1329, 1346, 1498, 1540, 3020 
cm−1. 

3-(4-Chlorophenyl)-1-methyl-7-nitro-1H-indazole 1e: Yield: 87%; yellow solid; mp = 172–173 °C; 1H 
NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.1, 1.0 Hz, 1H), 8.15 (dd, J= 8.1, 1.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 
2H), 7.51 (d, J = 8.5 Hz, 2H), 7.34–7.23 (m, 1H).4.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.2, 135.5, 
134.9, 132.7, 130.5, 129.4 (2 × C–H), 129.2 (2 × C–H), 127.8, 126.6, 124.8, 120.4, 29.8; HRMS (m/z) [M + 
H]+ calculated mass for C14H11ClN3O2, 288.0534, mass found 288.0534; IR (neat) ῠ =763, 1336, 1358, 
1488, 1510, 3018 cm−1. 

= 2936,
2805, 1601, 1280 cm−1.

4. Conclusions

In summary, we have developed a new palladium catalyzed direct C3 arylation of 1H-indazole
using a low charge of 5 mol% of Pd(OAc)2 along with 10 mol % of PPh3 on water as solvent at 100 ◦C.
This new procedure afforded a board of arylated indazoles differently substituted at the C3 position in
moderate to good yields. The application of this protocol on 1H 7-azaindazole was fruitful, and four
examples of C3-arylated pyrazolo[3,4-b]pyridine were successfully reported.

Supplementary Materials: The following are available online, Spectral Data of All the Synthesized Products,
NMR Spectra of All the Products.
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