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Background The effective reproduction number, 
Rt, is a tool to track and understand pandemic dy-
namics. This investigation of Rt estimations was con-
ducted to guide the national COVID-19 response in 
Qatar, from the onset of the pandemic until August 
18, 2021.

Methods Real-time “empirical” Rt
Empirical was estimat-

ed using five methods, including the Robert Koch 
Institute, Cislaghi, Systrom-Bettencourt and Ribeiro, 
Wallinga and Teunis, and Cori et al. methods. Rt 
was also estimated using a transmission dynamics 
model (Rt

Model-based). Uncertainty and sensitivity anal-
yses were conducted. Correlations between different 
Rt estimates were assessed by calculating correlation 
coefficients, and agreements between these estimates 
were assessed through Bland-Altman plots.

Results Rt
Empirical captured the evolution of the pan-

demic through three waves, public health response 
landmarks, effects of major social events, transient 
fluctuations coinciding with significant clusters of in-
fection, and introduction and expansion of the Alpha 
(B.1.1.7) variant. The various estimation methods 
produced consistent and overall comparable Rt

Empirical 
estimates with generally large correlation coefficients. 
The Wallinga and Teunis method was the fastest at 
detecting changes in pandemic dynamics. Rt

Empirical 
estimates were consistent whether using time series 
of symptomatic PCR-confirmed cases, all PCR-con-
firmed cases, acute-care hospital admissions, or ICU-
care hospital admissions, to proxy trends in true in-
fection incidence. Rt

Model-based correlated strongly with 
Rt

Empirical and provided an average Rt
Empirical.

Conclusions Rt estimations were robust and gener-
ated consistent results regardless of the data source 
or the method of estimation. Findings affirmed an 
influential role for Rt estimations in guiding national 
responses to the COVID-19 pandemic, even in re-
source-limited settings.
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is the most serious glob-
al health challenge in recent history [1,2]. Coronavirus Disease 2019 (COVID-19) morbidity and mortali-
ty has imposed unparalleled burdens on health care systems worldwide, and necessitated unprecedented 
restrictions on mobility and on social and economic activities [3,4]. Tracking and monitoring each wave of 
infection have become essential to avoid the adverse consequences of infection transmission [5-8]. With 
such serious consequences to the health care system, economy, and society, decisions regarding the esca-
lation or easing of restrictions have become a critical facet of policymaking since the discovery of the virus 
in December of 2019 [6,9,10].

The effective reproduction number (Rt), the average number of secondary infections each infection is gen-
erating at a given point in time [6,11-13], has been shown to be an influential tool in monitoring and track-
ing the epidemic, and informing the escalation and easing of public health restrictions [6,11-13]. The basic 
underlying hypothesis of the present study, through its application for Qatar, is that Rt offers an effective 
method to capture epidemic dynamics during an evolving epidemic, and helps establishing national pol-
icy decisions and public heath interventions. In essence, we report here on what has become a successful 
country experience.

Qatar is a peninsula in the Arabian Gulf with a diverse population of 2.8 million people [5,14] that has been 
affected by three SARS-CoV-2 pandemic waves [5,6,15-20]. The first wave started with the introduction of 
the virus in February of 2020 and peaked in late May 2020 [5,6]. The second wave started in mid-January, 
2021, and was triggered by the introduction and expansion of the Alpha [21] (B.1.1.7) variant [15-19,22]. 
This wave peaked in the first week of March, but was followed immediately by a third wave that was trig-
gered by introduction and rapid expansion of the Beta [21] (B.1.351) variant, which started in mid-March 
and peaked in mid-April, 2021 [15-19,22].

The overarching aim of the present article was to describe the two forms of Rt estimation that have been 
used in Qatar to inform the national COVID-19 response. Each proved to have its own intrinsic public 
health value. The first is the real-time “empirical” estimation which is done by calculating Rt directly from 
diagnosed cases. Different methods were explored for estimating the empirical Rt (henceforth, Rt

Empirical), 
and based on this exploration the Robert Koch Institute method [13,23] was used for feasibility, ease of use, 
and functionality in consideration of the kind of data available in Qatar. The second estimation method 
was model-based by calculating Rt

E using a population-level compartmental transmission dynamics model 
[6,24], hereafter designated as Rt

Model-based.

METHODS

Data sources

Mathematical modeling analyses were conducted using the centralized, integrated, and standardized national 
SARS-CoV-2 databases compiled at Hamad Medical Corporation (HMC), the main public health care provider 
and the nationally designated provider for all COVID-19 health care needs. These databases have captured all 
SARS-CoV-2-related data since the start of the pandemic, including all records of polymerase chain reaction 
(PCR) testing, antibody testing, COVID-19 hospitalizations, vaccinations, infection severity classification per 
World Health Organization (WHO) guidelines [25], and COVID-19 deaths, also assessed per WHO guide-
lines [26].

Every PCR test conducted in Qatar, regardless of location (outpatient clinic, drive-through, or hospital, etc.), 
is classified on the basis of symptoms and the reason for testing (clinical symptoms, contact tracing, random 
testing campaigns, individual requests, health care routine testing, pre-travel, and at port of entry). PCR-con-
firmed infections are classified as “symptomatic” if testing was done because of clinical suspicion due to symp-
toms compatible with a respiratory tract infection.

Classification of infections by variant type was informed by weekly rounds of viral genome sequencing and 
multiplex, real-time reverse-transcription PCR (RT-qPCR) variant screening [27] of randomly collected clinical 
samples [15-19], as well as by results of deep sequencing of wastewater samples [17]. Based on existing evi-
dence [28-30] and confirmation with viral genome sequencing [22], an Alpha case was defined as an S-gene 
“target failure” using the TaqPath COVID-19 Combo Kits (Thermo Fisher Scientific, USA) [31]. This method 
accounted for >85% of PCR testing in Qatar, applying the criterion of a PCR cycle threshold (Ct) value ≤30 for 
both the N and ORF1ab genes, and a negative outcome for the S gene [30]. This definition was used to derive 
the Alpha case series data that were used subsequently to derive Rt

Empirical for only the Alpha variant.
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Empirical estimation methods

Five methods [13,32] of common use in the literature and in public health practice were investigated and 
compared for calculating Rt

Empirical from daily diagnosed cases. To minimize effects of bias due to variation in 
the PCR testing volume over time, Rt

Empirical was calculated using only the time series of cases diagnosed due to 
presence of clinical symptoms. Cases diagnosed through testing conducted for other reasons were not used in 
these analyses, except in a sensitivity analysis.

Robert Koch Institute method

This method, which was chosen as the standard method for Rt
Empirical estimation in Qatar, utilizes the generation 

time (τG), the time interval between the infection of an infector and an infectee in a transmission pair [13,23], 
to provide an estimate for Rt

Empirical. Rt
Empirical is calculated as the sum of newly diagnosed cases during τG con-

secutive days over the sum of previously diagnosed cases during the τG preceding days [23]. τG was assumed 
to be seven days, as informed by empirical evidence [33,34]. To smooth the curve and to avoid strong daily 
variations due to noise, Rt

Empirical was calculated as a three-day moving average.

The range of uncertainty in the estimated Rt
Empirical due to sampling variation was derived by applying the bi-

nomial sampling distribution to the number of positive PCR tests out of all tests, day by day, and repeating 
this process 1000 times.

Four sensitivity analyses on the estimated Rt
Empirical were conducted. In the first sensitivity analysis, the time 

series of all diagnosed cases (regardless of reason for PCR testing) was used instead of the time series of only 
symptomatic cases. In the second and third sensitivity analyses, the time series of hospital admissions in acute-
care beds and ICU-care beds was used to proxy the pandemic trend, instead of the time series of symptomatic 
cases. In the fourth sensitivity analysis, the generation time τG was assumed to be 5, 7, and 10 days, instead of 
the fixed value of seven days [33,34].

Cislaghi method

This method utilizes the incubation time (τI), the time interval between infection and symptom onset in an 
infected individual [34], to generate an estimate for Rt

Empirical. Rt
Empirical is calculated as the number of newly di-

agnosed cases on day s over the number of newly diagnosed cases on day s – τI [35]. τI was assumed to be five 
days [33,34]. To smooth the curve and to avoid strong daily variations due to noise, Rt

Empirical was calculated 
as a three-day moving average.

Wallinga and Teunis method

This method utilizes the serial interval (τS), the time interval between symptom onset of an infector and that 
of an infectee [34], to generate an estimate for Rt

Empirical. A likelihood-based estimate for Rt
Empirical is derived by 

using pairs of diagnosed cases and the probability distribution for τS [36]. τS was assumed to have a Weibull 
distribution with a mean of 5.19 days and a standard deviation of 1.39 days, as informed by a meta-analysis 
of available data for SARS-CoV-2 infection [37].

Systrom-Bettencourt and Ribeiro method

This method utilizes an approximate relationship between Rt
Empirical and the exponential growth of the pandem-

ic, and assumes that Rt
Empirical evolves as a Gausian process to provide a Bayesian Rt

Empirical estimation [12,38-40]. 
A Gaussian filter was applied to account for daily variations (noise) in Rt

Empirical using a variance that was esti-
mated by maximizing the log-likelihood of observing newly diagnosed cases [12,38-40].

Cori et al. method

This method utilizes the infectivity profile (ωS) of an infected individual to generate an estimate for Rt
Empirical 

[32]. The average Rt
Empirical is estimated by the ratio of the number of newly diagnosed cases at time step t, to the 

sum of newly diagnosed cases up to time step t – 1, weighted by ωS. The infectivity profile was approximated 
by the distribution of the serial interval [32]. Bayesian statistical inference based on a Poisson process was used 
to generate the posterior distribution of Rt

Empirical, after assuming a gamma prior distribution for Rt
Empirical [32].

Model-based estimation method

An age-structured deterministic mathematical model was developed to describe SARS-CoV-2 transmission dy-
namics in the population of Qatar [6,24]. The model was developed as informed by other models [6,24,41-
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43], and has been used, expanded, and continuously refined since the onset of the pandemic. This model has 
been the reference model for policy decision-making in Qatar, for providing forecasts, investigating epidemi-
ology, and assessing the impact of public health interventions [6,24].

The model stratified the population into compartments according to age group (0-9, 10-19, 20-29, …, ≥ 
80 years), infection status (infected, uninfected), infection type (asymptomatic/mild, severe, and critical), 
COVID-19 disease type (severe or critical disease), and vaccination status (vaccinated, unvaccinated) using sets 
of coupled, nonlinear differential equations (Figure S1 in the Online Supplementary Document).

The model was parameterized using current data for SARS-CoV-2 natural history and epidemiology [6,24]. It 
was fitted to the national standardized, integrated, and centralized databases of SARS-CoV-2 diagnosed cases, 
SARS-CoV-2 PCR and antibody testing, COVID-19 hospitalizations, and COVID-19 mortality [6], as well as to 
data of a series of SARS-CoV-2 epidemiological studies in Qatar [5,22,44-49]. The size and demographic struc-
ture of the population of Qatar were based on data from Qatar’s Planning and Statistics Authority [5,14,50].

Rt
Model-based was derived using this model and was expressed in terms of the social contact rate in the population, 

transmission probability of the infection per contact, duration of infectiousness, and proportion of the popula-
tion that is still susceptible to the infection [6,24]. A detailed description of the model, its input data, and fit-
ting are available in References [6,24]. The model was coded, fitted, and analyzed using MATLAB R2019a [51].

Correlations and agreements between Rt estimates

Correlations between different Rt estimates were assessed by calculating both the Pearson correlation coeffi-
cient, to assess the existence of a linear relationship, and also by calculating the Spearman correlation coeffi-
cient, to assess the existence of a monotonic (rank) relationship. Agreements between different Rt estimates 
were assessed through Bland-Altman plots.

Ethical approvals

This study was approved by the HMC and Weill Cornell Medicine-Qatar Institutional Review Boards.

RESULTS
The Rt

Empirical calculated using the Robert Koch Institute method captured effectively the evolution of the pan-
demic through its three waves, starting from the first wave (the wild-type variant wave) [5,6], the second (Al-
pha) wave [15-19,22], and the third (Beta) wave [15-19,22] (Figure 1, Panel A). It also captured and correlat-
ed with key response landmarks, such as partial lockdowns during the three waves and subsequent easing of 
public health restrictions, and major social events that led to transient increases in the social contact rate in 
the population. It further captured transient fluctuations that were associated with significant clusters of in-
fection, especially during low-incidence phases between August 1, 2020 and January 17, 2021, and between 
May 25, 2021 and August 18, 2021.

The pandemic expansion of Alpha cases starting from January 18, 2021 was associated with a large and rapid 
increase in Rt

Empirical (Figure 1, Panel A), suggesting the higher infectiousness of this variant. Rt
Empirical calculated 

using only Alpha case series data are shown in Figure 1, Panel B, and demonstrated higher values, confirming 
further the higher infectiousness of this variant. Rt

Empirical for only the Alpha variant averaged 1.45 during the 
exponential growth phase of the second (Alpha) wave (February 1-22, 2021). It was unstable during the first 
two weeks of this wave (January 18-31, 2021; not shown), as transmission appears to have been influenced 
by one or more superspreading events that were not representative of the average community transmission. It 
was also unstable after April 1, 2021, as the number of daily Alpha cases was too small.

The first sensitivity analysis on the estimated Rt
Empirical, in which the time series of all diagnosed cases was used 

instead of only symptomatic cases, showed overall excellent correlation, negligible bias, and narrow limits of 
agreement regardless of the input-data source used to calculate Rt

Empirical (Figure 2, Panel A. and Figure S2A 
in the Online Supplementary Document). The Pearson correlation coefficient was 0.914 (P < 0.001) and the 
Spearman correlation coefficient was 0.913 (P < 0.001), both confirming the excellent correlation. There were 
only few noticeable differences that occurred when the number of diagnosed cases was too small (periods when 
SARS-CoV-2 incidence was low); thus, Rt

Empirical was more susceptible to transient variation in the number of 
diagnosed cases, such as due to sporadic, random PCR testing campaigns. Peaks in Rt

Empirical were also slightly 
larger using only symptomatic cases vs all diagnosed cases.
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Figure 1. Effective reproduction num-
bers Rt

Empirical and Rt
Model-based in Qatar. 

A) Trend in Rt
Empirical and Rt

Model-based, 
April 1, 2020 to August 18, 2021, 
and association with major events, 
response landmarks, and introduc-
tion and expansion of the Alpha 
(B.1.1.7) and Beta (B.1.135) variants. 
B) Trend in Rt

Empirical for only the Al-
pha variant cases, February 1, 2021 
to April 1, 2021. Rt

Empirical was esti-
mated using the Robert Koch Insti-
tute method [23] applied to symp-
tomatic case series data. The dashed 
green line represents the threshold 
of R0 = 1.

Figure 2. Sensitivity analyses of es-
timated Rt

Empirical using the Robert 
Koch Institute method. A) Sensitiv-
ity analysis using the time series of 
all diagnosed cases instead of only 
symptomatic cases in estimating 
Rt

Empirical. B) Sensitivity analysis using 
the time series of hospital admissions 
in acute-care beds instead of symp-
tomatic cases in estimating Rt

Empirical. 
C) Sensitivity analysis using the time 
series of hospital admissions in ICU-
care beds instead of symptomatic 
cases in estimating Rt

Empirical. D) Sen-
sitivity analysis using different values 
for the generation time in estimating 
Rt

Empirical. The dashed green line rep-
resents the threshold of R0 = 1.
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The second sensitivity analysis, in which the time series of acute-care hospital admissions was used to proxy 
the pandemic trend, instead of the time series of symptomatic cases, showed rather strong correlation, negli-
gible bias, and adequate limits of agreement between Rt

Empirical estimates (Figure 2, Panel B, and Figure S2B in 
the Online Supplementary Document). The Pearson correlation coefficient was 0.512 (P < 0.001) and the 
Spearman correlation coefficient was 0.716 (P < 0.001), both confirming strong correlation. The third sensitiv-
ity analysis, in which the time series of ICU-care hospital admissions was used to proxy the pandemic trend, 
instead of the time series of symptomatic cases, also showed rather strong correlation, negligible bias, and ade-
quate limits of agreement between the Rt

Empirical estimates, but also large fluctuations in Rt
Empirical (Figure 2, Panel 

C, and Figure S2C in the Online Supplementary Document). The Pearson correlation coefficient was 0.589 
(P < 0.001) and the Spearman correlation coefficient was 0.550 (P < 0.001), both confirming strong correlation, 
but rather inferior to that for acute-care hospital admissions (Figure 2, Panel B vs Panel C).

The fourth sensitivity analysis, in which different values for the generation time Gτ  were used, showed also 
excellent correlation, negligible bias, and adequate limits of agreement between different Rt

Empirical estimates (Fig-
ure 2, Panel D, and Figure S2D in the Online Supplementary Document). The Pearson correlation coefficient 
was 0.901 (P < 0.001) and the Spearman correlation coefficient was 0.900 (P < 0.001), both confirming excel-
lent correlation. The main differences between the estimates occurred in the timing and magnitude of peaks of 
the pandemic waves, as expected, since variation in generation time changes the rate of pandemic growth [52]. 
The differences were larger at higher Rt

Empirical values (Figure S2D in the Online Supplementary Document).

Rt
Empirical estimated using the Robert Koch Institute method (Figure 3, Panel A), Cislaghi method (Figure 3, 

Panel B), Systrom-Bettencourt and Ribeiro method (Figure 3, Panel C), Wallinga and Teunis method (Figure 
3, Panel D), and Cori et al. method (Figure 3, Panel E), all showed similar results and were able to capture the 
evolution of pandemic waves and transient variations due to national public-health response landmarks and 
major social events. There were also overall strong correlations between them (Table 1). Bland-Altman plots 
showed overall negligible bias and narrow or adequate limits of agreement between Rt

Empirical estimated using 
the Robert Koch Institute method and each of the other methods (Figure 4). However, the Systrom-Betten-
court and Ribeiro method (Figure 3, Panel C) tended to provide something of an average Rt

Empirical and was not 
as sensitive to transient changes in Rt

Empirical (Figure 3 and Figure 5).

Figure 3. Trend in Rt
Empirical in Qatar, 

April 1, 2020 to August 18, 2021, 
using the A) Robert Koch Institute 
method [23], B) Cislaghi method 
[35], C) Systrom-Bettencourt and Ri-
beiro method [12,38-40], D) Wall-
inga and Teunis method [36], and 
E) Cori et al. method [32]. The fig-
ure includes the 95% uncertainty or 
credible interval, as applicable for 
each method. The dashed green line 
represents the threshold of R0 = 1.
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Table 1. Correlations between Rt
Model-based and Rt

Empirical using the A) Robert Koch Institute method [23], B) Cislaghi method [35],  
C) Systrom-Bettencourt and Ribeiro method [12,38-40], D) Wallinga and Teunis method [36], and E) Cori et al. method [32]

Rt
Model-based

Rt
Empirical, Robert 

Koch Institute 
method 

Rt
Empirical,  

Cislaghi method

Rt
Empirical, 

Systrom-Bet-
tencourt and 
Ribeiro method 

Rt
Empirical,  

Wallinga and 
Teunis method

Pearson correlation coefficient:

Rt
Empirical, Robert Koch Institute method 0.731 (P < 0.001)

Rt
Empirical, Cislaghi method 0.567 (P < 0.001) 0.605 (P < 0.001)

Rt
Empirical, Systrom-Bettencourt and Ribeiro method 0.785 (P < 0.001) 0.852 (P < 0.001) 0.718 (P < 0.001)

Rt
Empirical, Wallinga and Teunis method 0.648 (P < 0.001) 0.471 (P < 0.001) 0.446 (P < 0.001) 0.589 (P < 0.001)

Rt
Empirical, Cori et al. method 0.718 (P < 0.001) 0.943 (P < 0.001) 0.760 (P < 0.001) 0.886 (P < 0.001) 0.469 (P < 0.001)

Spearman correlation coefficient:

Rt
Empirical, Robert Koch Institute method 0.684 (P < 0.001)

Rt
Empirical, Cislaghi method 0.540 (P < 0.001) 0.597 (P < 0.001)

Rt
Empirical, Systrom-Bettencourt and Ribeiro method 0.749 (P < 0.001) 0.853 (P < 0.001) 0.718 (P < 0.001)

Rt
Empirical, Wallinga and Teunis method 0.635 (P < 0.001) 0.492 (P < 0.001) 0.421 (P < 0.001) 0.608 (P < 0.001)

Rt
Empirical, Cori et al. method 0.677 (P < 0.001) 0.946 (P < 0.001) 0.745 (P < 0.001) 0.880 (P < 0.001) 0.473 (P < 0.001)

Figure 4. Bland-Altman plots for 
agreement between different meth-
ods for estimating Rt. A) Bland-Al-
tman comparison between Rt

Empiri-

cal estimated using the Robert Koch 
Institute method [23] and Rt

Model-based. 
Bland-Altman comparison between 
Rt

Empirical estimated using the Robert 
Koch Institute method [23] and that 
estimated using the B) Cislaghi meth-
od [35], C) Systrom-Bettencourt and 
Ribeiro method [12,38-40], D) Wall-
inga and Teunis method [36], and E) 
Cori et al. method [32]. The black 
line is the mean difference (bias) and 
the dashed red lines show the 95% 
limits of agreement.

There were differences in how rapidly each method detected a change in pandemic dynamics (Figure 5). The 
Wallinga and Teunis method was the fastest at detecting a change, while the Robert Koch Institute method was 
the slowest, leading to weaker Pearson and Spearman correlation coefficients between them (Table 1). For in-
stance, the surge in Rt

Empirical during the first Eid al-Adha after pandemic onset (a festival that occurred between 
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July 30 and August 6, 2020 and is associated with celebrations and social gatherings) was detected on August 
1, August 7, August 8, August 11, and August 13 using the Wallinga and Teunis, Cislaghi, Systrom-Betten-
court and Ribeiro, Cori et al., and Robert Koch Institute methods, respectively.

Uncertainty intervals around the Rt
Empirical estimates of the various methods were narrow overall, except when 

the number of diagnosed symptomatic cases or the number of PCR tests was small, specifically during the 
low-incidence phases of the pandemic (Figure 3). Overall, the uncertainty in Rt

Empirical estimates did not im-
pact the interpretation of the Rt

Empirical results (Figure 3). The only exception was for the Systrom-Bettencourt 
and Ribeiro method, as it showed rather wide uncertainty intervals compared to the point estimates for Rt

Em-

pirical (Figure 3, Panel C).

The Rt
Model-based correlated strongly with the Rt

Empirical using different methods (Table 1), and provided somewhat 
of an average of the Rt

Empirical (Figure 1). For example, Rt
Model-based and Rt

Empirical averaged 1.15 and 1.14 during the 
first wave, respectively. While it captured the three pandemic waves, it could not capture the transient fluctu-
ations in Rt

Empirical nor the effects of significant clusters during low-incidence phases.

DISCUSSION
Rt

Empirical and Rt
Model-based estimated in Qatar proved useful in real-time tracking of pandemic trends, understand-

ing pandemic dynamics, and setting interventions to control transmission, such as application or easing of 
public health restrictions. Both forms were integral to the national public health response and to formulating 
evidence-based policy decisions to minimize the pandemic’s toll on health, society, and the economy through-
out the phases of this pandemic.

Rt
Empirical effectively captured the evolution of the pandemic during its three waves, the effects of the response 

landmarks, such as the partial lockdowns and easing of public health restrictions, and the major social events 
that affected the social contact rate in the population. Even transient fluctuations in infection transmission that 
occurred because of significant infection clusters were captured by Rt

Empirical. Strikingly, the introduction and 
expansion of the Alpha variant [22], that resulted in the second pandemic wave, was discovered immediately 
through Rt

Empirical monitoring, as there was a sudden large, sustained increase in Rt that coincided precisely with 
a rapidly increasing number of S-gene “target failures” in PCR testing, even before viral genome sequencing 
was conducted to confirm the presence and expansion of this variant in the population [18].

While Rt
Model-based provided an average Rt that closely tracked the average Rt

Empirical, it did not have the resolution 
to capture transient changes in Rt

Empirical other than major changes associated with the three pandemic waves. 
Still, Rt

Empirical was useful and influential, as it was, along with the model that generated it [6,24], the basis for 

Figure 5. Pairwise comparison be-
tween Rt

Empirical estimated using the 
Robert Koch Institute method [23] 
and that estimated using the A) Cis-
laghi method [35], B) Systrom-Bet-
tencourt and Ribeiro method [12,38-
40], C) Wallinga and Teunis method 
[36], and D) Cori et al. method [32]. 
The dashed green line represents the 
threshold of R0 = 1.
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forecasting and future planning, such as forecasting the pandemic time-course and pandemic potential, fore-
casting health care needs of acute-care and ICU-care bed hospitalizations, predicting the impact of social and 
physical distancing restrictions, planning for easing of restrictions, and forecasting the impact of different mass 
vaccination strategies [6,24]. Therefore, both forms of Rt

Empirical complement each other and should be part of 
any effective COVID-19 national response.

Rt
Empirical estimation proved robust in sensitivity analyses conducted to assess its utility. Baseline estimation of 

Rt
Empirical was based on the time series of symptomatic cases as a proxy of the actual incidence of SARS-CoV-2 

infection in the population, which is unknown. Using the time series of all diagnosed cases instead of just 
symptomatic cases did not appreciably impact Rt

Empirical estimation, even though PCR testing volume and strat-
egies varied throughout the pandemic. Using the time series of acute-care hospital admissions instead of the 
time series of symptomatic cases also led to comparable estimates for Rt

Empirical This was also the case, but with 
weaker correlation, when the time series of ICU-care hospital admissions was used to proxy trends in infec-
tion incidence. This is not surprising as there is a long delay between onset of infection and ICU-care hospital 
admission, and the number of ICU-care admissions was relatively small with the low COVID-19 severity in 
Qatar’s predominantly young and working-age population [5,49]. Variations in the assumed value for the gen-
eration time in the Rt

Empirical estimation did not heavily impact estimates. These findings support the robustness 
of the approach employed to estimate Rt

Empirical.

Examination of different methods to estimate Rt
Empirical demonstrated consistency of the results, generally strong 

correlations between the estimates, and an acceptable level of uncertainty in them. The only exception was the 
Systrom-Bettencourt and Ribeiro method which tended to provide something of an average Rt

Empirical. It was 
not as sensitive to transient changes in Rt

Empirical, and had wide uncertainty intervals compared to the point esti-
mates. There were also differences in how rapidly each method detected a change in pandemic dynamics. The 
Wallinga and Teunis method was the fastest to detect a change, while the Robert Koch Institute method was 
the slowest. Yet, overall, these findings support the robustness of using these methods in Rt

Empirical estimation 
and to guide COVID-19 national responses.

This study has limitations. The estimated Rt
Empirical and Rt

Model-based are contingent on the validity and generaliz-
ability of input data. There were not sufficient data on infection seroprevalence and seroincidence to refine the 
model used to generate Rt

Model-based. However, the model was fitted to the standardized and centralized national 
databases of SARS-CoV-2 PCR and antibody testing, documented infections, hospitalizations, mortality, and 
vaccinations in Qatar. The uncertainty/credible intervals estimated here accounted for the uncertainty arising 
from sampling variation, or from our imperfect knowledge of specific epidemiological quantities, such as the 
serial interval, but did not account for other sources of uncertainty, such as our imperfect knowledge of the 
true incidence of infection in the population. To reduce bias due to variation in volume and strategies of PCR 
testing over time, Rt

Empirical was calculated using the time series of symptomatic cases, but the distribution of 
the delay between onset of infection and onset of symptoms may bias these estimates. Rt

Model-based was estimat-
ed using a deterministic compartmental model, but this type of model may not be representative of stochastic 
transmission dynamics, particularly when the number of infections is small. Despite these limitations, Rt

Empirical 
and Rt

Model-based were able to capture the evolution of the pandemic through its several waves, and to effectively 
inform the national response and policy decision-making.

CONCLUSIONS
Rt estimations played a critical and influential role in the COVID-19 national response in Qatar. Rt

Empirical ef-
fectively captured the evolution of the pandemic during its three waves in Qatar, and proved useful in under-
standing epidemic dynamics and setting interventions to control transmission. Even though surveillance data 
of SARS-CoV-2 infection are imperfect and prone to bias, Rt estimations were robust and generated consistent 
results regardless of the data source used, or the method employed in generating estimates. These findings af-
firm the value and complementarity of using both Rt

Empirical and Rt
Model-based to track the pandemic in real-time 

and to inform public health decision making at a national level across countries. This can also be done despite 
low-resource demands, as Rt

l estimation utilizes existing surveillance data. Moreover, application of some of 
the estimation methods is feasible even without established expertise in infectious disease modeling. Since the 
choice of estimation method does not impact the estimates, each country may decide on the best approach, 
method, and source of data to be used in the estimation, weighing feasibility, ease of use, and functionality, 
given its specific circumstances.
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