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Abstract

Mathematical modeling of the relationship between the functional activity and the structural 

wiring of the brain has largely been undertaken using non-linear and biophysically detailed 

mathematical models with regionally varying parameters. While this approach provides us a 

rich repertoire of multistable dynamics that can be displayed by the brain, it is computationally 

demanding. Moreover, although neuronal dynamics at the microscopic level are nonlinear and 

chaotic, it is unclear if such detailed nonlinear models are required to capture the emergent 

meso-(regional population ensemble) and macro-scale (whole brain) behavior, which is largely 

deterministic and reproducible across individuals. Indeed, recent modeling effort based on spectral 

graph theory has shown that an analytical model without regionally varying parameters and 

without multistable dynamics can capture the empirical magnetoencephalography frequency 

spectra and the spatial patterns of the alpha and beta frequency bands accurately.

In this work, we demonstrate an improved hierarchical, linearized, and analytic spectral 

graph theory-based model that can capture the frequency spectra obtained from 

magnetoencephalography recordings of resting healthy subjects. We reformulated the spectral 

graph theory model in line with classical neural mass models, therefore providing more 

biologically interpretable parameters, especially at the local scale. We demonstrated that this 

model performs better than the original model when comparing the spectral correlation of modeled 

frequency spectra and that obtained from the magnetoencephalography recordings. This model 

also performs equally well in predicting the spatial patterns of the empirical alpha and beta 

frequency bands.
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1. Introduction

How the brain exhibits dynamic functional activity with a static anatomical structural 

wiring, and how the structural and functional alterations are associated with neurological 

diseases (Fornito et al., 2015) has been a long-standing open question in the field of 

neuroscience. Functional activity in the gray matter regions can be measured non-invasively 

using functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and 

magnetoencephalography (MEG). The connections between the gray matter regions, or the 

structural wiring, is estimated using diffusion tensor imaging (DTI) from MRI. One way 

of investigating the relationship between the functional activity and the structural wiring 

is by exploring a macroscopic graph with the gray matter regions as the nodes and the 

weights of the edges determined by the extent of connectivity of the white matter fibers 

between the nodes. Subsequently, various graph theoretic and modeling approaches have 

been undertaken to determine the functional-structural relationships and how they are altered 

in various neurological diseases.

Graph theoretic approaches have been widely used to evaluate statistical measures of 

relationships between functional and structural connectivity (Abdelnour et al., 2018; 2014; 

Achard et al., 2006; Bullmore and Sporns, 2009; Ghosh et al., 2008; Hermundstad et al., 

2013; van den Heuvel et al., 2009; Honey et al., 2009; Park and Friston, 2013; Rubinov 

et al., 2009; Strogatz, 2001). However, they do not take into account any details of neural 

physiology (Mišić et al., 2015) and therefore are limited in their capability to develop a 

mechanistic understanding.

On the other hand, detailed computational modeling approaches have been undertaken to 

incorporate neural activity, such as neural mass (David and Friston, 2003; Muldoon et al., 

2016) and mean field modeling (Boustani and Destexhe, 2009; Destexhe and Sejnowski, 

2009; Wilson and Cowan, 1973), where neural assemblies and connections among them are 

modeled. Such computational models are non-linear and require several time consuming 

simulations to obtain the structure-function relationships. Although neuronal dynamics at 

the microscopic level (single neurons) are nonlinear and chaotic, it is unclear if such 

detailed nonlinear models are required to capture the emergent meso-(regional population 

ensemble) and macro-scale (whole brain) behavior, which is largely deterministic and 

reproducible across individuals (Fox and Raichle, 2007; Nozari et al., 2020). Indeed, it 

has been suggested that brain-wide neural activity can be independent of microscopic local 

activity of individual neurons (Abdelnour et al., 2014; Destexhe and Sejnowski, 2009; Mišić 

et al., 2015; 2014; Robinson et al., 2005; Shimizu and Haken, 1983), and instead may be 

regulated by long-range structural connectivity (Abdelnour et al., 2015; Deco et al., 2012; 

Jirsa et al., 2002; Nakagawa et al., 2014). Based on this hypothesis, Raj and colleagues had 

earlier developed a hierarchical, linear, analytic spectral graph theory model (SGM) which 
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could accurately capture empirical MEG spectra and spatial distribution of alpha and beta 

frequency bands (Raj et al., 2020).

SGM provides a closed-form solution of brain oscillations in the form of steady state 

frequency response obtained from the eigendecomposition of a graph Laplacian, based on 

spectral graph theory (Auffarth, 2007; Kondor and Lafferty, 2002; Larsen et al., 2006; Ng 

et al., 2001). This model incorporates the structural connectome and long-range axonal 

conduction delays, and provides a set of frequency-rich spectra which can be directly 

compared to the empirical MEG wideband spectra obtained after source reconstruction of 

MEG signals. Moreover, since the analytical solution to this SGM model can be obtained 

in a closed-form, no time-consuming simulations are required. The model is parameterized 

by a small set of global parameters : the neural gains, time constants, conduction velocity, 

and macroscopic coupling. These model parameters admit physical interpretations and can 

be potentially controlled by neuromodulation (Shine et al., 2018). Most importantly for 

downstream applications, SGM model inference is highly feasible in comparison to other 

methods, and it is the only model whose inference can be realized from empirical regional 

power spectra rather than from functional correlation structures like functional connectivity 

(FC). Finally, the spectral graph model is conceptually attractive because it places the 

graph explicitly at the center of the model, a counter-point to coupled Neural Mass Models 

(NMMs), where the effect of the graph comes about only indirectly as coupling coefficients 

between local neural masses.

The previously published SGM had local model elements derived from a control theory 

viewpoint, due to which the local parameters and gain terms lacked classical interpretability 

in terms of extant NMMs. Here, we reformulate the SGM local model from bottom-up, 

in line with classical neural masses. We thoroughly explore the inference of this modified 

model on real MEG data, and show that the modified model is essentially equivalent to the 

original SGM, and displays a small but significantly more favorable fit to real MEG regional 

power spectra. Thus, the new model keeps the key strengths of the original, while providing 

more biologically interpretable parameters, especially at the local scale. This modified SGM 

(M-SGM) has an excellent ability to capture the spatial patterns of empirical alpha and beta 

frequency bands, requiring only 5–10 graph eigenmodes to do so.

2. Methods

2.1. M-SGM

We hierarchically model the local cortical mesoscopic and long-range macroscopic signals 

for each brain region, where the regions are obtained using the Desikan–Killiany atlas 

(Desikan et al., 2006). We then solve the model equations to obtain a closed-form solution in 

the Fourier frequency domain. This provides us frequency rich spectra which is an estimate 

of the source-reconstructed MEG spectra.

Notation All the vectors and matrices are written in boldface and the scalars are written in 

normal font. The frequency f of a signal is specified in Hertz and the corresponding angular 

frequency ω = 2πf is used to obtain the Fourier transforms. The connectivity matrix is 
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defined as C = cjk, where cjk is the connectivity strength between regions j and k, normalized 

by the row degree.

2.1.1. Mesoscopic model—For every region k out of the total N regions, we model the 

local excitatory signal xe,k, local inhibitory signal xi,k as well as the long range excitatory 

signal xk where the global connections are incorporated. The local signals are modeled using 

an analytical and linearized form of neural mass equations. We write a set of differential 

equations for evolution of xe,k and xi,k due to decay of individual signals with a fixed neural 

gain, coupling of excitatory and inhibitory signals, and input white Gaussian noise. Letting 

fe(t) and fi(t) denote the ensemble average neural impulse response functions, the equations 

for xe,k and xi,k are:

dxe, k(t)
dt = − fe(t)

τe
⋆ geexe, k(t) − geifi(t) ⋆ xi, k(t) + p(t), and, (1)

dxi, k(t)
dt = − fi(t)

τi
⋆ giixi, k(t) + geife(t) ⋆ xe, k(t) + p(t), (2)

where, ⋆ stands for convolution, p(t) is input noise, parameters gee, gii, gei are neural gain 

terms, and parameters τe, τi are characteristic time constants. These are global parameters 

and are the same for every region k. Here, the ensemble average neural impulse response 

functions fe(t) and fi(t) below are assumed to be Gamma-shaped:

fe(t) = 1
τe2

e
−t
τe ,  and, (3)

fi(t) = 1
τi

2e
−t
τi . (4)

2.1.2. Macroscopic model—A similar equation is written for the macroscopic signal 

xk, for every kth region, accounting for long-range excitatory corticocortical connections for 

the pyramidal cells. The evolution of xk is assumed as a sum of decay due to individual 

signals with a fixed excitatory neural gain, incoming signals from all other connected 

regions determined by the white matter connections, and the input signal xe,k(t) + xi,k(t) 
determined from Eqs. (1), (2). The equation for xk is:

dxk(t)
dt = − 1

τG
fe(t) ⋆ xk(t) + α

τG
fe(t) ⋆ ∑

j = 1

N
cjkxj t − τjk

v + xe, k(t) + xi, k(t) , (5)

where, τG is the graph characteristic time constant, α is the global coupling constant, cjk 

are elements of the connectivity matrix determined from DTI followed by tractography, τjk
υ

is the delay in signals reaching from the jth to the kth region, υ is the cortico-cortical fiber 
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conduction speed with which the signals are transmitted. The delay τjk
υ  is calculated as djk/υ, 

where djk is the distance between regions j and k.

These set of equations are parameterized by 8 global parameters: excitatory time constant τe, 

inhibitory time constant τi, macroscopic graph time constant τG, excitatory neural gain gee, 

inhibitory neural gain gii, alternating population neural gain gei, global couping constant α, 

and conduction speed υ. The neural gain gee is kept as 1 to ensure parameter identifiability. 

We estimate the 7 global parameters using an optimization procedure described in the next 

section.

2.1.3. Model solution in the Fourier domain—Since the above equations are linear, 

we can obtain a closed-form solution in the Fourier domain as demonstrated below. The 

Fourier transform ℱ() is taken at angular frequency ω which is equal to 2πf, where f is 

the frequency in Hertz. The Fourier transform of the Eqs. (1) and (2) will be the following, 

where ℱ xe(t) = Xe(ω) and ℱ xi(t) = Xi(ω):

jωXe(ω) = − Fe(ω)
τe

geeXe(ω) − geiFi(ω)Xi(ω) + P (ω), and, (6)

jωXi(ω) = − Fi(ω)
τi

giiXi(ω) + geiFe(ω)Xe(ω) + P (ω) . (7)

Here, P(ω) is the Fourier transform of the input Gaussian noise p(t) which we assume to 

be identically distributed for both the excitatory and inhibitory local populations for each 

region, and the Fourier transforms of the ensemble average neural response functions are:

ℱ fe(t) = Fe(ω) =

1
τe2

jω + 1
τe

2 ,  and, (8)

ℱ fi(t) = Fi(ω) =

1
τi
2

jω + 1
τi

2 . (9)

On solving the above Eqs. (6) and (7), we get the following expressions for Xe(ω) and 

Xi(ω):

Xe ω

1 +
gei
τe

Fe(ω)Fi(ω)

jω +
gii
τi

Fi(ω)
P (ω)

jω + gee
τe

Fe(ω) + geiFe(ω)Fi(ω) 2

τeτi jω +
gii
τi

Fi(ω)

and, (10)
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Xi(ω) =

1 −
gei
τi

Fe(ω)Fi(ω)

jω +
gee
τe

Fe(ω)
P (ω)

jω + gii
τi

Fi(ω) + geiFe(ω)Fi(ω) 2

τeτi jω +
gee
τe

Fe(ω)

. (11)

Then, the transfer functions He(ω) and Hi(ω) can be separated out and we get:

Xe(ω) = He(ω)P (ω), (12)

Xi(ω) = Hi(ω)P (ω) . (13)

The total neural population is:

Xlocal(ω) = He(ω) + Hi(ω) P (ω), (14)

thus, Hlocal(ω) = He(ω) + Hi(ω). In order to obtain a Fourier response of the macroscopic 

signal, we first re-write Eq. (5) in the vector form as:

dx(t)
dt = − 1

τG
fe(t) ⋆ x(t) + α

τG
fe(t) ⋆ Cx t − τjk

υ + xlocal(t) . (15)

We similarly take a Fourier response of the macroscopic signal and obtain the following as 

the Fourier transform of Eq. (15), where ℱ(x(t)) = X(ω):

jωXk(ω) = − 1
τG

Fe(ω)X(ω) + α
τG

Fe(ω)C*(ω)X(ω) + Xlocal(ω), (16)

where, C*(ω) = cijexp − jωτijυ . Note that each element in the matrix C is normalized already 

by the row degree. The above equation can be re-arranged as:

jω + 1
τG

Fe(ω) I−αC*(ω) X(ω) = Hlocal(ω)P (ω) . (17)

Here, we define the complex Laplacian matrix:

L(ω) = I − αC*(ω), (18)

where, I is the identity matrix of size N × N. The eigen-decomposition of this complex 

Laplacian matrix is:

L(ω) = U(ω)Λ(ω)U(ω)H, (19)

where, U (ω) are the eigenvectors and Λ(ω) = diag([λ1(ω), …, λN(ω)]) consist of the 

eigenvalues λ1(ω), …, λN(ω), at angular frequency ω. The macroscopic response Eq. (17) 

can be written as:
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X(ω) = jω + 1
τG

Fe(ω)L(ω)
−1

Hlocal(ω)P (ω) . (20)

By using the eigen-decomposition of the Laplacian matrix, the above equation can be 

re-written as:

X(ω) = ∑
k = 1

N uk(ω)uk(ω)H

jω + τG
−1λk(ω)Fe(ω)

Hlocal(ω)P (ω), (21)

where, uk(ω) are the eigenvectors from U(ω) and λk (ω) are the eigen-values from Λ(ω) 

obtained by the eigen-decomposition of the complex Laplacian matrix L(ω) obtained in 

Eq. (19). Eq. (21) is the closed-form steady state solution of the macroscopic signals at a 

specific angular frequency ω. We use this modeled spectra to compare against empirical 

MEG spectra and subsequently estimate model parameters. In M-SGM, we also included 

the cortical as well as subcortical region eigenvalues in calculation of the modeled spectra, 

unlike in SGM where only cortical eigenvalues were included. In addition, we performed 

whitening of the input noise term after calculating the modeled spectra in M-SGM, while it 

was whitened before calculating the modeled spectra in the original SGM.

2.1.4. Mesoscopic model in SGM—In the original SGM (Raj, Cai, Xie, Palacios, 

Owen, Mukherjee, Nagarajan, 2020), the mesoscopic model equations were:

dxe, k(t)
dt = − fe(t)

τe
⋆ geexe, k(t) + p(t),  and, (22)

dxi, k(t)
dt = − fi(t)

τi
⋆ giixi, k(t) + p(t) . (23)

Writing in terms of transfer functions gives Xe(ω) = He(ω)P(ω) and Xi(ω) = Hi(ω)P(ω). To 

account for coupling in SGM, an additional transfer function was introduced:

Hei(ω) = He(ω)Hi(ω)/ 1 + geiHe(ω)Hi(ω) . (24)

The net transfer function then was:

Hlocal(ω) = He(ω) + Hi(ω) + Hei(ω) . (25)

The main difference is in how the excitatory and inhibitory populations were coupled in 

M-SGM versus SGM.

2.2. Dataset description

The dataset used for this work is the same as the one used for the previous SGM work (Xie 

et al., 2020). For this dataset, MEG, anatomical MRI, and diffusion MRI was collected 

for 36 healthy adult subjects (23 males, 13 females; 26 left-handed, 10 right-handed; 

mean age 21.75 years, age range 7–51 years). All study procedures were approved by the 
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institutional review board at the University of California at San Francisco (UCSF) and are in 

accordance with the ethics standards of the Helsinki Declaration of 1975 as revised in 2008. 

MEG recordings were collected while the subjects were resting and had eyes closed. MRI 

followed by tractography was used to generate the connectivity matrices. MEG recordings 

were downsampled to 600 Hz, followed by a bandpass filtering of the signals between 2 and 

45 Hz using firls in MATLAB (The Mathworks, 2020) and generation of the frequency 

spectra for every region of interest using the pmtm algorithm in MAT-LAB (The Mathworks, 

2020). Data collection procedure has already been described previously (Raj et al., 2020) 

and are summarized below.

2.3. MRI

A 3 Tesla TIM Trio MR scanner (Siemens, Erlangen, Germany) was used to perform MRI 

using a 32-channel phased-array radiofrequency head coil. High-resolution MRI of each 

subject’s brain was collected using an axial 3D magnetization prepared rapid-acquisition 

gradient-echo (MPRAGE) T1-weighted sequence (echo time [TE] = 1.64 ms, repetition time 

[TR] = 2530 ms, TI = 1200 ms, flip angle of 7°) with a 256-mm field of view (FOV), and 

160 1.0-mm contiguous partitions at a 256 × 256 matrix. Whole-brain diffusion weighted 

images were collected at b = 1000 s/mm2 with 30 directions using 2-mm voxel resolution 

in-plane and through-plane.

2.4. MEG data

MEG recordings were acquired at UCSF using a 275-channel CTF Omega 2000 whole-head 

MEG system from VSM MedTech (Coquitlam, BC, Canada). All subjects were instructed to 

keep their eyes closed for 5 min while their MEGs were recorded at a sampling frequency of 

1200 Hz.

2.5. Region parcellations

The T1-weighted images were parcellated into 68 cortical regions and 18 subcortical regions 

using the Desikan–Killiany atlas available in the FreeSurfer software (Fischl et al., 2002). 

To do this, the subject specific T1-weighted images were back-projected to the atlas using 

affine registration, as described in the previous studies (Abdelnour et al., 2014; Owen et al., 

2013).

2.6. Structural connectivity networks

Different structural connectivity networks were reconstructed with the same Desikan–

Killiany parcellations. Firstly, openly available diffusion MRI data was obtained from the 

MGH-USC Human Connectome Project to create an average template connectome. As in 

previous studies (Abdelnour et al., 2014; Owen et al., 2013), subject specific structural 

connectivity was computed on diffusion MRI data: Bedpostx was used to determine the 

orientation of brain fibers in conjunction with FLIRT, as implemented in the FSL software 
(Jenkinson et al., 2012). In order to determine the elements of the adjacency matrix, 

tractography was performed using probtrackx2. 4000 streamlines were initiated from each 

seed voxel corresponding to a cortical or subcortical gray matter structure and how many 

of these streamlines reached a target gray matter structure was tracked. The weighted 
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connection between the two structures ci,j, was defined as the number of streamlines 

initiated by voxels in region i that reach any voxel within region j, normalized by the sum 

of the source and target region volumes ci, j = streamlines
υi + υj

 Afterwards, connection strengths 

were averaged between both directions (ci,j and cj,i) to form undirected edges. To determine 

the geographic location of an edge, the top 95% of nonzero voxels by streamline count were 

computed for both edge directions. The consensus edge was defined as the union between 

both post-threshold sets.

2.7. MEG processing and source reconstruction

MEG recordings were downsampled from 1200 Hz to 600 Hz, then digitally filtered to 

remove DC offset and any other noisy artifact out-side of the 1 to 160 Hz bandpass range. 

Since MEG data are in sensor space, meaning they represent the signal observable from 

sensors placed outside the head, this data needed to be “inverted” in order to infer the 

neuronal activity that had generated the observed signal by solving the so-called inverse 

problem. Adaptive spatial filtering algorithms were used from the NUTMEG software 

tool written in house (Dalal et al., 2004). To prepare for source localization, all MEG 

sensor locations were co-registered to each subject’s anatomical MRI scans. The lead field 

(forward model) for each subject was calculated in NUTMEG using a multiple local-spheres 

head model (three-orientation lead field) and an 8 mm voxel grid which generated more 

than 5000 dipole sources, all sources were normalized to have a norm of 1. Finally, the 

MEG recordings were projected into source space using a beamformer spatial filter. Only 

the sources belonging to the 68 cortical regions were selected to be averaged around the 

centroid. All dipole sources were labeled based on the Desikan–Killiany parcellations, then 

sources within a 20 mm radial distance to the centroid of each brain region were extracted, 

the average time course of each region’s extracted sources served as empirical resting-state 

data for our proposed model.

2.8. Model parameter estimation

Modeled spectra was converted into power spectral density (PSD) by calculating the 

absolute value of the frequency response and both modeled and empirical MEG spectra 

were converted to to dB scale by taking 20 log10() of the PSD. Pearson’s r between modeled 

PSD and the empirical PSD was used as a goodness of fit metric for estimating model 

parameters. Pearson’s r was calculated for comparing spectra for each of the regions, and 

then they were averaged over all the 68 cortical regions. This average Pearson’s r was the 

objective function for optimization and used for estimating the model parameters. We used 

a dual annealing optimization procedure in Python and performed parameter optimization 

both for the M-SGM and the original SGM (Xiang et al., 1997). Parameter initial guesses 

and bounds are specified in Table 1. The bounds were the same as that in the original study. 

The dual annealing optimization was performed for three different initial guesses, and the 

parameter set leading to maximum Pearson’s correlation coefficient was chosen for each 

subject. The dual annealing settings were: maxiter = 500. All the other settings were the 

same as default. In the python implementation of this algorithm, one can check the success 

of convergence by checking the status of the final optimized results, which is an output of 
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the optimizer. We checked this output for all the subjects for both the models to make sure 

the optimization was successful.

3. Results

3.1. M-SGM fits MEG spectra better

The local mesoscopic model specified in Eqs. (1) and (2) is a modification of the 

original SGM (Raj, Cai, Xie, Palacios, Owen, Mukherjee, Nagarajan, 2020). Here, we 

have introduced asymmetry in the two equations by including the term for alternating 

populations. In the original SGM, the equations for excitatory and inhibitory signals 

were identical and the alternating population’s transfer function was modeled separately. 

Therefore, we compare the performance of the two models. We estimated parameters 

for both the models and then compared the modeled spectra. In particular, we compared 

the Pearson’s r between the empirical MEG spectra and the modeled spectra in both 

the cases for the same set of subjects, as shown in Fig. 1A. M-SGM has a statistically 

significantly higher Pearson’s r than SGM, based on a one-sided paired t-test of the Fisher’s 

z-transformed Pearson’s r (t-statistic = 12.10, p-value = 2.30e–14). Moreover, 

Pearson’s r was higher when M-SGM was used instead of SGM for almost every subject, as 

shown by the blue lines connecting subject-wise points corresponding to the two models.

As seen in Fig. 1B, the average normalized power spectral density predicted by both the 

original and the modified SGM fit well with the empirical MEG spectra recorded. Both the 

models can exhibit a primary alpha peak and a secondary beta peak, however, they cannot 

generate the smaller peaks observed in the MEG spectra at higher frequencies. It is also to 

be noted that we only estimate the shape of the spectra, not the scale. Therefore, we used 

Pearson’s r as a metric for the goodness of fit. The scale can be adjusted by scaling the noise 

term P(ω) appropriately, which will be a part of the future work.

3.2. Both M-SGM and SGM predict alpha and beta spatial distributions

We also wanted to investigate if the eigenmodes 
uk(ω)uk(ω)H

jω + τG
−1λk(ω)Fe(ω)

Hlocal(ω)P (ω) (for every 

k) can capture the spatial distribution of the empirical alpha and beta frequency bands, as 

was shown for the original SGM. To this end, we sorted the modeled spectral eigenmodes 

according to their spatial correlation with the empirical alpha and beta bands spatial 

distribution, respectively. Here, we generated the spatial distribution of alpha and beta bands 

by summing the MEG spectra from frequencies 8–12 Hz and 13–25 Hz, respectively. The 

spatial correlation was defined as the Pearson’s r between the regional distribution of the 

summed alpha and beta spatial distribution and the model predicted eigenmodes which 

were also summed within the respective frequency bands. After sorting the eigenmodes, we 

summed the first few eigenmodes that lead to a peak in the spatial correlation. We used these 

sorted and summed eigenmodes as predictors of the alpha and the beta band activity.

Figs. 2 and 3 demonstrates the spatial correlation of the eigenmodes. As seen in Figs. 2B and 

3B, the spatial correlation peaks with a subset of eigenmodes and then decreases again, and 

is similar for both the M-SGM and the SGM. The black curve in both the cases represent 
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the average of the spatial correlations. Fig. 2A demonstrates the regional distribution of the 

empirical MEG spectra in the cortical region and that predicted by M-SGM, specifically 

its sum of top eigenmodes (where the top eigenmodes are those whose sum lead to the 

maximum spatial correlation) in the alpha band, for two different subjects whose spatial 

correlations are shaded in blue and brown in Fig. 2B, respectively. The Pearson’s r for Fig. 

2A are 0.66 and 0.62 for the left and right columns, respectively. The modeled alpha power 

spatial distribution is prominent in the posterior regions, which strongly accords with the 

MEG literature, where alpha peak is well-known to be strongly posterior during rest and 

eyes closed situations. Based on a one-sided paired t-test between the maximum Pearson’s 

r obtained from M-SGM and those obtained from SGM, there was no significant difference, 

with a p-value of 0.799 (t-statistic = −0.85). Both M-SGM and SGM performed 

similarly in predicting the alpha frequency band’s spatial distribution.

Fig. 3A demonstrates the regional distribution of the empirical MEG spectra and sum of 

top eigenmodes in the beta band, for two different subjects whose spatial correlations are 

shaded in blue and brown in Fig. 3B, respectively. The Pearson’s r for Fig. 3A are 0.65 

and 0.67 for the left and right columns, respectively. Based on a one-sided paired t-test 

between the maximum Pearson’s r obtained from M-SGM versus those obtained from SGM, 

no statistically significant difference was found between the two, with a p-value of 0.873 

(t-statistic = −1.16). Both M-SGM and SGM performed similarly in predicting the 

beta frequency band’s spatial distribution.

In order to explore which graph eigenmodes most contribute to the summed model in above 

figures, we plot in Figs. 2C, D and 3C, D histograms of the eigenmode index of each 

participating eigenmode. We show both the single most-maximally contributing eigenmode, 

as well as all eigenmodes that appear up to the peak observed in Figs. 2B and 3B. We 

also observed that neither the first eigenmode with maximum spatial correlation, nor the top 

eigenmodes whose sum lead to the maximum spatial correlation, are necessarily those that 

appear as the first few eigenmodes as ordered by their eigenvalue.

4. Discussions

In this work, we demonstrated that a biophysical linearized spectral graph model can 

generate frequency-rich spectra that accurately match the empirical MEG spectra, with 

an overall accuracy higher than that of the original SGM (Raj, Cai, Xie, Palacios, Owen, 

Mukherjee, Nagarajan, 2020). SGM contained local model elements derived from a control 

theory viewpoint, due to which the local parameters and gain terms lacked classical 

interpretability in terms of extant neural mass models. The current reformulation brings 

the M-SGM in line with classical neural masses. In M-SGM, we have introduced an 

asymmetry in the excitatory and inhibitory population equations due to the alternating 

populations term. This asymmetry is the key distinguishing feature between M-SGM and 

SGM, and is the reason why the M-SGM is biophysically more realistic. Numerous non-

linear models currently adopt Wilson-Cowan model type formulation at the mesoscopic 

scale as a biologically more realistic and interpretable model, involving coupled excitatory 

and inhibitory populations (Destexhe and Sejnowski, 2009; Kilpatrick, 2013). This coupling/

interaction between excitatory and inhibitory populations is more explicitly defined in 
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M-SGM, bringing it in alignment with the larger literature on Wilson–Cowan models. 

The primary difference between Wilson–Cowan models and M-SGM is that the coupling 

expression in M-SGM is linear while it is non-linear in the former. In M-SGM, we also 

included the cortical as well as subcortical region eigenvalues in calculation of the modeled 

spectra, unlike in SGM where only cortical eigenvalues were included.

This modified model retains all the attractive features of the original SGM: it is hierarchical, 

analytic, graph-based, and is parameterized by a parsimonious set of biophysically 

interpretable global parameters: the neural gains, time constants, conduction velocity, and 

macroscopic coupling. These model parameters admit physical interpretations and can be 

potentially controlled by neuromodulation (Shine et al., 2018). Due to its closed-form 

analytical solution in terms of frequency responses, the M-SGM can be fitted directly 

to regional MEG power spectra, without requiring any time-consuming simulations or 

numerical integration.

M-SGM has an excellent ability to capture the spatial patterns of empirical alpha and beta 

frequency bands, requiring only 5–10 graph eigenmodes to do so. To our knowledge, the 

presented SGM and M-SGM are the only models currently available that can simultaneously 

predict both the regional spectra as well as the spatial distribution of the empirical alpha 

and beta band activity. In the latter task there was no difference in performance between 

M-SGM and the original SGM. We see that quantitatively, the modified SGM’s modeled 

spectra captures the MEG spectra better than the original SGM, but its ability to predict 

the spatial distribution of the empirical alpha and beta frequency bands is no different from 

that of the original SGM. Please recall, the parameter optimization was done to maximize 

spectral fits only. A potential future study will involve incorporating both spectral as well 

as spatial correlations to obtain optimal model parameters. Even though the quantitative 

performance is only better when comparing spectral correlations, it is to be noted that this 

modified local mesoscopic model is biophysically similar in formulation to the nonlinear 

neural mass models.

4.1. No natural ordering of eigenmodes

Surprisingly, in our analysis of which graph eigenmodes most contribute to the summation 

in the M-SGM (Figs. 2C, D and 3C, D), we found that the eigenmodes that maximally 

contribute to the spatial patterning of alpha or beta power are not necessarily those that 

appear as the first few eigenmodes as ordered by their eigenvalue. Although our results 

clearly indicate that the first few eigenmodes have the highest frequency of participation, 

almost all eigenmodes exhibit some ability to participate in the model summation. That the 

“natural ordering” of eigenmodes (i.e. in increasing order of eigenvalue) is not reflected 

in fitted M-SGM, at least as far as predicting band-limited spatial patterns, is intriguing. 

Previous eigendecomposition models on graphs have found a strong natural ordering. 

E.g. Abdelnour et al. report that only the first few Laplacian eigenmodes (with smallest 

eigenvalues) are required to resemble empirical functional connectivity of resting state 

BOLD fMRI (Abdelnour et al., 2018; 2021); similar results were reported by Atasoy and 

others (Atasoy et al., 2016; Preti and De Ville, 2019; Xie et al., 2021). Other studies 

involve a series expansion of the graph adjacency or Laplacian matrices (Becker et al., 2018; 
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Deslauriers-Gauthier et al., 2020; Glomb et al., 2020; Robinson et al., 2016; Tewarie et al., 

2020), which also amount to weighting the first natural eigenvectors more heavily in the 

summation. This difference between ordering of eigenmodes in M-SGM versus previous 

works might reflect the different context here: MEG rather than fMRI, and modeling of 

spectral power instead of functional connectivity. It is also possible that since our M-SGM 

model has far more expressability and a richer repertoire of wideband activity spectrum, the 

model parameters are capable of tuning a wider range of eigenmodes. This aspect was also 

noted in a recent thorough exposition of complex Laplacian eigenmodes (Xie et al., 2021). 

Whether there is a natural ordering of eigenmodes that account for observed functional 

activity patterns or not remains an open question. The ability of the brain’s connectome to 

engage a wide range of eigenmodes might be an important feature of realistic and rich brain 

behavior - an aspect that merits a deeper future exploration.

4.2. Relationship to other work

Due to their parsimony a key feature of this and the original SGM is that parameter 

inference is far more tractable than various non-linear modeling approaches such as The 

Virtual Brain (Ritter et al., 2013), where multiple refinement steps are required for inference 

of a larger set of free parameters. While SGM and M-SGM cannot yield a repertoire of 

dynamical solutions that the detailed non-linear modeling counter-parts can, it is unclear 

if incorporating such non-linearities are required at the macroscopic scale (Nozari et al., 

2020). In comparison to methods based on coupled NMMs, the inference of SGM and 

M-SGM model parameters can be realized directly from empirical wideband regional power 

spectra rather than from functional correlation structures like FC. Indeed, cutting edge 

tools like The Virtual Brain do not attempt to fit to empirical wideband power spectra, 

relying instead on capturing the second-order correlation structures of brain activity after 

filtering out high-frequency signals or removing the carrier frequency and retaining only the 

(slowly-varying) Hilbert amplitude envelope. The latter aspect was analyzed elegantly using 

a linearized coupled NMM by Tewarie et al. (2019); however their model is only accessible 

via numerical integration and time series simulations, unlike ours.

Another point to note is that there are different interpretations of the eigenmodes. In 

M-SGM, SGM and its subsequent extension, the eigenmodes were obtained from the 

eigen-decomposition of the complex-valued Laplacian matrix, taking into account the global 

coupling and conduction speed (Raj et al., 2020; Xie et al., 2021). Previous works have 

been based on obtaining the eigenvectors of a real-valued Laplacian obtained from the 

structural connectome (Abdelnour et al., 2018; 2021; Atasoy et al., 2016; Becker et al., 

2018; Deslauriers-Gauthier et al., 2020; Glomb et al., 2020; Preti and De Ville, 2019; 

Tewarie et al., 2020) or by eigen-decomposition of the solution to the Helmholtz equation on 

a curved cortical surface using neural field theory (Robinson et al., 2016).

4.3. Limitations, potential applications, and future work

By design, the model’s frequency spectra can exhibit two peaks at most, whereas empirical 

MEG spectra (see Fig. 1A) have higher frequency peaks than alpha and beta. Although it is 

possible to generate those higher beta or gamma peak as a primary peak by varying the local 

time constants, additional peaks cannot be generated using the current model under plausible 
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parameter regimes. In the future, we will extend the model to capture the peaks in the higher 

beta and gamma regions as well - this will require additional local population coupling and 

complexity. However, we note that our current model is already fully capable of reproducing 

the secular frequency fall-off seen in empirical spectra, e.g. the hypothesized 1/fα behavior. 

Future work will also involve including spatial correlation in addition to spectral correlation 

in the cost function for model parameter estimation, as well as exploring region-specific 

model parameters to incorporate spatial heterogeneity better.

This model can be extended to investigate various aspects of functional brain activity. 

Firstly, this work can be extended to investigate temporal state changes in the functional 

activity. One way would be by introducing a temporal component to the model parameters. 

Secondly, this work can also be extended to investigate functional activity in different brain 

states such as sleep, task-focused, and unconscious. As mentioned earlier, we also plan to 

extend this model to generate peaks in the higher beta and gamma regions of the modeled 

spectra. Future work will also involve ensuring that the system is stable with the estimated 

parameters, using adaptive gain control.

This modeling approach can be used to investigate underlying biophysical mechanisms 

involved in different neurological diseases, as well. For example, we recently estimated 

regionally varying local model parameters for empirical MEG spectra collected for 

healthy and Alzheimer’s disease subjects. We then found that the excitatory and 

inhibitory parameters were differentially distributed for the healthy versus the Alzheimer’s 

disease subjects, indicating an excitatory/inhibitory imbalance (unpublished data). Such 

investigations can be extended to various other neurological diseases as well. Lastly, it will 

be of interest to extend this model to include other modalities such as fMRI and EEG, as 

well. In these biomedical applications, the parsimony and inferrability of the SGM model 

will prove to be critical assets, especially in comparison with current high-dimensional and 

non-linear models.
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Fig. 1. 
Modified SGM fits MEG spectra better. A: Comparison of average Pearson’s r for the 

modified versus the original SGM. Each line is joining the Pearson’s r corresponding to a 

specific subject. The line is in blue color if M-SGM’s Pearson’s r is higher than SGM’s 

Pearson’s r for that subject, and it is in red for vice versa. In this plot, each line other than 

one is in blue, implying for most subjects, M-SGM’s Pearson’s r was higher than SGM’s 

Pearson’s r. B: Average normalized power spectral density (PSD) obtained from MEG, 

M-SGM, and original SGM.

Verma et al. Page 18

Neuroimage. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
A: Left: MEG spectra and sum of top eigenmodes in the alpha band for a specific subject, 

shaded in blue in B. The Pearson’s r was 0.66. Right: MEG spectra and sum of top 

eigenmodes for a different subject, shaded in brown in B. The Pearson’s r was 0.62. B: 
Spatial correlations for alpha frequency band. The cyan lines correspond to subject-specific 

spatial correlations obtained as more eigenmodes are added. The black line corresponds to 

the average of the spatial correlations. The blue and brown lines correspond to two subjects 

whose spatial distribution has been demonstrated in A. P-value based on a one-sided 

paired t-test of the maximum Pearson’s r between M-SGM and SGM gave p = 0.799. 

No statistically significant difference was found between the two. C: Histogram of first 

eigenmode with maximum spatial correlation with the alpha frequency band. D: Histogram 

of the top eigenmodes whose summation leads to maximum spatial correlation with the 

alpha frequency band. Brain surface renderings were generated using BrainNet Viewer (Xia 

et al., 2013) in MATLAB (The Mathworks, 2020).
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Fig. 3. 
A: Left: MEG spectra and sum of top eigenmodes in the beta band for a specific subject, 

shaded in blue in B. The Pearson’s r was 0.65. Right: MEG spectra and sum of top 

eigenmodes for a different subject, shaded in brown in B. The Pearson’s r was 0.67. B: 
Spatial correlations for beta frequency band. The cyan lines correspond to subject-specific 

spatial correlations obtained as more eigenmodes are added. The black line corresponds to 

the average of the spatial correlations. The blue and brown lines correspond to two subjects 

whose spatial distribution has been demonstrated in A. P-value based on a one-sided paired 

t-test of the maximum Pearson’s r between M-SGM and SGM gave p = 0.873. The 

maximum Pearson’s r of M-SGM is statistically not different from that of SGM for the 

beta band. C: Histogram of first eigenmode with maximum spatial correlation with the beta 

frequency band. D: Histogram of the top eigenmodes whose summation leads to maximum 

spatial correlation with the beta frequency band. Brain surface renderings were generated 

using BrainNet Viewer (Xia et al., 2013) in MATLAB (The Mathworks, 2020).
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