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Abstract
We examined the association between plasma metabolites and abnormal sleep pat-
terns	using	data	from	the	Southall	and	Brent	REvisited	(SABRE)	cohort.	Nuclear	mag-
netic resonance spectroscopy provided 146 circulating plasma metabolites. Sleep 
questionnaires identified the presence or absence of: difficulty falling asleep, early 
morning waking, waking up tired, and snoring. Metabolites were compared between 
the sleep quality categories using the t test, and then filtered using a false discov-
ery rate of 0.05. Generalised linear models with logit-link assessed the associations 
between	filtered	metabolites	and	sleep	phenotypes.	Adjustment	was	made	for	im-
portant	demographic	 and	health-related	covariates.	 In	 all,	 2,718	participants	were	
included	in	the	analysis.	After	correcting	for	multiple	testing,	three	metabolites	re-
mained for difficulty falling asleep, 59 for snoring, and none for early morning waking 
and	waking	up	tired.	After	adjusting	for	sex,	age,	ethnicity	and	years	of	education,	1	
standard deviation increase in serum histidine and valine associated with lower odds 
of	difficulty	falling	asleep	by	0.89–0.90	(95%	confidence	intervals	[CIs]	0.80–0.99).	
Branched-chain	 and	 aromatic	 amino	 acids	 (odds	 ratios	 [ORs]	 1.19–1.25,	 95%	 CIs	
1.09–1.36)	were	positively	associated	with	snoring.	Total	cholesterol	in	low-density	
lipoprotein	(OR	0.90,	95%	CI	0.83–0.97)	and	high-density	lipoprotein	(OR	0.88,	95%	
CI	0.81–0.95)	associated	with	lower	odds	of	snoring.	In	the	fully	adjusted	model,	most	
associations persisted. To conclude, histidine and valine associated with lower odds 
of difficulty falling asleep, while docosahexaenoic acid and cholesterol in low-density 
lipoprotein and high-density lipoprotein subfractions associated with lower odds of 
snoring. Identified metabolites could provide guidance on the metabolic pathways 
associated with adverse sleep quality.
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1  | INTRODUC TION

Sleep is a vital component of the human circadian rhythm. 
Abnormal	 sleep	 patterns	 are	 increasingly	 common.	 Two	 of	 the	
most prevalent sleep disorders are insomnia and snoring, with re-
cent estimates suggesting insomnia is reported in >30%	(LeBlanc	
et	al.,	2007)	and	snoring	in	>20%	of	the	global	population	(Enright	
et	al.,	1996).

Sleep is of primordial importance in physiological homeostasis. 
While adverse sleep phenotypes are associated with negative health 
consequences, including cardiovascular disease and cancer (Medic 
et	al.,	2017),	the	triggers	and	pathways	that	may	contribute	to	abnor-
mal sleep phenotypes and related detrimental health outcomes are 
still “hot” research topics.

Metabolic dysfunction has been previously associated with sleep 
phenotypes	 (Depner	 et	 al.,	 2014).	 Insomnia	 and	 short	 sleep	 dura-
tion have been associated with increased odds of developing type 
2	diabetes	mellitus	(T2DM)	(Vgontzas	et	al.,	2009),	which	could	be	
mediated	by	branched-chain	amino	acids	(BCAAs).	Snoring	has	been	
associated with disordered metabolic processes including insulin re-
sistance, hyperglycaemia and dyslipidemia (high triglycerides, high 
low-density	 lipoprotein	 [LDL]	 cholesterol,	 and	 low	high-density	 li-
poprotein	 [HDL]	 cholesterol)	 (Alexopoulos	 et	 al.,	 2011;	 Sharma	 &	
Kavuru,	 2010).	 However,	 the	 directionality	 of	 the	 association	 be-
tween	metabolites	and	 sleep	phenotypes	 is	 still	 unclear.	Although	
epidemiological studies postulate that disordered sleep may be both 
a cause and a consequence of abnormal metabolism, any potential 
causal effects relating to these claims are still to be elucidated.

Thus,	using	a	metabolomics	approach	(Fabian	et	al.,	2013)	could	
lead to a better understanding of the mechanisms underlying ab-
normal sleep phenotypes, as well as provide a direction for future 
novel guided therapies. Similar approaches have been successfully 
employed, e.g. in characterising novel predictors for heart failure 
(Delles	et	al.,	2018).

In the present cross-sectional study, nuclear magnetic resonance 
(NMR)	 spectroscopy	 was	 used	 to	 identify	 metabolites	 associated	
with adverse sleep phenotypes (difficulty falling asleep, early morn-
ing	waking,	waking	up	 tired,	 and	 snoring)	 reported	 in	 participants	
from	the	Southall	and	Brent	REvisited	(SABRE)	cohort.

2  | METHODS

2.1 | Participants and study design

The	 SABRE	 study	 is	 a	 tri-ethnic	 cohort	 of	 European,	 South	Asian	
and	African	Caribbean	participants	living	in	West	and	North	London	
(Southall	and	Brent	districts).	Between	1988	and	1991,	participants	
aged	40–69	years	were	randomly	selected	from	5-year	age	and	sex	
stratified primary care lists (n =	4,063)	and	workplaces	(n =	795).	The	
full	cohort	details	have	been	published	elsewhere	(Tillin	et	al.,	2012).	
Ethnicity was self-assigned and agreed with the interviewer. South 
Asians	and	African	Caribbeans	were	all	first-generation	migrants.

At	 baseline,	 participants	 were	 invited	 to	 a	 clinic	 appointment,	
which involved completing a health and lifestyle questionnaire that 
included questions on sleep patterns. Fasting bloods were collected, 
and anthropometrics and blood pressure were measured. Diabetes 
was identified from self-report of physician diagnosis or receipt of 
anti-diabetes medications. In addition, oral glucose tolerance test-
ing was performed. Undiagnosed diabetes was identified retrospec-
tively	using	World	Health	Organization	(WHO)	1999	criteria	(Alberti	
&	Zimmet,	1998).

The	 SABRE	 baseline	 study	 was	 granted	 ethics	 approval	 from	
Ealing, Hounslow and Spelthorne, Parkside, and University College 
London Research Ethics Committees.

2.2 | Exposures

The	exposures	were	146	NMR	measured	circulating	plasma	metabo-
lites	including	amino	acids,	small	molecules	(e.g.	glycerol,	pyruvate)	
and a detailed lipid profile consisting of 16 lipoprotein subclasses to-
gether with their lipid component concentrations (total cholesterol, 
cholesterol-esters, free cholesterol, total lipids, phospholipids, and 
triglycerides)	and	particle	dimensions	(i.e.	diameter).

Serum fasting samples were obtained from 3,700 participants 
(from	 the	 Southall	 Centre	 only)	 at	 baseline	 and	 were	 stored	 at	
−80°C.	 In	2012,	a	proton	NMR	spectrum	was	employed	to	detect	
circulating plasma metabolite levels following the signal suppression 
of other molecules according to methodologies previously described 
(Soininen	et	al.,	2009;	Würtz	et	al.,	2017).	Ratios	of	metabolites	(e.g.	
triglycerides	to	phosphoglycerides)	were	excluded	as	they	were	be-
yond the scope of our study.

None	of	the	study	participants	was	receiving	lipid-lowering	med-
ication at the time of the baseline studies.

2.3 | Outcomes

The outcomes of interest were four sleep quality phenotypes: dif-
ficulty falling asleep, early morning waking, waking up tired, and 
snoring.

Participants were asked to rate their sleep quality in the past 
30	days	at	visit	1	(1988–90)	using	four	questions	adapted	from	the	
validated	Jenkins	Sleep	Questionnaire	(JSEQ)	(Jenkins	et	al.,	1988).	
They were asked whether they felt they had difficulties falling asleep 
at night, had been waking up too early in the morning, whether they 
woke up feeling tired or had problems with snoring during the night. 
All	sleep	phenotypes	were	rated	binary	(i.e.	“No”/0	or	“Yes”/1).

2.4 | Covariates

Covariates were selected a priori based on prior associations with 
sleep quality and metabolism. Covariates were recorded at the time 
of the baseline studies (when serum samples were collected for 
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storage)	and	included:	age,	sex,	ethnicity,	years	of	education,	waist–
hip	 ratio	 (WHR),	 body	 mass	 index	 (BMI),	 cardiovascular	 disease	
(CVD;	 coronary	 artery	 disease	 and	 stroke),	 T2DM,	 hypertension	
medication, total number of alcohol units per week, and smoking 
status	(never	smoked,	ex-smoker,	current	smoker).	CVD,	T2DM	and	
hypertension	 medication	 were	 recorded	 as	 binary	 (i.e.	 “No”/0	 or	
“Yes”/1).

2.5 | Statistical methods

Data distribution was assessed graphically using histograms and sta-
tistically	using	the	Shapiro–Wilk	test.	Continuous	variables	were	ex-
pressed	as	medians	(interquartile	ranges),	while	categorical	variables	
were	expressed	as	counts	(percentage).

Metabolite concentrations were log-transformed, mean centred 
and scaled to a standard deviation (SD)	of	1	before	further	analysis.

A	t test analysis was used as a screening tool to identify me-
tabolites linked with sleep phenotypes, correcting for multi-
ple	 testing	 at	 a	 false	 discovery	 rate	 (FDR)	 of	 0.05	 (Benjamini	 &	
Hochberg,	1995).	Metabolites	that	passed	this	threshold	were	fur-
ther referred to as “candidate metabolites”. Candidate metabolite 
associations with sleep phenotypes were evaluated using multi-
variable	generalised	linear	models	(GLMs)	accounting	for	age,	sex,	
ethnicity,	and	years	of	education	(Model	1).	Further	adjustments	
were	Model	1	plus	WHR,	CVD,	T2DM,	anti-hypertensive	medica-
tion,	alcohol	units,	and	smoking	status	(Model	2).	As	BMI	captures	
a somewhat different profile of excess weight as compared to the 
WHR, an additional Model 2 where BMI was used instead of WHR 
was fitted. Where multiple metabolites were associated with a 
sleep quality phenotype, a Manhattan plot was used for visual rep-
resentation.	In	the	Manhattan	plot,	–log10(p	values)	were	plotted	
on the y-axis, while the x-axis consisted of metabolites grouped 
into relevant categories.

About	 a	 fifth	 of	 all	 participants	 reported	 zero	 weekly	 alco-
hol intakes. To account for this high degree of zero-inflation (He 
et	 al.,	 2014),	 a	 modified	 version	 of	 GLM	 (using	 template	 model	
builder	[glmmTMB])	was	chosen	(Appendix	S1).Thus,	glmmTMB	with	
binomial	distribution	and	logit	link	(equivalent	to	logistic	regression)	
using metabolites as exposures was employed to predict the binary 
sleep	phenotypes	as	outcomes.	As	snoring	was	associated	with	HDL	
and LDL in the same direction, a Pearson’s correlation analysis was 
performed between HDL and LDL subfractions.

The t test is not able to discriminate between groups where 
minor differences exist. This may not identify biologically relevant 
metabolites	(Fabian	et	al.,	2013).	Thus,	we	ran	the	regression	models	
for all the available metabolites as a sensitivity analysis.

As	sleep	health	is	multi-dimensional	(Buysse,	2014),	we	created	
a composite sleep score. First, we performed a principal component 
analysis	(PCA)	of	the	included	sleep	phenotypes.	For	each	principal	
component, the weights were normalised so that they added up to 1. 
As	the	first	principal	component	accounts	for	most	variability	in	the	
indicators	 (Hosseini	 et	 al.,	 2019),	we	 constructed	 a	PCA-weighted	

sleep	composite	score	(wSleep)	as	the	weighted	average	of	the	sleep	
phenotypes	using	the	first	principal	weights.	As	the	sleep	composite	
score was discrete rather than continuous, GLMs with Poisson dis-
tribution and log link assessed the associations between metabolites 
and	wSleep	(Gardner	et	al.,	1995).	Regression	results	were	then	fil-
tered at a FDR of 0.05.

Statistical analysis was performed in R, version-3.6.0 (R 
Foundation	for	Statistical	Computing,	Vienna,	Austria),	with	p < .05 
considered statistically significant.

3  | RESULTS

3.1 | Participant characteristics

Of	the	4,858	SABRE	participants,	3,700	(from	the	Southall	Centre	
only)	 had	 stored	 blood	 samples	with	 3,255	 being	 viable	 for	NMR	
analysis.	 Furthermore,	2,718	had	 all	 sleep	phenotypes,	 covariates,	
and	metabolites.	Of	the	2,718	included	participants,	2,379	(87.53%)	
were	male	and	664	(24.43%)	were	current	smokers.	The	mean	(SD)	
age	of	the	cohort	was	52.10	(7.18)	years	and	the	mean	(SD)	WHR	was	
0.95	 (0.08).	Difficulty	 falling	 asleep	was	 reported	 in	 453	 (16.67%)	
participants,	 early	 morning	 waking	 in	 1,108	 (40.77%),	 waking	 up	
tired	 in	 927	 (34.11%),	 and	 snoring	 in	 1,051	 (38.67%).	 Participant	
characteristics are summarised in Table 1.

3.2 | Screening for candidate metabolites

Of the 146 available metabolites, 12 metabolites were identified for 
difficulty falling asleep, four for early morning waking, two for waking 
up tired, and 73 for snoring using the t	test	(Supplementary	Table	S1).	
After	correcting	for	multiple	testing	at	a	FDR	of	0.05,	histidine,	leu-
cine and valine remained as candidate metabolites for difficulty fall-
ing asleep. In addition, 59 metabolites were further considered as 
candidates in association with snoring. Lastly, none remained for 
early	morning	waking	and	waking	up	tired	(Supplementary	Table	S1).

3.3 | Difficulty falling asleep

After	adjusting	for	age,	sex,	ethnicity	and	years	of	education	(Model	
1),	 serum	histidine	and	valine	were	 inversely	associated	with	diffi-
culty falling asleep as follows: 1 SD increases in serum histidine and 
valine were associated with lower odds of difficulty falling asleep 
with	an	odds	ratio	(OR)	of	0.89	(95%	confidence	interval	[CI]	0.80–
0.99)	 and	 0.90	 (95%	CI	 0.81–0.99),	 respectively.	 Associations	 per-
sisted after further adjustment for covariates in Model 1 plus WHR, 
CVD,	T2DM,	anti-hypertensive	medication,	alcohol	units,	and	smok-
ing	status	(Model	2)	(Supplementary	Table	S2).	When	we	used	BMI	
instead	of	WHR,	the	results	were	similar	(Supplementary	Table	S3).	
Individuals experiencing difficulty falling asleep had lower plasma 
levels	of	histidine	and	valine	(Supplementary	Table	S4).
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3.4 | Snoring

Of the 59 candidate metabolites, 45 remained associated with snor-
ing	in	Model	1	(Figure	1).	The	ORs	associated	with	1	SD increments 
in each of the 45 metabolites in Model 1 are presented in Table 2 
and visually illustrated in Figure 2. Model 2 results are presented in 
Supplementary Table S2.

The	BCAAs	(isoleucine,	leucine	and	valine)	and	aromatic	amino	
acids	 (phenylalanine	 and	 tyrosine)	 were	 associated	 with	 greater	
odds	of	snoring	(ORs	in	the	range	of	1.19	to	1.25).	Similarly,	acetate	
and	glycoprotein	acetyls	associated	with	1.12	 (95%	CI	1.03–1.21)	
higher odds of snoring. In Model 2, associations persisted for all 
except	glycoprotein	acetyls	and	tyrosine	(Supplementary	Table	S2).

After	adjusting	for	Model	1,	serum	apolipoprotein	A-I	(OR	0.87,	
95%	CI	0.80–0.95)	and	docosahexaenoic	acid	(DHA;	OR	0.90,	95%	
CI	0.83–0.98)	were	inversely	associated	with	snoring.	Total	choles-
terol	in	HDL	(OR	0.88,	95%	CI	0.81–0.95)	and	in	LDL	(OR	0.90,	95%	
CI	0.83–0.97)	appeared	to	be	beneficial.	Regarding	the	subfraction	
breakdown, total cholesterol in small, medium and very-large HDL 
(ORs	0.91–0.92,	95%	CI	0.84–0.99)	and	in	small,	medium	and	large	
LDL	(ORs	0.88–0.91	95%	CI	0.81–0.99)	were	associated	with	lower	
odds of snoring. In addition, cholesterol-esters, free cholesterol, 
phospholipids and total lipids from certain LDL and HDL subfrac-
tions	were	also	inversely	associated	with	snoring	(Figure	2),	with	the	

lowest OR for lower odds of snoring being observed for cholester-
ol-esters	in	medium-LDL	(OR	0.67,	95%	CI	0.47–0.95).	The	HDL	and	
LDL subfractions were mostly positively correlated (Supplementary 
Figure	S1).	In	Model	2,	significant	associations	mostly	persisted	ex-
cept	for	the	very-large	HDL	subfractions	(Supplementary	Table	S2).	
When we used BMI instead of WHR, most associations persisted 
except	 for	 five	 metabolites	 (Supplementary	 Table	 S3).	 Individuals	
reporting	snoring	had	higher	plasma	levels	of	BCAAs	and	aromatic	
amino acids. In addition, they had lower cholesterol in HDL and LDL 
(Supplementary	Table	S4).

3.5 | Sensitivity analysis

Additional	 metabolites	 that	 were	 associated	 with	 the	 sleep	 phe-
notypes	 in	 the	 fully	 adjusted	models	 (i.e.	Model	 2),	 but	which	 did	
not pass the t test screening stage were identified (Supplementary 
Table	S5).	A	1	SD increase in glycine, free cholesterol and sphingo-
myelins was related to greater odds (ORs ≅	1.15)	of	having	difficulty	
falling asleep. Creatinine and valine were associated with lower odds 
(ORs ≅	0.90)	of	early	morning	waking,	while	albumin	and	lactic	acid	
associated with lower odds (ORS ≅	0.87)	of	waking	up	 tired.	Free	
cholesterol, phospholipids and total lipids in medium and large LDL, 
small	very	LDL	 (VLDL)	and	very	small	VLDL;	and	apolipoprotein	B	

F I G U R E  1   Manhattan plot of the associations between plasma metabolites and snoring. Metabolites with a significant association with 
snoring in Model 1 are annotated. The red line corresponds to the significance level of .05. HDL, high-density lipoprotein; s-HDL, small-HDL; 
m-HDL, medium-HDL; l-HDL, large-HDL, xl-HDL, extra-large HDL; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; 
s-LDL, small-LDL; m-LDL, medium-LDL; l-LDL, large-LDL; CE, cholesterol-esters; FC, free cholesterol

A.Amino Acids B.LMWMs C. Serum D. HDL E. s−HDL F. m−HDL G. l−HDL H. xl−HDL I. IDL J. LDL K. s−LDL L. m−LDL M. l−LDL

2

4

6

−l
og

10
(P

)



6 of 12  |     TOPRICEANU ET Al.

and omega-3 fatty acids were associated with lower odds of snoring 
(ORs ≅	0.90).

3.6 | Composite sleep score (wSleep)

The first principal weights corresponding to the sleep phenotypes 
were: 0.33 for difficulty falling asleep, 0.30 for early morning wak-
ing, 0.31 for waking up tired, and 0.06 for snoring. The regression 
results for wSleep (calculated as a weighted sum of the first prin-
cipal	weights)	are	presented	 in	Supplementary	Table	S6.	A	unit	 in-
crease in glycoprotein acetyls, sphingomyelins; and triglycerides in 
serum, small and medium LDL, and small, medium, large and very 
large	VLDL	associated	with	3%–4%	(95%	CIs	0%–8%)	higher	wSleep	
scores.	None	remained	after	filtering	at	a	FDR	of	0.05.	The	second	
principal weights corresponding to the sleep phenotypes were: 0.17 
for difficulty falling asleep, 0.02 for early morning waking, 0.06 for 
waking up tired, and 0.75 for snoring.

4  | DISCUSSION

Using	data	from	the	SABRE	cohort,	we	show	in	this	cross-sectional	
analysis that circulating plasma metabolites are associated with dis-
tinct sleep quality phenotypes. In particular, metabolites that were 
associated both with higher as well as lower odds of difficulty falling 
asleep and snoring were identified. In addition, increased levels of 
some of the metabolites were associated with lower odds of early 
morning waking and waking up tired.

Difficulty falling asleep is one of the most frequent symptoms 
reported	by	patients	with	 insomnia	 (Lombardero	et	al.,	2019).	Our	
present results show that increased levels of histidine, isoleucine 
and valine were associated with lower odds of difficulty falling 
asleep, even after adjusting for the relevant covariates. Interestingly, 
all three are essential amino acids, which means that they cannot be 
synthesised de novo, and therefore, they may be linked to a defi-
cient diet. Histidine is a precursor of histamine, which has been pro-
posed	as	a	regulator	of	wakefulness	(Thakkar,	2011).	Isoleucine	and	

F I G U R E  2  Forest	plot	of	the	ORs	and	95%	CIs	for	the	association	between	plasma	metabolites	and	snoring	which	were	significant	in	
Model	1	(adjusted	for	age,	sex,	ethnicity	and	years	of	education).	OR,	odds	ratio;	CI,	confidence	interval;	HDL,	high-density	lipoprotein;	
s-HDL, small-HDL; m-HDL, medium-HDL; l-HDL, large-HDL, xl-HDL, extra-large HDL; IDL, intermediate-density lipoprotein; LDL, low-
density lipoprotein; s-LDL, small-LDL; m-LDL, medium-LDL; l-LDL, large-LDL; CE, cholesterol-esters; FC, free cholesterol
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TA B L E  2  Associations	between	the	metabolites	who	have	passed	the	screening	stage	and	the	sleep	phenotypes

Sleep phenotype Metabolite Multivariable adjusted OR (95% CI) p

Difficulty falling asleep Histidine 0.89	(0.80–0.99) .031

Leucine 0.92	(0.82–1.03) .148

Valine 0.90	(0.81–0.99) .045

Snoring Acetate 1.12	(1.04–1.21) .005

Creatinine 1.01	(0.93–1.11) .754

Glucose 1.04	(0.96–1.13) .322

Glutamine 0.94	(0.87–1.01) .106

Glycoprotein acetyls 1.12	(1.03–1.21) .006

Isoleucine 1.25	(1.14–1.36) <.0001

Lactate 1.05	(0.97–1.14) .238

Leucine 1.19	(1.09–1.29) <.0001

Phosphatidylcholine 0.95	(0.88–1.03) .180

Phenylalanine 1.24	(1.15–1.35) <.0001

Tyrosine 1.15	(1.06–1.25) .0007

Valine 1.22	(1.12–1.33) <.0001

Total cholines 0.95	(0.87–1.02) .166

Apolipoprotein	A-I 0.87	(0.80–0.95) .0009

Docosahexaenoic acid 22:6 0.90	(0.83–0.98) .012

Linoleic	acid	18:2 0.94	(0.87–1.02) .137

Polyunsaturated fatty acids 0.93	(0.86–1.01) .092

Serum cholesterol 0.90	(0.83–0.97) .009

Serum cholesterol-esters 0.90	(0.83–0.95) .009

Free cholesterol 0.91	(0.84–0.99) .021

Serum triglycerides 1.03	(0.95–1.12) .421

Total cholesterol in HDL 0.88	(0.81–0.95) .002

Total cholesterol in HDL2 0.88	(0.82–0.96) .003

HDL diameter 0.90	(0.82–0.97) .009

Total cholesterol in small HDL 0.92	(0.85–0.99) .031

Cholesterol-esters in small HDL 0.91	(0.84–0.99) .024

Triglycerides in small HDL 1.13	(1.04–1.22) .003

Total cholesterol in medium HDL 0.92	(0.85–0.99) .036

Cholesterol-esters in medium HDL 0.92	(0.85–0.99) .037

Free cholesterol in medium HDL 0.92	(0.85–0.99) .046

Total lipids in medium HDL 0.93	(0.86–1.01) .078

Concentration of medium HDL particle 0.93	(0.86–1.01) .092

Phospholipids in medium HDL 0.94	(0.87–1.02) .142

Total cholesterol in large HDL 0.95	(0.85–1.05) .289

Cholesterol-esters in large HDL 0.92	(0.85–0.99) .034

Free cholesterol in large HDL 0.95	(0.87–1.04) .248

Total lipids in large HDL 0.91	(0.84–0.99) .025

Concentration of large HDL particle 0.91	(0.84–0.99) .029

Phospholipids in large HDL 0.91	(0.84–0.99) .021

Total cholesterol in very large HDL 0.91	(0.84–0.98) .019

Cholesterol-esters in very large HDL 0.91	(0.84–0.99) .022

Free cholesterol in very large HDL 0.91	(0.84–0.99) .026

(Continues)
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valine are precursors of both glutamate and gamma-aminobutyric 
acid	(GABA)	(Sweatt	et	al.,	2004),	the	main	excitatory	and	inhibitory	
neurotransmitters. By restoring the inhibition:excitatory ratios, their 
supplementation could restore normal sleep patterns. In the present 
study,	we	 report	 that	BCAAs	 are	 associated	with	 lower	 odds	 (OR	
≅	0.90)	of	difficulty	falling	asleep.	To	date,	BCAAs	such	as	 leucine	
and valine have been successfully trialed to improve sleep quality in 
certain population groups, such as patients with cirrhosis (Ichikawa 
et	al.,	2010).

We	also	observed	that	in	SABRE	snoring	was	associated	with	31	
metabolites, suggesting a potential complex metabolic disturbance. 
In	 addition,	 the	 PCA	 revealed	 that	 snoring	 could	 potentially	 be	 a	
sleep dimension in itself. Most of these metabolites are from the lipid 
profile	and	include	serum	lipid	extracts	(such	as	DHA,	polyunsatu-
rated	fatty	acids)	and	cholesterol,	cholesterol-esters	and	phospho-
lipids	 in	small/medium/large	LDL	and	HDL	fractions.	Although	the	
snoring–insulin	resistance–dyslipidaemia	connection	has	previously	
been	reported	(Alexopoulos	et	al.,	2011),	the	novelty	of	the	present	
study comes from the detailed lipoprotein analysis that identified 
specific lipoprotein components. Our present data show that both 
higher LDL and HDL associate with lower odds of snoring. The ef-
fect	of	HDL	 is	consistent	with	 the	existing	 literature	 (Alexopoulos	
et	al.,	2011),	but	the	effect	of	LDL	is	not.	Although	an	inverse	cor-
relation between HDL and LDL is to be expected (Supplementary 
Figure	S1),	it	should	be	noted	that	lipoproteins	in	the	metabolism	are	
in a constant state of flux with complex interactions, rather than dis-
crete measures. In addition, although LDL-cholesterol is considered 

to be the most atherogenic, there is no robust evidence to suggest it 
has a negative impact on sleep quality.

The directionality of the associations between snoring, T2DM, 
WHR and metabolites is still a matter of debate as complex met-
abolic	 interactions	 exist	 (Figure	 3).	 Lastly,	 the	 inverse	 association	
between	DHA	 and	 snoring	 severity	 has	 previously	 been	 reported	
(Ladesich	et	al.,	2011).	Beneficial	effects	of	ω-3 fatty acids in terms 
of reduced daytime sleepiness have been observed after supple-
mentation	 in	 deployed	 soldiers	 (Dretsch	 et	 al.,	 2014).	 DHA	 is	 an	
important component of neural membranes, which has been postu-
lated to be both a synaptic and a neuromodulator altering the levels 
of glutamate, monoamines, acetylcholine, and endocannabinoids in 
the	brain	(Tanaka	et	al.,	2012).

All	BCAAs	and	phenylalanine	were	found	to	be	associated	with	
snoring. Phenylalanine is a precursor to dopamine and noradrenaline, 
which have been shown to be downregulated in sleep deprivation 
(Volkow	et	al.,	2012).	Interestingly,	higher	valine	has	been	associated	
with	snoring	(higher	odds),	early	morning	waking	(lower	odds),	and	
difficulty	falling	asleep	(lower	odds)	making	it	more	likely	to	be	a	key	
biological player in regulating sleep. Given the wide-ranging effects, 
it could be that valine operates within a narrow homeostatic window 
with higher levels promoting sleep (lower odds of difficulty falling 
asleep	and	early	waking),	but	if	they	are	too	high	snoring	could	arise.	
This theory is supported by its involvement in multiple important 
processes, such as protein synthesis, energy production, glutamate 
compartmentalisation, and indirect control of serotonin, dopamine, 
and	 noradrenaline	 neurotransmitter	 synthesis	 (Fernstrom,	 1539S).	

Sleep phenotype Metabolite Multivariable adjusted OR (95% CI) p

Total lipids in very large HDL 0.90	(0.83–0.98) .012

Concentration of very large HDL particle 0.90	(0.83–0.98) .013

Phospholipids in very large HDL 0.91	(0.84–0.98) .021

Free cholesterol in IDL 0.92	(0.85–0.99) .041

Total cholesterol in LDL 0.90	(0.83–0.97) .009

LDL diameter 1.12	(1.04–1.22) .004

Total cholesterol in small LDL 0.88	(0.81–0.95) .002

Cholesterol-esters in small LDL 0.90	(0.83–0.97) .007

Free cholesterol in small LDL 0.90	(0.82–0.97) 0.010

Total lipids in small LDL 0.90	(0.84–0.98) .012

Concentration of small LDL particle 0.91	(0.84–0.98) .018

Phospholipids in small LDL 0.92	(0.85–0.99) .040

Total cholesterol in medium LDL 0.90	(0.83–0.97) .006

Cholesterol-esters in medium LDL 0.67	(0.47–0.95) .026

Free cholesterol in medium LDL 0.91	(0.84–0.98) 0.019

Total cholesterol in large LDL 0.91	(0.84–0.99) .018

Free cholesterol in large LDL 0.92	(0.85–0.99) .038

All	analyses	reported	here	consisted	of	generalised	linear	mixed	models	with	binomial	distribution	and	logit	link	(i.e.	logistic	regression).	Model	1	was	
adjusted for age, sex, ethnicity and years of education. Model 2 results are presented in Supplementary Table S2. Significant p values are highlighted 
in bold.
OR, odds ratio; CI, confidence interval; HDL, high-density lipoprotein; IDL, intermediate-density lipoproteins; LDL, low-density lipoprotein.

TA B L E  2   (Continued)
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Lastly,	 as	 acetate	 generates	 acetyl	 coenzyme	 A,	 it	 has	 been	 pro-
posed as an epigenetic metabolite to regulate lipid synthesis under 
hypoxia	(Xue	et	al.,	2016),	which	can	occur	during	snoring.

Recently, metabolomics-based risk scores have been developed 
to	 predict	 obstructive	 sleep	 apnea	 (OSA)	 (Ferrarini	 et	 al.,	 2013;	
Lebkuchen	et	al.,	2018;	Xu	et	al.,	2016).	Similarly,	we	also	identified:	
isoleucine and valine, but in our present study, lactate, sphingomye-
lins and phosphatidyl cholines were not associated with snoring. The 
remainder of the metabolites were not available in our present data.

Our sensitivity analysis revealed that higher creatinine and valine 
were	associated	with	lower	odds	of	early	morning	waking.	A	positive	
relationship between creatinine and long sleep duration has been 
previously	 reported	 (Choi	 et	 al.,	 2017).	 Creatinine	 is	 a	 breakdown	
product of creatine phosphate. The latter is of neurophysiological 
importance	 acting	 as	 an	 antioxidant,	 a	 neuromodulator	 [of	 GABA	
A	 (GABAA)	and	of	N-methyl-D-aspartate	 (NMDA)	receptors]	and	a	
regulator of neuronal energy metabolism. It has been postulated to 
neutralise the negative effects of reactive oxygen species that occur 
on	the	background	of	chronic	psychological	stress	(Allen,	2012).	To	
date, it has been successfully trialed to improve mood and perfor-
mance	after	sleep	deprivation	(McMorris	et	al.,	2006).	Its	potential	
for the prevention of early morning waking has not been yet ex-
plored in clinical studies. However, as our present cohort consisted 
mostly of middle-aged individuals, poor kidney function may intro-
duce confounding bias for the observed differences in creatinine 
levels between those who reported snoring and those who did not.

Waking up tired has been associated with chronic fatigue syn-
drome. Our sensitivity analysis identified that higher albumin and 

lactic acid are related to lower odds of waking up tired. Lower albu-
min correlates with fatigue in patients with chronic kidney disease 
(Jhamb	et	al.,	2014).	We	are	the	first	to	generalise	this	association	
in	a	large-scale,	predominantly	healthy	cohort.	Although	we	did	not	
specifically measure tryptophan, the observed effect might be me-
diated by this albumin-bound amino acid, as it has been linked to a 
higher serotonin:dopamine ratio leading to central, as opposed to 
peripheral	 fatigue	 (Meeusen,	 2009).	 Serum	 lactate	 has	 previously	
been reported as a possible sleep/wake biomarker with higher lev-
els during wakefulness; and persistent and sustained decline during 
non-rapid	eye	movement	sleep	(Naylor	et	al.,	2012).	Serum	lactate	
could potentially be extended as a biomarker for the early morning 
waking phenotype. It could also be that central fatigue may stem 
from a lower neuronal glucose consumption translating into lower 
plasma lactate levels.

There are a limited number of studies investigating the relation-
ship between metabolites and sleep phenotypes. One such study 
in post-menopausal women concluded that higher triglycerides are 
associated	 with	 poor	 sleep	 quality	 (Huang	 et	 al.,	 2019).	 Similarly,	
our present data show that higher triglycerides in serum or certain 
subfractions	of	LDL	and	VLDL	were	associated	with	higher	wSleep	
scores.

The	NMR	quantification	of	serum	metabolites	offers	a	novel	ap-
proach for the granular investigation of the molecular associations 
between a range of biomarkers and sleep phenotypes. However, our 
NMR	database	itself	does	not	capture	the	whole	metabolome,	as	it	is	
mostly limited to amino acids, lipids, and small molecules. In addition, 
the present study also did not take advantage of the quantitative 

F I G U R E  3  Directed	acyclic	graph	for	snoring.	Low	HDL,	high	LDL,	high	waist–hip	ratio	(WHR)	and	type	2	diabetes	mellitus	(T2DM)	
have been shown to be associated with snoring. However, a high WHR is associated with T2DM and both variables are associated with 
dyslipidaemia. In addition, low HDL and high LDL are also common in T2DM. This directed acyclic graph highlights the complex interactions 
which exist within this system. HDL, high-density lipoprotein; s-HDL, small-HDL; m-HDL, medium-HDL; l-HDL, large-HDL, xl-HDL, extra-
large HDL; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; s-LDL, small-LDL; m-LDL, medium-LDL; l-LDL, large-LDL; CE, 
cholesterol-esters; FC, free cholesterol
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data	(i.e.	levels	of	metabolites)	as	they	were	log-transformed,	mean	
centred and scaled to a SD of 1 before further analysis. Lastly, me-
tabolites are prone to biological variation and measurement error, 
which we were not able to assess. Such errors could bias the esti-
mates presented and should be a consideration when evaluating the 
relationship between plasma metabolites and sleep phenotypes. We 
present associations in a tri-ethnic UK cohort, but further analysis in 
similar cohorts would be required before reliably extending findings 
to	wider,	non-UK	populations.	Another	limitation	was	the	long-term	
storage of samples (>20	years)	before	NMR	analysis.

The snoring phenotype is representative of a middle-age co-
hort in terms of prevalence, which is highlighted by the relatively 
high number of associated metabolites passing a robust statis-
tical analysis, most of which have been previously reported (Xu 
et	al.,	2016;	Zhang	et	al.,	2017).	Although	there	are	more	objective	
tests to assess for adverse sleep phenotypes, especially for snor-
ing	 (Arnardottir	et	al.,	2016),	our	present	study	used	self-reported	
measures.	Although	females	under-report	the	prevalence	of	snoring,	
that	is	not	the	case	for	males	(Westreich	et	al.,	2019).	However,	dif-
ficulty falling asleep, early morning waking and waking up tired are 
more subjective and could be both under- and over-reported (Bianchi 
et	al.,	2013;	Landry	et	al.,	2015;	L.	Zhang	&	Zhao,	2008).	A	 limita-
tion of wSleep is masking individual sleep quality phenotypes, each 
of which is capturing a different aspect of sleep. Moreover, it does 
not form a validated scale, as it contains only four questions from 
the	JSEQ	scale	(Jenkins	et	al.,	1988).	In	addition,	there	were	only	a	
few	women	included	due	to	the	study	design	(Tillin	et	al.,	2012).	As	
such, it is not surprising that difficulty falling asleep was under-rep-
resented	(Tang	et	al.,	2017),	occurring	only	in	17%	of	individuals.

Poor self-reported sleep quality has also been suggested as an 
epiphenomenon for underlying mental health problems, such as 
depression	and	anxiety	 (Bower	et	al.,	2010).	Many	of	 the	metabo-
lites we identified to be associated with our sleep phenotypes have 
previously been associated with depression (Bot et al., 2020; Huang 
et	al.,	2020).	Examples	of	these	include	amino	acids	(e.g.	valine,	tyro-
sine	etc.),	small	molecules	(e.g.	acetate,	glycoprotein	acetyls	etc.)	and	
lipids	 (e.g.	 cholesterol,	 triglycerides	 etc.).	 As	mood-related	 factors	
were not explored in the present study, our present results may re-
flect overlapping metabolic signatures between self-reported sleep 
quality phenotypes and depression or anxiety.

Limitations to the present study include its inherent cross-sec-
tional nature and the failure to capture longitudinal effects or to 
support causality. The directionality of the associations between 
metabolites and sleep phenotypes is still a matter of debate and 
whether metabolites cause or are a consequence of abnormal sleep 
is yet to be elucidated.

5  | CONCLUSION

Histidine and valine associated with lower odds of difficulty fall-
ing	asleep,	while	BCAAs	were	positively	associated	with	snoring.	
Total cholesterol in certain HDL and LDL subfractions appeared 

beneficial	 in	 terms	 of	 snoring.	Although	 the	 present	 evidence	 is	
unable to support causality, the identified metabolites could pro-
vide a direction for future studies to further understand abnormal 
sleep patterns.
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