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Ensemble and optimization 
algorithm in support vector 
machines for classification of wheat 
genotypes
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Mohammad Khalid 7, Ghadah Shukri Albakri 8, Maha Awjan Alreshidi 9, Jeong Ryeol Choi 10* & 
Krishna Kumar Yadav 11,12

This study aimed to classifying wheat genotypes using support vector machines (SVMs) improved with 
ensemble algorithms and optimization techniques. Utilizing data from 302 wheat genotypes and 14 
morphological attributes to evaluate six SVM kernels: linear, radial basis function (RBF), sigmoid, and 
polynomial degrees 1–3. Various optimization methods, including grid search, random search, genetic 
algorithms, differential evolution, and particle swarm optimization, were used. The radial basis 
function kernel achieves the highest accuracy at 93.2%, and the weighted accuracy ensemble further 
improves it to 94.9%. This study shows the effectiveness of these methods in agricultural research 
and crop improvement. Notably, optimization-based SVM classification, particularly with particle 
swarm optimization, saw a significant 1.7% accuracy gain in the test set, reaching 94.9% accuracy. 
These findings underscore the efficacy of RBF kernels and optimization techniques in improving wheat 
genotype classification accuracy and highlight the potential of SVMs in agricultural research and crop 
improvement endeavors.

Keywords  Ensemble algorithm, Ensemble weighted average (EWA), Wheat genotypes classification, Radial 
basis function, Support vector machine

Machine learning (ML) is a multi-disciplinary stream which builds on concepts from various other branches like 
computer science, cognitive science, optimization, statistics and mathematics1. The analysis and interpretation 
of data for accurate prediction and classification has been an important field of research from several decades 
in machine learning. Classification problems can be grouped in four major categories viz., supervised learning, 
semi supervised learning, weakly supervised learning and unsupervised learning. A variety of techniques for 
classification are available in literature including the k-nearest neighbour classifier2, Bayesian networks3, artificial 
neural networks4 and decision trees5. Neural networks are one of the most used classification techniques6, but 
they are sensitive to the presence of noise in training data7.
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The above classification algorithms for two class and multi class problems have done well for many data 
sets and for many years. In past few decades, support vector machines (SVM) has emerged as one of the best 
classification techniques8. Vapnik9 introduced SVM as a machine learning model which is based on kernels for 
regression and classification task. SVM competes with the performance of other classification techniques and 
in many cases has shown that it is superior to them for solving classification problems10. The SVM is a nonpara-
metric algorithm and is attaining the popularity due to its promising performance and many attractive features. 
SVM is generally based on the Vapnik Chervonenkis (VC) dimension and the principle of risk minimization. 
In comparison to neural networks, SVMs are experiencing significant improvements in generalization ability 
and overcoming other problems like the curse of dimensionality and local minima9, which gives SVMs quite a 
strong competitive advantage over other methods. Also, the principle behind SVM is to find the optimum deci-
sion boundary that separates the classes by maximizing the margin. Support vectors are the training data points 
closest to this maximum margin hyperplane.

The term "Weighted Accuracy Ensemble (EWA)" in the context of SVM refers to an ensemble method that 
combines multiple models by weighting them according to their accuracy11,12. This approach aims to improve 
the overall prediction performance by giving more importance to models that perform better13. In summary, 
the EWA approach in SVM involves training multiple models, assigning weights based on their accuracy, and 
combining their predictions to improve the overall model performance14.

Particle Swarm Optimization (PSO) techniques have been effectively applied to optimize SVM classifiers 
for multi-class classification tasks. Various studies have demonstrated the benefits of using PSO to enhance 
the performance of SVM in complex real-world problems15–20. PSO helps in tuning the parameters of SVM, 
such as regularization and kernel parameters, leading to improved classification accuracy and generalization 
performance21–23. Additionally, the use of PSO with time-varying acceleration coefficients has shown faster con-
vergence and higher precision in optimizing SVM parameters for fault diagnosis applications24. The integration 
of PSO with SVM in multi-domain fusion scenarios, such as corn kernel collision sound signal recognition, has 
also proven to achieve higher recognition rates for different kernel types25.

In recent times, there has been a proliferation of machine learning techniques being explored to identify 
specific types of wheat26–35. Ardjani et al.15 proposed the use of PSO to optimize the performance of the SVM 
classifier in multiclass classification problems on the TIMIT corpus, and the results showed that the PSO-SVM 
approach achieved better classification accuracy compared to other methods, despite an increase in execu-
tion time. Luo et al.20 proposed a novel approach for constructing multi-class least squares wavelet SVM (LS-
WSVM) classifiers using quantum particle swarm optimization algorithm (QPSO). The approach optimizes the 
regularization parameters and kernel parameters of LS-WSVM using QPSO, resulting in improved LS-WSVM 
models for multi-class classification. The result demonstrates the effectiveness of the approach by conducting 
simulations, which shows that the proposed method can obtain optimal parameters for LS-WSVM with global 
searching QPSO to achieve excellent precision for classification. Huang and Dun17 proposed PSO-SVM model 
achieved high classification accuracy by simultaneously optimizing the input feature subset selection and the 
SVM kernel parameter setting. Experimental results showed that the proposed approach correctly selected 
discriminating input features, and achieved high classification accuracy. Dudzik et al.18 proposed evolutionary 
technique optimizes critical aspects of SVMs, including the training sample, kernel functions and features  fur-
ther improving performance in binary classification tasks. Extensive experimental study conducted over more 
than 120 benchmarks showed that the proposed algorithm outperforms popular supervised learners and other 
techniques for optimizing SVMs reported in the literature. Hitam et al.19 optimized SVM model based on PSO for 
cryptocurrency forecasting  and demonstrated that an optimized SVM-PSO algorithm enables accurate predic-
tion of future cryptocurrency prices, surpassing the performance of individual SVM algorithms. Nugraha et al.24 
implemented the PSO-SVM algorithm to classify international journals using the SCImago Journal Rank (SJR) 
dataset. The accuracy results obtained from PSO-SVM using Linear kernels were 63.12%. Based on these results, 
PSO-SVM is still unable to optimize the approach in the SJR classification system to achieve 100% accuracy. 
Sheela and Arun25 proposed hybrid PSO-SVM algorithm achieved a specificity of 0.85, a sensitivity of 0.956 and 
an accuracy of 95.78% in determining the presence of pneumonia due to COVID-19.

Proposed methods have been widely used to classify subjects and train efficient ML models in various fields. 
However, the implication of SVM in agriculture,  in particular classifying wheat genotypes,  is so far limited. 
SVM can help predict grain yield by utilising early accessible information on highly heritable and correlated 
traits. Such ML models may focus on helping plant breeders in early selection and improving selection accuracy 
to enhance overall genetic gain, thereby ensuring food security. To the best of our knowledge, SVM has been 
utilised for the very first time to classify the wheat crop based on the grain yield and to train ML models to 
predict those classes utilising correlated agronomic traits. The integration of ensemble algorithm and particle 
swarm optimized in support vector machines for classification of wheat genotypes introduces a novel avenue, 
promising accurate classification of wheat genotype. With the underwritten objective, SVM with six different 
kernels (linear, radial basis function, sigmoid, polynomial degree-1, degree-2, and degree-3) were employed to 
classify 302 wheat (Triticum aestivum) genotypes belonging to different classes of breeding material viz. improved 
genotypes, landraces, verities, and advanced breeding lines:

(a)	 To select the suitable kernels (Linear, RBF, Sigmoid and Polynomial with degree 1, 2 and 3) for training 
Support Vector Machines which classify the 302 wheat genotypes most accurately using 14 morphological 
attributes.

(b)	 The EWA approach is proposed by combining the outputs of individual classifiers with six kernel functions. 
The accuracy was used in the ensemble weighting process to enhance the classification of wheat genotypes. 
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This has the potential to significantly enhance the SVM classification model’s ability for learning and gen-
eralization.

(c)	 To optimize the SVM hyper-parameters of best kernel out of the six studied kernels for classification of 
wheat genotypes using GS, RS, GA, DE and PSO techniques. By doing so, the SVM’s parameters are opti-
mized, which directly influencing the efficiency and predictive power of SVM, which ultimately enhancing 
classification accuracy.

To compare the performance of various kernels, EWA approach and PSO optimization techniques used. 
With appropriate classification technique, the low, medium and high yielding wheat genotypes can be discov-
ered accurately. The rest of paper is organized as follows. Section "Support vector machine (SVM) algorithms" 
introduces the support vector machine (SVM) algorithms and the related work presented in this section. The 
Materials and Methods is presented in "Materials and Methods" section. In "Results and Discussion" section, 
the Comparative performance of various kernels and ensemble approach for SVM classification of wheat geno-
types and Comparative performance of optimization approaches for SVM classification of wheat genotypes is 
discussed with objective evaluation measures. Finally, a conclusion is touched and future work is discussed is 
"Conclusions and future research" section.

Support vector machine (SVM) algorithms
SVMs have been used in regression and classification problems36, and in these two different cases SVMs are 
called support vector regression (SVR) and support vector classifier (SVC), respectively37. Only SVC  has been 
included here and is referred as ‘SVM’ uniformly throughout the current manuscript. There are two types of 
SVMs: 1) nonlinear SVMs and 2) linear SVMs, depending on whether or not the data needs to be transformed 
into higher dimension, respectively38. Linear SVMs can be further categorized into two groups, linear SVM for 
separable and non-separable cases. A linear separable hyperplane can be designed for classification of all training 
data points without any misclassification error in former. While in latter case, a linear separable hyperplane exists 
at the expense of some training errors. A kernel function serves as a bridge between these linearly separable and 
non-separable data. Some of the most important kernel functions are.

	 (i)	 Linear kernel: K(xi , xj) = (xi
T
xj),

	 (ii)	 RBF kernel: K(xi , xj) = exp
[

−γ �xi − xj�
2
]

 , where γ is known as the gamma/sigma parameter,
	 (iii)	 Sigmoid kernel: K(xi , xj) = tanh[

(

xi
T
xj

)

+ b] , where b is the parameter and
	 (iv)	 Polynomial kernel: K(xi , xj) = [γ (xi

T
xj)+ 1]

d , where d and γ are the degree and scale parameters, 
respectively.

In SVMs, we are exploring two things: 1) a hyperplane with maximum margin and 2) a hyperplane with 
minimum misclassification rate. The parameter C is a cost parameter which controls the agreement between 
maximum margin and minimum misclassification rate39. A low value of C allows more outliers, whereas a high 
value of C allows fewer outliers. The simplest kernel function is linear kernel and is given by the inner product. 
The parameter γ in RBF and polynomial kernels determines the reach of a training point. If the value of γ is 
high, the decision boundary of SVM will depend on training points that are closest to the decision boundary 
by ignoring the training points that are farther40. While, a low γ value would result in a decision boundary that 
would consider training points that are far from it. Therefore, higher γ values usually produce highly flexible 
decision boundaries and lower γ values lead to decision boundaries that are more linear.

SVM was initially designed to classify linearly separable and non-separable data, and later expanded to a 
non-linear domain through the use of kernel functions41. A kernel function serves as a connector between these 
linearly separable and non-separable data. One of the problems with the use of SVM methodology is to select a 
kernel function which depends upon the task and dataset. There is no consensus as to which kernel is better or 
worse for specified applications.

Kernel function and optimization techniques in SVM
The most commonly used kernel functions are linear, Radial Basis Function (RBF), sigmoid and polynomial 
kernels42. Therefore, in first phase of this study, a comparative analysis was carried out between linear, RBF, 
sigmoid and polynomial (with degree 1, 2 and 3) kernels with the objective to find the kernel which classified 
wheat genotypes most accurately. In this phase, the outputs of individual classifiers with six kernel functions were 
also combined using an Ensemble with Weighted Accuracy approach43. The accuracy was used in the ensemble 
weighting process to enhance the classification of genotypes.

A good set of SVM parameters plays the critical role to improve its classification performance in addition to 
kernel selection. Various studies have been conducted to select these parameters, but there is no general view of 
their settings44. To overcome this problem, several deterministic and probabilistic algorithms have been consid-
ered to optimize the SVM and kernel parameters for classification. Grid Search (GS) and Random Search (RS) 
are most used deterministic algorithms, because of their good results and simplicity. GS and RS are not statisti-
cally feasible for optimizing the hyper parameters in large datasets. In such situations, probabilistic optimization 
algorithms like Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO) 
are generally used45,46. These five optimization algorithms constitute the second phase of this study to optimize 
SVM hyper-parameters for classification of wheat genotypes.
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Multiclass classifier
Initially, SVM was proposed for performing binary classification task. However, binary classification applications 
are very limited. Several methods have been proposed by researchers to generate multiclass SVM from binary 
SVM and are still an ongoing research topics. To this end, one-versus-all (one against the rest) technique was 
developed to solve multiclass problems. Vapnik47 recommended grouping one class with others. In one against 
the rest, separate binary classifiers are trained to discriminate one class from the rest of classes48. For k classes, k 
quadratic programming problems must be solved. Another way is the one-versus-one or pair wise comparison49. 
There are k(k − 1)/2 binary classifiers for every possible pair of k classes. In this approach, classifier counts are 
typically much larger than one against the rest, whereas the number of training observations required for each 
classifier is very small. Therefore, this approach is treated to be more efficient than that of the one against the 
rest method.

Pal50 suggested the suitability of one-versus-one approach when comparing the performance of six multi-
class approaches (one-versus-one, one-versus-all, DAG, Error Corrected Output Coding, Bound constrained and 
Crammer & Singer) to solve classification problem in term of computational cost and classification accuracy. 
Therefore, in this study we employed one-versus-one methodology for multiclass problem.

Ensemble SVM approach
The performance of learning algorithms with six kernel functions depends on various model configurations, 
such as model parameters and input feature types51. To tackle the limitation of individual model performance, 
the wheat dataset was further classified with an SVM based ensemble learning algorithm to improve the training 
and testing accuracy. Ensemble learning was proposed for reducing classification bias and variance. Ensemble 
learning is considered as one of the most effective strategies to balance the influence from bias and variance in 
classification tasks52. The ensemble methods aggregate different algorithms together for a comprehensive decision. 
There were several ensemble learning approaches proposed in the literature, such as: majority voting, averaging, 
weighted averaging, stacking, bagging and boosting.

For the multi-class wheat dataset, we proposed an Ensemble with Weighted Accuracy approach in which 
accuracy was used for the ensemble weighting process to improve the classification of genotypes. Given an input 
feature vector x ∈ Rp , a classification result gm(x) ∈ yi is obtained based on each base classifier gm ∈ B , where B is 
the classifier set B =

{

gm : m = 1, 2, . . . , t
}

 , where t = 6 is the number of base classifiers. The aim of the ensemble 
learning algorithm is to create an improved composite classifier E(x) , by amalgamating the classification outputs 
from the different base classifiers into an improved output. The accuracy was used to weigh different classifica-
tion outputs of the base classifiers in the EWA approach. The class variables for wheat genotypes were labelled 
as 1 (for L class), 2 (for M class) and 3 (for H class). The concept behind this approach for wheat genotypes was:

where, wm is the weight for each base classifier. The training and testing accuracies were used to weigh the clas-
sification results of training and testing datasets, respectively, as:

where, Accm is the accuracy of m-th base classifier.

Optimization algorithms for SVMs
In general, most of the machine learning approaches will not generate optimal results if their hyper-parameters 
are not properly adjusted. Parameter tuning can be time-consuming especially when done manually for the learn-
ing algorithms with multiple parameters53. To overcome, a few SVM optimization methods have been suggested 
to address the optimization of kernel parameters. GS is the most prevalent deterministic algorithm to determine 
the appropriate values of parameters54. The parameter values leading to the highest classification accuracy can 
be obtained by setting the appropriate values of the lower and upper limits (search interval) and step length. 
RS replaces the exhaustive enumeration of all combinations through randomization55. To implement RS, the 
parameter grid was set to utilize random combinations to train the model.

The genetic algorithm, first developed by John Holland in 1975, is a way of solving the problems of optimiza-
tion in terms of natural selection, a process that drives evolution56. GA is a probabilistic search and optimization 
method that seeks to mimic biological evolution as a problem-solving strategy57. To carry out its optimization, 
GA uses three operators (selection, crossover and mutation) to spread its population from one generation to 
the next. GA was developed to reduce the training time by using minimum features and to enhance the classi-
fication accuracy39,58. Differential evolution (DE) is a type of real number coding optimization technique based 
on population evolution59. DE also uses crossover, mutation and selection operators like GA. As crossover is 
a leading evolutionary strategy for GA, DE considers mutation to be the most important operator. DE rapidly 
converges and can provide with the optimal solution in most of the situations60. In addition, it has proved to be 
more efficient and powerful  in cotrast to other optimization approaches61.
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Particle swarm optimization algorithm
Kennedy and Eberhart62 proposed PSO algorithm as a nature-induced metaheuristic approach. The algorithm 
proposes to mimic fish schooling or the behaviour of a flock of birds is an evolutionary approach and has been 
used to address many of the sophisticated problems of optimization. As a computational intelligence approach, 
since it requires fewer tuning parameters, it offers several advantages over other approaches such as robustness, 
flexibility and higher computational efficiency63. There are no mutation and/or crossover operators in PSO in 
comparison to GA and DE.

Individuals (particles) are transported in PSO through a hyper-dimensional search space with a tendency to 
mimic the success of others in a population (swarm). Particles change their positions and velocities within the 
swarm are greatly influenced by the experience and knowledge of their neighbours. Particles within the search 
space track their coordinates and are directly related to the best fitness they have gained so far called as personal 
best (Pbest). The overall best value is called global best (Gbest). The concept of PSO focuses on changing the 
velocity of each particle after every iteration as per its Gbest and Pbest64.

Each particle of the swarm is considered a potential candidate for the problem in PSO algorithm. Consider a 
swarm with the entire particles in the p-dimensional target search space. In jth iteration, the position and velocity 
of ith particle are denoted by two vectors, position vector {xji1, x

j
i2, ..., x

j
ip} and the velocity vector {vji1, v

j
i2, ..., v

j
ip} , 

respectively. To obtain a global optimum and in the process of iteration, velocity of each particle is updated as 
per its Pbest and Gbest. The Eqs. (1) and (2) describe how PSO algorithm updates its velocity and position of 
their particles65.

where, j is the current iteration number; i denotes the particle number; p represents the dimension of feature 
space; v is the velocity and x is the position of each particle; vjip and xjip denotes the velocity and position of ith par-
ticle in p-dimensional feature space after jth iteration, respectively; w is the inertia weight or weighting coefficient; 
c1 and c2 are the acceleration coefficients known as social and cognitive parameters, and generally c1 = c2 = 2 ; 
r1 and r2 are the random numbers generated with uniformly distribution over the interval [0,1]; Pbestj−1

ip  is the 

best position of ith particle; and Gbestj−1
p  denotes the best position taken from the swarm.

At jth iteration, Pbest and Gbest of each particle are updated as follows:

where, f (x) is the fitness function subject to maximization. The updating process should be repeated until it 
reaches a stop condition, such that a predefined number of iteration is met66. A detailed procedure for evaluating 
SVM parameters using the PSO algorithm is shown in Fig. 1.

Related works
The literature has described a number of grading systems that use various morphological aspects for the classifi-
cation of many cultivars and cereal grains67,68. Zhang et al.69 differentiated the fungal infected and healthy wheat 
kernels. A multi-class SVM with RBF kernel was used for classification. The wheat kernels infected by Aspergillus 
niger, Aspergillus glaucus, and Penicillium spp. and healthy wheat kernels were classified with accuracies of 92.9%, 
87.2%, 99.3%, and 100%, respectively. Yao et al.70 presented an application of image processing techniques and 
SVM for detecting rice diseases. The results showed that SVM effectively detected and classified these disease 
spots to an accuracy of 97.2%. Jian and Wei 71 recognized the cucumber leaf diseases using RBF, polynomial and 
sigmoid kernel function. The results showed that the SVM method based on RBF kernel function and taking 
each spot as a sample made the best performance for classification of cucumber leaf diseases.

Dubey and Jalal72 experimentally validated a solution for the detection and classification of apple fruit diseases 
using a multi-class SVM. The classification accuracy for the proposed solution that was achieved was up to 93%. 
Sengupta and Lee73 used a novel technique to detect immature green citrus fruit in tree canopy under natural 
outdoor conditions. The approach was able to accurately detect and count 80.4% of citrus fruit in a validation set 
of images acquired from a citrus grove under natural outdoor conditions. Bhange and Hingoliwala74 developed a 
web-based tool that helps farmers for identifying fruit disease by uploading fruit image to the system. SVM was 
used for classification to classify the image as infected or non-infected. Experimental evaluation of the proposed 
approach was effective and 82% accurate to identify pomegranate disease.

Chung et al.75 proposed an approach to distinguish infected and healthy seedlings of the rice cultivars Tainan 
11 and Toyonishiki. SVM classifiers were developed for distinguishing the healthy and infected seedlings. GA 
was used for selecting essential traits and optimal model parameters for the SVM classifiers. The proposed 
approach distinguished healthy and infected seedlings with a positive predictive value of 91.8% and an accuracy 
of 87.9%. Padol and Yadav76 intended to aid in the detection and classification of grape leaf diseases using SVM 
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classification technique. The proposed system can successfully detect and classify the examined disease with 
88.89% accuracy. Bonah et al.66 presented a classification model of SVM together with GS, GA and PSO optimi-
zation algorithms for bacterial foodborne pathogen classification. Simulated results show training accuracies of 
100% and prediction accuracies of 98.95% for five selected bacterial pathogens acquired using electronic nose 
dataset and PSO-SVM model.

Materials and methods
Data acquisition
The data used in the study consists of 302 genetically diverse bread wheat (Triticum aestivum) genotypes belong-
ing to different classes of breeding material viz. improved genotypes, landraces, verities, and advanced breeding 
lines (Supplementary material Table S1). The secondary data were taken from an experiment conducted during 
Rabi season of 2018–19 by the Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana 
Agricultural University, Hisar (latitude 29° 09′ 6.70″ N, longitude 75° 43′ 16.04″ E and altitude 215 m). The site 
of the experiment comes under sub-tropical to semi-arid zone. The experiment was conducted in alpha lattice 
design with two replications and the seed material was sown in the first week of November-2018 using a dib-
bler called as IIWBR dibbler77. Each genotype occupied a plot size of 1 m2 (1.25 m × 0.8 m). Row to row (plant 
to plant) spacing was 20 cm (10 cm) with seedling depth of 5 cm. Recommended package of practices were 
used to raise a genotype and a population of thirty plants were maintained throughout the trial. In each plot, 
after leaving the border lines, ten random plants were selected and tagged to obtained the data on following 14 
morphological attributes viz., Days to heading (DTH), Days to anthesis (DTA), Days to maturity (DTM), Grain 
filling duration (GFD), Number of tillers/plant (NTP), Plant height (PH), Peduncle length (PL), Spike length 
(SL), Spikelets/spike (SS), Total number of grains/plant (TNG), Thousand kernel weight (TKW), Grain yield/
plant (GY), Biomass/plant (BM) and Harvest index (HI).

Pre‑processing of data
Initially, the correlation plots were constructed for wheat dataset to check the association between different 
morphological variables. Correlation between variables clearly depicted that there was very low amount of linear 
association among various variables and only four variables (TNG, TKW, BM and HI) were significantly corre-
lated with grain yield (Fig. 2). The characteristic grain yield (g/plant) was used as class attribute. The Jenks natural 
breaks optimization method was utilized to change the continuous attribute into class attribute78. It is a data 
clustering method developed to find the best combination of values into various classes. The method attempts 
to minimize the within class variance and to maximize the between class variance. The class attribute grain yield 
was categorized into 3 classes i.e., low yield (8.70–14.68 g/plant), medium yield (14.69–18.05 g/plant) and high 
yield (18.06–24.04 g/plant). Out of 302 genotypes, the Jenks method classified 102, 128 and 72 genotypes in low 
(L), medium (M) and high (H) yield classes, respectively (Fig. 3). Out of the 302 wheat genotypes, the number of 
genotypes in training (and testing) dataset were 82 (20), 103 (25) and 58 (14) for L, M and H yield classes, respec-
tively. Descriptive statistics of the morphological attributes with respect to individual classes as well as overall 
are given in Table 1. The minimum and maximum of mean value of genotype were reported 10.70 (SD ± 1.30), 
10.50 (SD ± 1.20), 10.40 (SD ± 1.30) and 10.50 (SD ± 1.30); and 329.10 (SD ± 37.90), 384.10 (SD ± 41.60), 435.80 

Fig. 1.   Flowchart for SVM parameter optimization using PSO algorithm.
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Fig. 2.   Scatter plot showing correlation among various wheat variables.

Fig. 3.   Jenks natural breaks optimization technique classifies genotypes into three classes.
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(SD ± 44.80) and 377.80 (SD ± 57.60), respectively for low yield, medium yield, high yield, and overall wheat 
variables. While the minimum coefficient of variance was found 1.60, 1.70, 1.40 and 1.60, respectively for low 
yield, medium yield, high yield, and overall wheat variables and maximum value 18.00, 14.30, 15.50 and 19.10, 
respectively. The minimum (maximum) value was reported in NTP (TNG) variable for low yield, medium yield, 
high yield and overall wheat variables.  

For the model development, it is essential to divide the dataset into training dataset and test dataset66. Model 
training is performed using the training dataset and test datasets are used for the performance assessment of 
the classification model. Therefore, the dataset was partitioned into training (80%) and test (20%) dataset with 
stratified sampling method. 10 fold repeated cross validation with five repeats was used as resampling method 
for partitioning the training and test datasets60. Prior to partitioning, the whole dataset was nromalized to zero 
mean and unit variances to reduces the learning time and improve the performance of the model.55.

Proposed methodology
Figure 4 shows the proposed methodology diagram of the study. For the classification of wheat genotypes using 
SVM, this study included six kernels i.e., linear, RBF, sigmoid degree-1, degree-2 and degree-3 polynomial kernel. 
Initially, a comparative analysis was carried out between these six kernels with the objective to find the kernel 
which classified wheat genotypes most accurately. Then, the outputs of individual classifiers with six kernel 
functions were combined using an Ensemble with Weighted Accuracy approach where the accuracy was used 
in the ensemble weighting process to enhance the classification of genotypes. The best among these kernels was 
further taken forward for optimization based SVM classification. Then the performance of PSO-SVM was com-
pared with GS, RS, GA and DE optimized SVM classification by optimizing the parameters. Finally, the one-way 
ANOVA was conducted separately for training and testing datasets to assess the difference in the accuracy of all 
twelve classifiers is statistically significant or not79. The Tukey HSD post hoc test was performed, which makes 

Table 1.   Class-wise and overall descriptive statistics for wheat variables.

Variables

Low yield (102 
genotypes)

Medium yield (128 
genotypes)

High yield (72 
genotypes)

Overall (302 
genotypes)

Mean SD CV Mean SD CV Mean SD CV Mean SD CV

DTH 99.3 1.6 1.6 99.7 1.7 1.7 99.7 1.4 1.4 99.6 1.6 1.6

DTA 106.6 2.0 1.9 106.8 1.9 1.8 107.2 1.7 1.6 106.8 1.9 1.8

DTM 140.4 2.5 1.8 140.9 2.9 2.1 141.1 3.1 2.2 140.8 2.9 2.1

GFD 33.6 3.0 8.9 33.8 3.0 8.9 33.7 3.0 8.9 33.7 3.0 8.9

NTP 10.7 1.4 13.1 10.5 1.5 14.3 10.4 1.4 13.5 10.5 1.4 13.3

PH 108.5 15.2 14.0 105.7 12.4 11.7 112.5 15.1 13.4 108.3 14.3 13.2

PL 37.0 5.6 15.1 36.3 4.8 13.2 38.0 5.9 15.5 36.9 5.4 14.6

SL 11.8 1.3 11.0 12.2 1.2 9.8 12.2 1.3 10.7 12.1 1.3 10.7

SS 21.1 1.9 9.0 21.6 1.8 8.3 21.7 2.0 9.2 21.5 1.9 8.8

TNG 329.1 37.9 11.5 384.1 41.6 10.8 435.8 44.8 10.3 377.8 57.6 15.2

TKW 40.7 5.1 12.5 43.2 4.3 10.0 45.5 4.9 10.8 42.9 5.1 11.9

BM 29.2 3.9 13.4 35.4 4.4 12.4 43.0 4.4 10.2 35.1 6.7 19.1

HI 31.7 5.7 18.0 35.9 4.5 12.5 37.1 4.4 11.9 34.8 5.4 15.5

Fig. 4.   shows the proposed methodology diagram.
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pairwise comparisons of accuracies of classifiers to find out whether their difference is significant at the desired 
significance level (0.05 in this study). The application platform was implemented in R version 4.0.2. The BAM-
Mtools, classInt, Libsvm, e1071, caret (Classification and Regression Training), GA, DEoptim and pso packages 
were used for SVM classification and optimization.

To achieve the proposed methodology, we used a workstation which was configured with an Intel Xenon 
processor of 24 cores (48 threads), 64 GB RAM, 1 TB SSD and 4 GB NVIDIA graphic card. Each analysis was 
done in parallelization activating n-2 cores.

Performance measures
The study comprises of widely used performance measures such as accuracy, Kappa value, sensitivity, specificity, 
predictive values, balanced accuracy and F-measure80. Using the confusion matrix C = (Cij)3×3

 , the following 
performance measures have been used in this study:

Accuracy
It is one of the most widely used measures in classification performance, and is defined as the ratio between 
correctly classified observations and the total number of observations81.

Kappa value
It estimates how well the observations classified by the classifier match the observations labelled as grounded. It 
is considered a more robust measure than a simple per cent agreement calculation, as it considers the probability 
of agreement that occurs by chance82. Thus, Kappa is generally slightly lower than accuracy83.

where, po is the overall accuracy and pe is calculated as:

where, Ri and Ci are the number of predicted and actual observations for ith class, respectively.

Sensitivity and specificity
Sensitivity is also known as True Positive Rate (TPR) or Recall. It represents the proportion of correctly predict-
ing the selected class81. Specificity or True Negative Rate (TNR) shows the proportion of correctly predicting 
the non-selected other classes81.

Suppose there are three classes in this study viz., L, M and H; then: 1) True Positive (TP) are all L class 
instances that are classified as L, 2) True Negative (TN) are all non-L class instances that are not classified as L 
or classified as M and H, 3) False Positive (FP) are all non-L class instances that are classified as L, and 4) False 
Negative (FN) are all L class instances that are not classified as L or classified as M and H.

Predictive values
These values represent the predictive performance. Precision or Positive Predictive Value (PPV) represents the 
ratio of selected class correctly predicted to the total selected class predictions made81. Negative Predictive Value 
(NPV) represents the proportion of the non-selected other classes correctly predicted to the total non-selected 
other classes predictions made80.

Balanced accuracy
The average of sensitivity and specificity is known as balanced accuracy84.

F‑measure
It is the harmonic mean of precision or positive predictive value and sensitivity or recall81. The value of F–measure 
ranges from 0 to 1.

(7)Accuracy =
C11 + C22 + C33

��Cij

(8)Kappa =
po − pe

1− pe

(9)pe =

∑3
i=1 RiCi

(�Ri)(�Ci)

(10)Sensitivity or Recall =
TP

TP + FN
, Specificity =

TN

TN + FP

(11)PPV =
TP

TP + FP
, NPV =

TN

TN + FN

(12)BalancedAccuracy =
1

2

(

Sensitivity + Specificity
)
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Results and discussion
Comparative performance of various kernels and ensemble approach for SVM classification of 
wheat genotypes
During the training phase, a 10 fold repeated cross validation with 5 repeats was used for selecting the SVM 
parameters. First, dataset was randomly divided as the training sets of 10 mutually exclusive subsets of equal 
size. Then we trained an SVM classifier modeled with predefined parameter values for different kernels, each 
one 10x. Every time we omitted a subset of the training dataset and used it only to get a measure of classification 
accuracy. From 10x of training and accuracy calculations, testing accuracy revealed the predictive performance 
of SVM classifier85. We then selected the best parameter values of SVM classifier to maximize the prediction. 
The procedure for parameter estimation was repeated five times, with each of the five different training sets 
randomly generated.

The number of support vectors, training and testing accuracies and Kappa values have been summarized in 
Table 2 for the seven models including the ensemble approach. All the six kernel functions were used with their 
default parameter settings. The classification accuracies over training (testing) datasets of 93.4% (93.2%), 93.8% 
(93.2%), 81.5% (86.4%), 93.0% (84.7%), 76.1% (61.0%) and 91.8% (78.0%) were obtained for linear, RBF, sigmoid, 
degree-1 polynomial, degree-2 polynomial and degree-3 polynomial kernels, respectively. Results indicated that 
the performance of RBF kernel was better than other kernels in terms of accuracies and Kappa values. Therefore, 
RBF kernel appears to be effective than the other kernel counterparts. So, we  considered RBF kernel for the next 
phase of the study and optimized its parameter using various optimization algorithms.

The outcomes of RBF kernels were more consistent with that of Chung et al.75 who distinguished infected and 
healthy seedlings of rice with 87.9% accuracy. Zhang and Wu86 demonstrated that the one-versus-one multiclass 
Gaussian kernel SVM can attain 88.2% accuracy. Here the accuracy with RBF kernel were higher than reported 
by Bulanon et al.87 (87%) and by Lu et al.88(87.2%). Zhang et al.89 demonstrated that the polynomial kernel 
can classify a dataset with 88.83% accuracy. Manurung et al.90 also found the similar results with 81.76% testing 
accuracy for polynomial kernel when comparing the kernel functions for Australian credit approval data of UCI 
machine learning repository. Melgani and Bazi85 confirmed the superiority of Gaussian RBF kernel based SVM 
classification as compared to linear and polynomial kernels.

Figure 5 shows the two-dimensional SVM plots of the training data with the separating hyperplane (decision 
surface) superimposed on the training data for the case of (a) Linear, (b) RBF, (c) Sigmoid, (d) Degree-1 poly-
nomial, (e) Degree-2 polynomial and (f) Degree-3 polynomial kernels. These plots offer a visual representation 
of the three yield classes’ data as a function of any two variables (total number of grains and thousand kernel 
weight in this case). Examples of misclassification cases can be seen in all the six kernels with individual training 
data being located on the wrong side of the separating hyperplane.

The comparison of results of each model with the ensemble approach show that the EWA approach structure 
outperformed others in terms of accuracy and Kappa value. The best classification accuracy over training dataset 
(Kappa value) achieved by the EWA approach was 95.1% (92.4%). Specially, EWA approach also represents the 
highest classification accuracy over testing dataset (Kappa value) of 94.9% (92.2%).

Table 3 shows the confusion matrix and various performance measures for the SVM classification of wheat 
genotypes using linear and RBF kernel functions. It is obvious from this table that both kernels produced similar 
accuracy of 100% for the high yield class. The table also shows that out of the 59 genotypes (20 for low yield, 25 
for medium yield and 14 for high yield), the linear kernel-based classification predicted 18 low yield genotypes 
and 23 medium yield genotypes accurately, whereas 2 low yield genotypes were misclassified in medium class 
and 2 medium yield genotypes were mislabelled in low and high classes each with 1 genotype. The RBF kernel 
classification predicted 19 low yield genotypes and 22 medium yield genotypes accurately while 1 low yield 
genotype was misclassified in medium class and 3 medium yield genotypes were mislabelled in low (1 genotype) 
and high (2 genotypes) classes. The average sensitivity, specificity, PPV, NPV, balanced accuracy and F-measures 
were calculated and are equal to 94.0% (94.3%), 96.4% (96.7%), 93.3% (92.7%), 96.4% (96.4%), 95.2% (95.5%) 
and 93.6% (93.3%), respectively for linear (RBF) kernel functions.

(13)F−measure =
(2× Precision)× Recall

Precision+ Recall

Table 2.   Comparative performance of different kernels for SVM-based classification of wheat genotypes.

Kernel Number of Support vectors

Training Testing

Accuracy Kappa Accuracy Kappa

Linear 67 0.934 0.899 0.932 0.896

RBF 190 0.938 0.905 0.932 0.897

Sigmoid 143 0.815 0.714 0.864 0.790

Degree-1 polynomial 145 0.930 0.892 0.847 0.765

Degree-2 polynomial 211 0.761 0.620 0.610 0.382

Degree-3 polynomial 195 0.918 0.871 0.780 0.648

EWA approach – 0.951 0.924 0.949 0.922
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The confusion matrix obtained by sigmoid and degree-1 polynomial kernels is shown in Table 4. It shows that 
low yield class was correctly classified for 19 genotypes and 3 medium yield genotypes were misclassified as low 
yield, in case of sigmoid kernel. Whereas, medium yield class was correctly classified for 22 genotypes and high 
yield class was correctly classified for 11 genotypes. For degree-1 polynomial kernels, 16 low yield genotypes, 21 
medium yield genotypes and 13 high yield genotypes were accurately classified whereas 4 low yield genotypes 

Fig. 5.   Two-dimensional SVM plots showing training data and decision boundaries using attributes TNG and 
TKW for the case of (a) Linear, (b) RBF, (c) Sigmoid, (d) Degree-1, (e) Degree-2 and (f) Degree-3 polynomial 
kernels.

Table 3.   Confusion matrix and performance measures for SVM classification of wheat genotypes using Linear 
and RBF kernels.

Performance statistics

Actual

Linear kernel RBF kernel

L M H L M H

Prediction

 L 18 1 0 19 1 0

 M 2 23 0 1 22 0

 H 0 1 14 0 2 14

Sensitivity 0.900 0.920 1.000 0.950 0.880 1.000

Specificity 0.974 0.941 0.978 0.974 0.971 0.956

Positive predictive value 0.947 0.920 0.933 0.950 0.957 0.875

Negative predictive value 0.950 0.941 1.000 0.974 0.917 1.000

Balanced accuracy 0.937 0.931 0.989 0.962 0.925 0.978

F-measure 0.923 0.920 0.966 0.950 0.917 0.933
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were misclassified in medium class, 2 medium yield genotypes in low class, 2 medium yield genotypes in high 
class and 1 high yield genotype were mislabelled in medium class. The average sensitivity, specificity, PPV, 
NPV, balanced accuracy and F-measures were calculated and are equal to 85.9% (85.6%), 92.8% (91.9%), 87.4% 
(85.5%), 93.0% (91.9%), 89.3% (88.7%) and 86.4% (85.4%), respectively for sigmoid (degree-1 polynomial) kernel 
functions. Sensitivity, negative predictive value, balanced accuracy and F-values were found higher for the low 
yield class, while specificity and positive predictive values were larger for the high yield class for sigmoid kernel. 
All the performance measures provide better results in high yield class with degree-1 polynomial, except the 
positive predictive value which was higher in low yield class.

Table 5 shows the confusion matrix of the detailed classification results of degree-2 and degree-3 polynomial 
kernels for the test set of yield classes. Almost all the misclassified genotypes fall to the adjacent class with none 
falling to the distant class in case of degree-3 polynomial kernel but for degree-2 polynomial kernel, the mis-
classified genotypes also fall to distant classes as well. It is noted that degree-2 and degree-3 polynomial kernels 
classified the medium yield class with a highest accuracy of 88% and 96%, respectively. Likewise for low and high 
yield classes, the classification accuracies were comparatively less at 45% & 35.7% and 65% & 64.3% for degree-2 
and degree-3 polynomial kernels, respectively. For degree-2 polynomial, the 2 (149th and 191st) genotypes of low 
class were misclassified to high class, may be due to their higher values for variables DTH, DTA, DTM, GFD, PH, 
PL, SL and SS as compared to the mean of high class. Likewise, the 8 (17th, 100th, 113th, 119th, 123rd, 167th, 
244th and 276th) genotypes of high class were mislabelled to distant low class, as the mean values of some vari-
ables for these genotypes were lower than the mean of low yield class. The average sensitivity, specificity, PPV, 
NPV, balanced accuracy and F-measures were obtained as 56.2% (75.1%), 79.5% (87.5%), 58.1% (85.6%), 81.4% 
(90.1%), 67.9% (81.3%) and 56.0% (77.5%), respectively for degree-2 (degree-3) polynomial kernels.

The confusion matrix obtained for the EWA approach is shown in Table 6. The performance of the clas-
sification model in classifying three yield classes are presented in this matrix. The genotypes in actual classes 
corresponding to low, medium and high yield are shown in first, second and third columns, respectively. The 

Table 4.   Confusion matrix and performance measures for SVM classification of wheat genotypes using 
Sigmoid and Degree-1 polynomial kernels.

Performance statistics

Actual

Sigmoid kernel
Degree-1 polynomial 
kernel

L M H L M H

Prediction

 L 19 3 0 16 2 0

 M 1 21 3 4 21 1

 H 0 1 11 0 2 13

Sensitivity 0.950 0.840 0.786 0.800 0.840 0.929

Specificity 0.923 0.882 0.978 0.949 0.853 0.956

Positive predictive value 0.864 0.840 0.917 0.889 0.808 0.867

Negative predictive value 0.973 0.882 0.936 0.902 0.879 0.977

Balanced accuracy 0.937 0.861 0.882 0.874 0.846 0.942

F-measure 0.905 0.840 0.846 0.842 0.824 0.897

Table 5.   Confusion matrix and performance measures for SVM classification of wheat genotypes using 
Degree-2 and Degree-3 polynomial kernels.

Performance statistics

Actual

Degree-2 polynomial 
kernel

Degree-3 polynomial 
kernel

L M H L M H

Prediction

 L 9 1 8 13 0 0

 M 9 22 1 7 24 5

 H 2 2 5 0 1 9

Sensitivity 0.450 0.880 0.357 0.650 0.960 0.643

Specificity 0.769 0.706 0.911 1.000 0.647 0.978

Positive predictive value 0.500 0.688 0.556 1.000 0.667 0.900

Negative predictive value 0.732 0.889 0.820 0.848 0.957 0.898

Balanced accuracy 0.610 0.793 0.634 0.825 0.804 0.810

F-measure 0.474 0.772 0.435 0.788 0.787 0.750



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22728  | https://doi.org/10.1038/s41598-024-72056-0

www.nature.com/scientificreports/

genotypes in predicted classes corresponding to low, medium and high yield are shown in first, second and third 
rows respectively. Ninteen genotypes of actual low yield were predicted as low yield and 1 genotype of low yield 
was wrongly predicted as medium yield. Twenty-three genotypes of medium yield were predicted correctly in 
the same medium yield class and 2 genotypes of medium yield class were misclassified in low yield class. The 
total number of actual high yield genotypes was predicted correctly without any misclassified genotypes. The 
average sensitivity, specificity, PPV, NPV, balanced accuracy and F-measures were observed as 95.7%, 97.3%, 
95.4%, 97.2%, 96.5% and 95.5%, respectively. All performance measures were higher for the high yield class in 
comparison to other two classes with 100% accuracy.

Comparative performance of optimization approaches for SVM classification of wheat 
genotypes
The parameter values which are most important for the improvement of a SVM model are the regularization 
or penalty parameter ( C ), kernel function and values of kernel parameters. The difficulty encountered in the 
SVM model is how to select the values of these hyper-parameters. To overcome from this situation, optimiza-
tion approaches (GS, RS, GA, DE and PSO) for SVM has been compared in this study. The comparison between 
these five algorithms for optimization of RBF-SVM parameters for classification of wheat genotypes constitute 
the second phase of the study. For both C and σ parameters, the search range was [10–2 to 103] and maximization 
of accuracy was used as fitness function in all the approaches. Tournament selection, local arithmetic crossover 
and uniform random mutation strategies were used as operators in GA. The other parameters for GA were as 
follows: 1000 number of iterations, population size of 100, crossover rate 0.8, mutation rate 0.1 and elite size of 
2. Among the plenty of strategies of DE, local-to-best/1/bin was employed in this study. The other parameters for 
DE were: 1000 number of iterations, population size (NP) = 100, step size (F) = 0.8 and crossover rate (CR) = 0.9. 
Likewise, the parameters for PSO in this study were: number of iterations = 1000 and swarm size = 50.

The results of optimization algorithms for SVM classification model were generated and are given in Table 7 
and Fig. S1. As stated in table, classification accuracies over training and testing datasets obtained for the SVM 
classifier optimized with PSO approach were 94.2% and 94.9%, respectively. These results were better than the 

Table 6.   Confusion matrix and performance measures for EWA approach in wheat genotypes.

Performance statistics

Actual

L M H

Prediction

 L 19 2 0

 M 1 23 0

 H 0 0 14

Sensitivity 0.950 0.920 1.000

Specificity 0.949 0.971 1.000

Positive predictive value 0.905 0.958 1.000

Negative predictive value 0.974 0.943 1.000

Balanced accuracy 0.949 0.945 1.000

F-measure 0.927 0.939 1.000

Table 7.   Comparative performance of various optimization techniques for SVM classification of wheat 
genotypes.

Classifier Optimum parameter values

Accuracy Kappa

Training Testing Training Testing

SVM
C = 1

0.938 0.905 0.932 0.897
σ = 1

GS-SVM
C = 50

0.930 0.892 0.847 0.766
σ = 0.01

RS-SVM
C = 96.51

0.934 0.899 0.881 0.818
σ = 0.009

GA-SVM
C = 472.48

0.938 0.905 0.915 0.871
σ = 0.12

DE-SVM
C = 476.95

0.938 0.905 0.915 0.870
σ = 0.04

PSO-SVM
C = 863.69

0.942 0.911 0.949 0.922
σ = 0.01
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accuracies attained by the SVM classification with GS, RS, GA and DE optimization algorithms. In fact, clas-
sification accuracies over training (testing) datasets were equal to 93.0% (84.7%) for GS-SVM classifier, 93.4% 
(88.1%) for RS-SVM classifier, and 93.8% (91.5%) for both GA-SVM and DE-SVM classifiers.

The results of GA-SVM were in agreement with the outcomes of Lessmann et al.91 who also secured 91.86% 
prediction accuracy with population size of 10 for Wisconsin breast cancer dataset. Liu and Jiao92 concluded 
that GA-SVM can access the bridge damage conditions with high accuracy than the RBF kernel. The outcomes 
of DE-SVM were in line with the results of Bhadra et al.93 who also achieved the 91% prediction accuracy for 
Australian dataset and 91.62% testing accuracy for libras movement datasets of UCI machine learning repository.

The best optimization results were obtained when C = 50 and σ = 0.01 for GS-SVM, C = 96.51 and σ = 0.009 for 
RS-SVM, C = 472.48 and σ = 0.12 for GA-SVM, C = 476.95 and σ = 0.04 for DE-SVM, and C = 863.69 and σ = 0.01 
for PSO-SVM. When we look at these results, we find that there was not a significant improvement in the clas-
sification accuracies over training dataset with these optimization algorithms but the accuracy gains of 1.7% 
was achieved in testing set for PSO-SVM approach. The PSO-SVM technique has set more suitable parameters, 
provided with the higher classification accuracy in the dataset. The result seems to be in confirmaition with 
what was seen in other areas of application; further proving the superiority of SVM classification based on PSO 
algorithm compared to other optimization algorithms when working with the high dimension feature space.

Sen et al.94 also found the classification accuracies of 94% for training set with PSO-SVM model for tumour 
classification of 22 normal and 40 colon tumour tissues. The results demonstrated that the modified PSO was 
a useful tool for gene selection and mining high dimension data. Melgani and Bazi85 optimized the SVM clas-
sifier by searching for the best value of the parameters using PSO. The experiment was conducted on the ECG 
data to classify five kinds of abnormal waveforms and normal beats. The obtained results clearly confirmed the 
superiority of SVM approach as compared to k-NN and RBF NN. The PSO-SVM yielded an overall accuracy of 
89.72% against 82.34%, 83.70% and 85.98% for RBF neural networks, k-NN and SVM classifiers, respectively.

Lin et al.42 also developed the PSO based approach for parameter determination of the SVM and feature 
selection. Experimental results demonstrated that the classification accuracies of the developed approach surpass 
the accuracies of grid search and the PSO-SVM approach had a similar result to GA-SVM. When dealing with 
fault diagnosis of sensors, Chenglin et al.95 found a higher average diagnostic accuracy of 93.05% for PSO-SVM 
with RBF kernel. Bonah et al.66 concluded that PSO-SVM offers best performance as compared to GA-SVM and 
GS-SVM for classification of 5 bacterial foodborne pathogens collected from electronic nose dataset.

Tables 8 and 9 depeict the confusion matrix and performance measures obtained from the outcomes on test 
dataset. For the approaches GS-SVM, RS-SVM and DE-SVM, high yield class outperformed other two classes 
in terms of all the performance measures. In case of GA-SVM, we observed that the performance of high yield 
class was better than that of the other classes in terms of sensitivity, negative predictive value, balanced accuracy, 
and F-measure, while medium yield class provided better results in terms of specificity and positive predictive 
values. Though, for the PSO-SVM, high yield class performed the best over other classes in terms of sensitiv-
ity, specificity, negative predictive value, balanced accuracy and F-measure, whereas positive predictive value 
obtained using medium yield class performed better. Average positive predictive value of 91.14% was generated 
for GA-SVM while average sensitivity of 92.66% was achieved for DE-SVM. Average positive predictive value 
of 91.14% was generated for GA-SVM and similar positive predictive value of 92.08% for breast cancer data was 
found by Liu and Fu 96 with this approach. For DE-SVM, average sensitivity of 92.66% was generated and Bhadra 
et al.93 also attained the similar sensitivity value of 92% for an Australian dataset with this approach. Sen et al.94 
obtained the 95% sensitivity in case of PSO-SVM approach, which was in line with the outcomes of this study. 

Overall comparison of all the classification models for wheat data are presented in Fig. 6 which shows that 
the performance of RBF kernel was better than other kernel counterparts in terms of classification accuracies 
over training as well as testing datasets. Letters a, b, c, d, e and f on bar graph are there to indicate the difference 
between different models and their accuracies across training and testing datasets at the p < 0.05. The ensemble 
approach EWA outperforms others with 95.1% training accuracy followed by PSO-SVM (94.2%). While for 

Table 8.   Confusion matrix and performance measures for SVM classification of wheat genotypes using GS, 
RS and GA algorithms.

Performance statistics

Actual

GS-SVM (RS-SVM) GA-SVM

L M H L M H

Prediction

 L 17 (17) 4 (3) 0 (0) 19 2 0

 M 3 (3) 20 (21) 1 (0) 1 21 0

 H 0 (0) 1 (1) 13 (14) 0 2 14

Sensitivity 0.850 (0.850) 0.800 (0.840) 0.929 (1.000) 0.950 0.840 1.000

Specificity 0.897 (0.923) 0.882 (0.912) 0.978 (0.978) 0.949 0.971 0.956

Positive predictive value 0.810 (0.850) 0.833 (0.875) 0.929 (0.933) 0.905 0.955 0.875

Negative predictive value 0.921 (0.923) 0.857 (0.886) 0.978 (1.000) 0.974 0.892 1.000

Balanced accuracy 0.874 (0.887) 0.841 (0.876) 0.953 (0.989) 0.949 0.905 0.978

F-measure 0.829 (0.850) 0.816 (0.857) 0.929 (0.966) 0.927 0.894 0.933
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testing data set, the EWA approach and PSO-SVM performed well with 94.9% accuracy. The lowest training 
(76.1%) and testing (61.0%) accuracies were obtained for Degree-2 polynomial kernel function.

The results of one-way ANOVA for training as well as testing datasets depicted that the null hypothesis gets 
rejected with a very high significance level (Supplementary material Table S2). So, the difference in the accura-
cies of all twelve classifiers was found statistically significant. The Supplementary material Table S3 illustrated 
the application of Tukey HSD test on this result. These results shows that the accuracies of all the classifiers were 
found statistically significant with the accuracies of Sigmoid and Degree-2 polynomial kernels in case of train-
ing dataset. But, in case of testing dataset, the mean comparisons of classifiers EWA and PSO-SVM were found 
statistically significant with the accuracies of Sigmoid, Degree-1 polynomial, Degree-2 polynomial, Degree-3 
polynomial, GS and RS classifiers.

Conclusions and future research
Nowadays, SVM has attracted much attention as an effective problem-solving technique for real-world classifi-
cation tasks. However, the performance of SVM strongly depends on the selection of the corresponding kernel 
function and the value of the associated parameters. Based on the results, we strongly recommend using SVM 
classification with RBF kernels for wheat genotypes due to their better generalization ability than linear, sigmoid 
and polynomial kernels. This ability usually gives them high classification accuracy. The main emphasis of this 
research lies in the ensemble approach EWA and the optimization algorithms that aim to combine the results 
of different base classifiers and optimize the accuracy of SVM classifiers, respectively. To achieve this, the study 
also compares optimization approaches.

The performance of the RBF kernel was better than other kernel features in terms of classification accuracy 
on both training and test datasets. Ensembling with the weighted accuracy approach outperformed the results of 

Table 9.   Confusion matrix and performance measures for SVM classification of wheat genotypes using DE 
and PSO algorithms.

Performance statistics

Actual

DE-SVM PSO-SVM

L M H L M H

Prediction

 L 18 2 0 19 1 0

 M 2 22 0 1 23 0

 H 0 1 14 0 1 14

Sensitivity 0.900 0.880 1.000 0.950 0.920 1.000

Specificity 0.949 0.941 0.978 0.974 0.971 0.978

Positive predictive value 0.900 0.917 0.933 0.950 0.958 0.933

Negative predictive value 0.949 0.914 1.000 0.974 0.943 1.000

Balanced accuracy 0.924 0.911 0.989 0.962 0.945 0.989

F-measure 0.900 0.898 0.966 0.950 0.939 0.966

Fig. 6.   Overall comparison of various kernels, ensemble approach and optimization algorithms for 
classification of wheat genotypes using SVM. Letters a, b, c, d, e and f on bar graph are there to indicate the 
difference between different models and their accuracies across training and testing datasets at the p < 0.05.
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the individual kernel functions. For classification accuracy in the test data set, the PSO-SVM approach produced 
a gain of 1.7%, compared to the RBF kernel results. The results of this study were obtained with the RBF kernel 
because its accuracy was the highest among all kernels tested in this study.

However, the parameters of other kernel functions can also be optimized using these approaches and/or other 
approaches can be compared. Some other classification techniques, such as Fisher’s linear discriminant function, 
k-nearest neighbor classifier, Bayesian networks, decision trees and artificial neural networks, among others, 
can also be compared with optimization-based SVM classification in the future. The recent advancements in 
optimization algorithms, such as the Grey Wolf Optimizer (GWO) and the Salp Swarm Algorithm (SSA), can 
be utilized for comparative analysis in future studies. The results of this study can be generalized by using this 
type of genotypic data for other crops.

Data availability
The data supporting this study’s findings are available from the first author or Dinesh Kumar Vishwakarma 
upon request.
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