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Abstract

Genetic epidemiology can provide important insights into parasite transmission that can

inform public health interventions. The current study compared long-term changes in the

genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax popula-

tions. The study was conducted in Papua Indonesia, where high-grade chloroquine resis-

tance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based

Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses

were undertaken on available isolates collected between 2004 and 2017 from patients with

uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of poly-

clonal P. falciparum infections fell from 28% (38/135) before policy change (2004–2006) to

18% (22/125) at the end of the study (2015–2017); p<0.001. Over the same period, poly-

clonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum

strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates

of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but

not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population

exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was

observed in the frequency of a minor subpopulation (K2) in the late post-ACT period,

accounting for 100% of infections in late 2016–2017. The results confirm epidemiological

evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change

in P. vivax population structure is consistent with greater outbreeding associated with
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relapsing infections and highlights the need for radical cure to reduce recurrent infections.

The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates

the potential of molecular data to inform on the impact of public health interventions.

Author summary

Genetic epidemiology is gaining widespread interest as a tool that can enhance conven-

tional malaria surveillance. However, few studies have assessed the utility of molecular

analyses in quantifying long-term changes in malaria transmission. The current study

compared changes in the genetic diversity and structure of co-endemic P. vivax and P. fal-
ciparum populations sampled over 14 years (2004–2017) in Papua Indonesia, during

which the incidence of both P. falciparum and P. vivax malaria halved. The study found

larger genetic changes in P. falciparum than P. vivax, reflecting a greater impact of local

interventions, including the implementation of a new drug policy (universal Artemisinin-

Based Combined Therapy) in 2006, on P. falciparum. Both species exhibited decreasing

complexity of infections over time, consistent with declining transmission. However, the

P. falciparum population showed greater evidence of a recent bottleneck than the P. vivax
population. Four subpopulations were observed amongst the P. falciparum isolates, one of

which predominated in 2016–2017, potentially reflecting recent adaptation. The results

concur with epidemiological studies performed in the same area, that found declining

transmission in both species, with less impact on P. vivax infections. Radical cure to treat

the dormant liver stages may enable larger reductions in P. vivax transmission. The results

support the great potential of molecular surveillance in complementing traditional malar-

iometric approaches.

Introduction

Despite significant progress in reducing the burden of malaria in the Asia-Pacific over the last

decade, recent World Malaria Reports have shown that these gains are not universal. And,

where they have occurred, they are associated with an increase in the proportion of malaria

due to P. vivax [1]. The differential impact of enhanced malaria control activities can be

explained, in part, by fundamental biological and epidemiological differences between P. vivax
and P. falciparum, including the ability of P. vivax to form dormant liver stages (hypnozoites)

and a greater prevalence of low-density infections [2].

Assessment of malaria control interventions through conventional malariometric surveil-

lance focuses on quantifying case numbers and parasite prevalence from which transmission

intensity can be inferred. Case surveillance and cross-sectional surveys require comprehensive

collection of data on parasitised individuals that is restricted by logistical constraints and the

inability to detect very low-density infections. Furthermore, case surveillance has limited abil-

ity to identify subtle changes in parasite populations associated with changing epidemiology

and selective pressures on the parasites [3].

Genotyping has been proposed as a complementary tool to identify early changes in para-

site population structure, gene flow and parasite diversity [2, 4–8]. However, few molecular

studies have assessed longitudinal molecular changes in the parasite, and none have compared

co-endemic P. falciparum and P. vivax populations over a period longer than four years [9–

13]. The lack of a comprehensive longitudinal evaluation of co-endemic parasite populations
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is a major gap in our understanding of how public health interventions, such as the implemen-

tation of new antimalarial drug policies, differentially affect P. vivax and P. falciparum [4].

In 2004, clinical trials undertaken in Papua Indonesia demonstrated that both P. falciparum
and P. vivax were highly resistant to sulphadoxine pyrimethamine and chloroquine, which

were the first-line treatments against uncomplicated malaria at the time [14]. In March 2006,

antimalarial guidelines were changed, and a universal Artemisinin-based Combination Ther-

apy (ACT) policy was implemented. DHA-piperaquine (DP) was advised for uncomplicated

malaria and intravenous artesunate for severe malaria. The change in policy to highly effica-

cious antimalarial treatment was associated with a 51% fall in the incidence of P. falciparum
and a 28% fall in the incidence of P. vivax [1]. The aim of the current study was to characterize

the temporal changes in the genetic diversity and structure of co-endemic P. vivax and P. fal-
ciparum populations over the course of more than a decade (2004–2017) of concerted inter-

ventions, including the introduction of a new treatment regimen into an area with multidrug

resistant malaria.

Results

Between 2004 and 2017, a total of 1,197 P. vivax and 1,566 P. falciparum clinical isolates were

collected from patients with uncomplicated malaria, of which 628 (52%) P. vivax isolates and

671 (43%) P. falciparum isolates were available for molecular analysis. A total of 615 (97.9%) P.

vivax and 666 (99.3%) P. falciparum isolates could be genotyped successfully (S1 Fig). The

sample size ranged from 93 to 176 in each of the five predefined time intervals: pre-ACT-Po-

licy change (2004–2006), early transition to ACT-Policy (2006–2009), late transition to ACT-

Policy implementation (2009–2012), early Post-ACT implementation (2012–2015), and late

Post-ACT implementation (2015–2017) (S1 Table). All markers exhibited a minimum 5%

minor allele frequency, and a genotyping success rate exceeding >80% (S2 Table).

The parasitaemia, age and gender composition of the successfully genotyped samples were

comparable to all samples available during each period (S1 Table). Complete demographic

data were available for 96% (588/615) individuals infected with P. vivax and 96% (638/666)

with P. falciparum (S3 Table). Age composition was comparable among the five periods for

both species (S3 Table). The isolates were collected predominantly from adult patients (aged

�15 years), contributing 76% (450) of P. vivax isolates and 86% (548) of P. falciparum isolates.

Likewise, gender distribution was similar across the five periods for both species (S3 Table),

with males comprising approximately half of all patients with P. vivax (45%, 278/588) and P.

falciparum infections (49%, 328/640) (S3 Table).

The geometric mean parasitaemia differed significantly over the time intervals for both P.

vivax (p<0.001) and P. falciparum infections (p<0.001; S3 Table). There was a trend of

increasing P. falciparum parasitaemia over the study period, rising from 10,423 parasites/μL

[95%CI 8,750–124,164] in 2004–2006 to 18,981 parasites/μL [95%CI 15,856–22,722] in 2015–

2017 (rho = 0.196, p<0.001). However, there was no correlation between parasitaemia and

multiplicity of infection (MOI) for either species (P. vivax: rho = -0.077, p = 0.877; P. falcipa-
rum: rho = -0.058, p = 0.148).

The proportion of polyclonal infections decreased significantly over time for both species.

Polyclonal P. vivax infections fell from 67% (80/119) in 2004–2006 to 35% (33/93) in 2015–

2017; (p< 0.001), while polyclonal P. falciparum infections fell from 28% (38/135) in 2004–

2006 to 18% (22/125) in 2015–2017; (p = 0.009); Table 1). There was also a decrease in the

complexity of infection over time in both the P. vivax and P. falciparum populations (S2 Fig).

In the P. vivax population, the mean (SD) multiplicity of infection (MOI) decreased from 1.9

(0.7) in 2004–2006 to 1.4 (0.7) in 2015–2017 (p<0.001). In the P. falciparum population, the
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corresponding change was 1.3 (0.5) to 1.2 (0.4) (p = 0.046; Table 1). The median (range) num-

ber of multiallelic loci per infection (MLOCI) fell in the P. vivax population (from 3 (1–7) to 1

(1–5); p = 0.005) but remained low in the P. falciparum population throughout the study

period (1 (1–5) in 2004–2006 and 1 (1–5) in 2015–2017 (p = 0.161; Fig 1).

There was no temporal trend in genetic diversity, as measured by allelic richness (Rs), with

moderate fluctuations observed in both the P. vivax and P. falciparum populations (Table 1).

Over the study period, there was a slight increase in Rs in the P. vivax population from a mean

(SD) of 14.6 (6.2) to 17 (8.3), but this was not significant (p = 0.999). In the P. falciparum popu-

lation, Rs was 7.3 (2.5) in 2004–2006 and 7.0 (2.3) in 2015–2017 (p = 0.518). Similar trends

were observed for the expected heterozygosity (HE) in both species (Table 1).

Multi-locus genotypes (MLGs) were assembled from 636 P. falciparum isolates and 461 P.

vivax isolates with complete genotyping data. In the P. falciparum population, 69 MLGs were

multiply observed (repeated MLGs) among 206 individuals, and the proportion of these indi-

viduals increased from 32% (40/126) in 2004–2006 to 45% (54/119) in 2015–2017; (p<0.001;

Table 2). In the P. vivax population, only 4 repeated MLGs were observed among 8 individuals;

however, the proportion of these individuals also increased over time, from 0% during 2004–

2006 to 7.7% (6/78) in 2015–2017 (p = 0.004; Table 2). Two of the 69 P. falciparum repeated

MLGs persisted for up to 9 years (n = 15; Fig 2), while none of the four P. vivax repeated

MLGs persisted for more than 3 months (n = 8; Fig 2, Table 2).

The multi-locus linkage disequilibrium (LD) in the P. vivax population was low throughout

the study period, although the index of association (IAS) increased 2.2-fold from 0.0046 in

2004–2006 to 0.0102 in 2015–2017 (p<0.01) (Table 3). The LD in the P. falciparum population

was consistently higher than the LD in P. vivax, and the index of association increased 5.6-fold

between 2004–2006 and 2015–2017, from 0.0415 to 0.2340 (p<0.01). The trends of increasing

LD over time remained after restricting the analysis to low complexity infections, confirming

that the results were not affected by potential MLG reconstruction errors (Table 3). There was

no evidence of a clonal outbreak in the P. falciparum population (S3 Fig).

The Bayesian clustering algorithm implemented in STRUCTURE software was unable to

detect population substructure among the P. vivax isolates analysed (S4 Fig). In contrast, delta
K analysis predicted between 2 and 4 P. falciparum subpopulations (S4 Fig). When assuming 2

Table 1. Within-host and population diversity.

Period N Polyclonal N [%; CI95%] MOI

Mean (SD)

MOI

Median (Max)

MLOCI

Median (Max)

HE
Mean (SD)

Rs
Mean (SD)

P. vivax

2004–2006 119 80 [67; 59–76] 1.9 (0.7) 2 (4) 3 (7) 0.864 (0.06) 14.6 (6.2)

2006–2009 143 81 [57; 49–65] 1.8 (0.8) 2 (4) 3 (7) 0.858 (0.06) 15.6 (6.5)

2009–2012 114 44 [38; 29–47] 1.4 (0.6) 1 (4) 2 (7) 0.852 (0.07) 16.2 (7.2)

2012–2015 146 58 [40; 32–48] 1.4 (0.6) 1 (4) 2 (7) 0.854 (0.06) 15.8 (6.1)

2015–2017 93 33 [35; 26–45] 1.4 (0.7) 1 (5) 1 (5) 0.860 (0.07) 17.0 (8.3)

P. falciparum

2004–2006 135 38 [28; 21–36] 1.3 (0.5) 1 (3) 1 (5) 0.594 (0.2) 7.3 (2.5)

2006–2009 128 38 [29; 21–37] 1.3 (0.5) 1 (3) 2 (5) 0.628 (0.3) 7.5 (2.5)

2009–2012 102 28 [27; 19–36] 1.3 (0.4) 1 (2) 1 (4) 0.623 (0.3) 6.4 (2.2)

2012–2015 176 35 [20; 14–26] 1.2 (0.4) 1 (2) 1 (5) 0.545 (0.3) 5.2 (2.1)

2015–2017 125 22 [18; 11–24] 1.2 (0.4) 1 (3) 1 (5) 0.602 (0.2) 7.0 (2.3)

MOI: Multiplicity of Infection; MLOCI: Number of multiallelic loci; CI95%: 95% Confidence interval of the proportion of polyclonal infections Rs: Allelic richness; HE:

Expected heterozygosity

https://doi.org/10.1371/journal.pntd.0008295.t001
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subpopulations, 70% (n = 466) of the isolates showed predominant (i.e., not mixed) ancestry

to one of the two subpopulations (Fig 3A). Most of the temporal periods had a 3:2 ratio com-

position of isolates belonging to K1 or K2, respectively (S4 Table). When assuming four sub-

populations, 50% (n = 337) of the isolates showed predominant ancestry to one of the four

subpopulations. Amongst these non-mixed isolates (n = 337), in the first two temporal periods

(2004–2006 and 2006–2009), 93% (57/61) and 76% (53/70) of the isolates had ancestry to

either the K1 or K3 subpopulations (S4 Table). In contrast, in the late post-ACT transition

period (2015–2017), 78% (n = 67/86) of the isolates had ancestry to either the K2 or K4 sub-

populations (S4 Table). Notably, all isolates collected at the end of 2016 and throughout 2017

had ancestry to the minor K2 subpopulation (Fig 3B).

The pattern of sub-structure in the P. falciparum clinical isolates mirrored patterns

observed in a previous study conducted in Papua between 2011 and 2014 [15]. Using

Fig 1. Proportion of multiallelic loci per infection (MLOCI) by temporal period. Bar charts illustrating the percentage of polyclonal infections

with the given number of multiallelic loci for each of the 5 temporal periods in a) P. vivax and b) P. falciparum. Both species exhibit an overall

decline over time in the percentage of infections with 2 or more multiallelic loci.

https://doi.org/10.1371/journal.pntd.0008295.g001
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genotyping data generated on symptomatic and asymptomatic P. falciparum cases from Papua

and three other regions of Indonesia (Bangka Belitung, West Kalimantan and Nusa Tenggara),

the 2011–14 study found a notable sub-population of asymptomatic P. falciparum cases pre-

senting in 2013 (defined as Papua asymptomatic K1) that appeared to have been imported

from a region close to Nusa Tenggara [15]. We sought to determine whether the Papuan

symptomatic K2 subpopulation observed here and the previously described asymptomatic K1

subpopulation reflected the same reservoir. Multiple correspondence analysis (MCA) on the

current and previously described P. falciparum datasets [15, 16] revealed higher genetic relat-

edness between the Papuan symptomatic K2 subpopulation, the putatively imported Papuan

asymptomatic K1 subpopulation and the infections from Nusa Tenggara than the other Pap-

uan infections (S5 Fig).

Discussion

This study presents a comprehensive longitudinal genetic investigation of P. falciparum and P.

vivax, comprising data from over 1,200 parasite isolates collected over 14 years. It is the first

longitudinal genetic analysis documenting the diversity and structure of co-endemic P. falcipa-
rum and P. vivax populations before, during, and after the implementation of a universal ACT

policy. The results reveal important molecular cues consistent with differential patterns in the

decline in transmission of P. vivax and P. falciparum following policy change in a region with

multidrug resistant malaria; these findings have been confirmed with complementary epide-

miological data from a large-scale case surveillance study in the same area [1, 15]. The genetic

results also highlight the emergence of a subpopulation of potentially adaptive clinical P. falcip-
arum infections in the late post-ACT transition period.

Multiple clone infections can arise by superinfection in the mosquito (e.g. due to inter-

rupted feeding) as well as superinfection in the patient following serial infected mosquito-

bites. The risk of superinfection is likely to be greater in high transmission settings. Previous

studies have demonstrated a positive correlation between the complexity and/or proportion of

polyclonal malaria infections and transmission intensity [17–19]. Consequently, reduction in

the complexity or prevalence of polyclonal malaria infections has been proposed as an early

marker of decreasing transmission in the given population [18]. Our study revealed significant

Table 2. Frequency of infections with repeated multi-locus genotypes (MLGs).

Periods P. vivax P. falciparum
Total infections with

MLGsa; n

Proportion of infections with repeated MLGs;

%, [CI95]b
Total infections with

MLGsa; n

Proportion of infections with repeated MLGs;

%, [CI95]b

2004–

2006

96 0 [0–0] 126 32 [24–40]

2006–

2009

125 2 [1–4] 124 18 [11–24]

2009–

2012

69 0 [0–0] 98 28 [19–36]

2012–

2015

93 0 [0–0] 169 37 [30–45]

2015–

2017

78 8 [2–14] 119 45 [36–54]

Total 461 1.7 [0.5–2.9] 636 32 [29–36]

a: Total number of infections with complete multi-locus genotypes (MLGs)

b. Proportion of individuals infected with repeated MLGs and corresponding 95% Confidence interval (CI95).

https://doi.org/10.1371/journal.pntd.0008295.t002
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reductions in the proportion of polyclonal infections in P. vivax and P. falciparum between the

earliest and latest ACT transition periods (1.8- and 1.6-fold, respectively). The difference in

the magnitude of the reduction in polyclonal infections between the species likely represents

the higher pre-ACT baseline prevalence of polyclonal P. vivax infections compared to P. falcip-
arum. These findings highlight constraints in the utility of the complexity or prevalence of

polyclonal infection to monitor reductions in malaria transmission in low endemic settings

where the complexity is low at the start of monitoring. Although not observed here, it should

also be noted that some studies have observed high complexity of infection in low endemic set-

tings, potentially reflecting factors such as polyclonal imported infections [20].

In P. falciparum, population genetic diversity has been proposed to correlate positively with

endemicity [17]. Although our study found a trend of declining allelic richness in the P. falcip-
arum population from 2004 until 2015, this did not reach statistical significance. Indeed,

Nkhoma and colleagues also found population diversity to be limited as a measure of endemic-

ity in their longitudinal survey of P. falciparum on the Thai-Myanmar border [18]. This find-

ing may reflect the high human movement between Papua and other Indonesian islands,

which could provide a diverse reservoir of new alleles being introduced into Papua [14, 15]. A

study of P. vivax population diversity in Sri Lanka reported increasing diversity despite declin-

ing transmission, potentially reflecting imported cases amongst other factors. [20]. The avail-

able evidence suggests that low P. vivax diversity may not be a prerequisite for elimination of

this species. Indeed, in contrast to P. falciparum, there was no change in genetic diversity in

the Papuan P. vivax population over time, likely reflecting a combination of importation and

enhanced transmission opportunities afforded by the dormant liver stage.

Fig 2. Persistence of repeated MLGs over time. Dot points illustrating the year when repeated MLGs were detected in

each of a) P. vivax and b) P. falciparum. The P. vivax repeated MLGs were constructed across 8 loci, and the P.

falciparum infections were constructed across 9 loci. The persistence of P. falciparum strains (repeated MLGs) reached

up to 9 years (green) and was markedly greater than for P. vivax, which did not persist for over a year. However, most

P. falciparum strains (repeated MLGs) had shorter duration (less than a year).

https://doi.org/10.1371/journal.pntd.0008295.g002

Table 3. Multi-locus Linkage Disequilibrium.

Subgroups All infections, N All infections, IAS Low complexity, N Low complexity, IAS

P. vivax
2004–2006 96 0.0046� 51 0.0064NS

2006–2009 125 0.0038NS 74 0.0036NS

2009–2012 70 0.0116�� 52 0.0113�

2012–2015 92 -0.0043NS 65 -0.0092NS

2015–2017 78 0.0102�� 66 0.0157�

P. falciparum
2004–2006 126 0.0415�� 116 0.0452��

2006–2009 124 0.0433�� 106 0.0461��

2009–2012 98 0.0504�� 91 0.0527��

2012–2015 169 0.0375�� 161 0.0381��

2015–2017 119 0.234�� 113 0.2257��

Only samples with no missing data were included in the analyses.

� p<0.05

�� p< 0.01

NS: not significant.

https://doi.org/10.1371/journal.pntd.0008295.t003
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Increasing proportions of individuals harbouring repeated multi-locus genotypes (MLGs)

and long persistence of repeated MLGs are strong predictors of declining malaria transmission

[18, 21, 22]. Although only 4 P. vivax repeated MLGs were detected in the study, there was a

modest increase in their prevalence in the late temporal periods, suggesting a discrete increase

in inbreeding events in this species. A total of 69 repeated MLGs were detected in the P. falcip-
arum population, and their proportions demonstrated a significant increase (from 32 to 45%)

between the pre-ACT and late post-ACT transition periods, providing strong evidence of

increasing self-fertilization events over time in this species. Strikingly, two of the P. falciparum
repeated MLGs (3%) persisted for 8 and 9 years. A previous longitudinal study of P. falciparum
conducted in a low-endemic area demonstrated a similar distribution in repeated MLGs prev-

alence over time, and also observed persistence of strains for up to 8 years [22].

Since mixed-clone infections are a main contributor of cross-fertilisation events, LD is

expected to correlate negatively with the proportion of polyclonal infections and thus, theoreti-

cally, should increase as the transmission intensity decreases in the absence of outbreaks.

There was no evidence of large outbreaks of one or a few genetic strains in the P. vivax or P.

falciparum populations in our study. Although overall LD levels remained low, there was a

modest (2.2-fold) increment in IAS estimates in the P. vivax population between the pre-ACT

and late post-ACT transition periods, likely reflecting the decline in polyclonal infections and

subtle increase in frequency of repeated MLGs. In P. falciparum, a larger (5.6-fold) increase in

IAS estimates was observed between the pre-ACT and late post-ACT period. In conjunction

with the increasing prevalence of repeated MLGs and long persistence of strains, the LD results

suggest a substantial decline in cross-fertilisation over time in the P. falciparum population.

Together, the molecular data on complexity and prevalence of polyclonal infections,

repeated MLGs prevalence and LD, suggest declining transmission and increasing inbreeding

over time in P. falciparum and, to a lesser extent, in P. vivax. These results are in line with epi-

demiological surveillance data collected from 2004 to 2009 [1], which also found larger reduc-

tions in the incidence of P. falciparum cases (51%), than in P. vivax cases (28%) [1]. These

findings highlight the utility of molecular data on complexity or prevalence of polyclonal

Fig 3. Temporal trends in the prevalence of P. falciparum sub-populations. STRUCTURE bar plots illustrating the

distribution of P. falciparum isolates with ancestry to the given K sub-populations over time. Panel a) presents the data

assuming K = 2, and panel b) presents the data assuming K = 4. Each vertical bar presents a single isolate, whose

relative ancestry to each of the given K sub-populations is illustrated by the proportionate colour-coded segments.

Isolates are ordered from left to right on the x-axis by date of collection (oldest to most recent). At K = 2, each

temporal period exhibits an approximate 3:2 ratio composition of isolates with predominant ancestry (>85%) to K1

and K2 respectively. At K = 4, majority of isolates in the first two temporal periods have predominant ancestry to K1 or

K3, whilst the majority in the later periods have predominant ancestry to K2 or K4. Isolates with predominant ancestry

to K2 prevail in late 2016 and throughout 2017.

https://doi.org/10.1371/journal.pntd.0008295.g003
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infections, repeated MLGs prevalence or LD to characterise long-term changes in parasite

transmission intensity in regions with comparable endemicity to Mimika [8].

The change in treatment policy to ACT as first-line treatment for all species of malaria,

intense vector control, and annual bed net distribution (implemented since 2004), may have

all contributed to the epidemiological and genetic changes observed in the P. vivax and P. fal-
ciparum populations in Mimika. However, we hypothesise that the implementation of ACT

had the greatest impact [23]. Artemisinins clear parasitaemia faster than less potent drugs such

as chloroquine and have demonstrated potency against the transmissible gametocyte stages.

Therefore, in regions where they remain effective, ACTs have a greater impact in reducing par-

asite biomass and overall transmission than other conventional drugs [24]. Vector control has

been shown to be effective in reducing transmission in Papua New Guinea [25]. However,

given the bionomics of the local Anopheles species in Mimika (mostly exophilic behaviour), it

is likely that bed-nets may have had little impact on malaria in this population [1, 14].

In addition to the molecular cues of declining transmission intensity, parasite genotyping

revealed temporal changes in the frequency of four P. falciparum sub-populations detected in

the study. The most notable change was the fluctuation in prevalence of a divergent subpopu-

lation, defined as K2, which was observed in small clusters in 2009 and 2011, before re-emerg-

ing and predominating towards the end of the study period (late 2016 and throughout 2017).

It remains unclear whether the K2 subpopulation was introduced from elsewhere in Indonesia

or overseas, or emerged locally, or whether its recent expansion was neutral or driven by

favourable selective pressures from antimalarial drugs or other forces. Cluster-based analyses

demonstrated that the K2 sub-population was genetically closely related to isolates from Nusa

Tengarra, suggestive of importation from this province or a nearby region. However, as the

microsatellite markers may be limited in their ability to determine geographic origin, we can-

not exclude the possibility that the divergent infections reflect local adaptations in response to

the changing epidemiology. Indeed, the recent expansion of the K2 subpopulation is particu-

larly interesting in the context of a recent genomic study, which revealed closer genetic related-

ness between three artemisinin-resistant P. falciparum infections detected in Papua New

Guinea with infections derived from Mimika than with other Papua New Guinean isolates

[26]. Further temporal investigation of the P. falciparum infections in Mimika are needed with

appropriate phenotypic data.

In summary, our study demonstrates that enhanced malaria control activities in a co-

endemic setting had a significant impact on the local transmission dynamics of both P. falcipa-
rum and P. vivax. The greater genetic changes observed in the P. falciparum population likely

reflect a parasite population more susceptible to schizontocidal antimalarial drugs whereas the

lesser impact on the P. vivax population emphasises the need for the radical cure of this spe-

cies. The recent emergence and predominance of a divergent P. falciparum subpopulation

highlights the importance of surveillance to inform control programs of potential new threats.

Materials and methods

Ethics statement

Ethical approval for the study was obtained from the Eijkman Institute Research Ethics Com-

mission, Eijkman Institute for Molecular Biology, Jakarta, Indonesia (EIREC-47, EIREC-67,

and EIREC-75), the Ethics committee of the National Institute of Health Research and Devel-

opment, Indonesian Ministry of Health, Jakarta, Indonesia (NIHRD: KS.01.01.6.591, NIHRD:

KS.02.01.2.3.4579, NIHRD: KS.02.01.2.1.4042, NIHRD: KS.02.01.2.1.1615 and NIHRD:

LB.03.02/KE/4099/2007), and the Human Research Ethics Committee of the Northern Terri-

tory (NT) Department of Health & Families and Menzies School of Health Research, Darwin,
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Australia (MSHR: 02/55, MSHR: 07/06, MSHR: 03/64, MSHR: 05/16, MSHR: 07/14 and

HREC 2010–1396).

Study site

The study was conducted in Mimika District, located in the south of Papua Province, Indone-

sia (S6 Fig). Details on the epidemiology of the study site have been reported previously [1,

15]. Briefly, malaria transmission is perennial in Mimika, but almost exclusive to the lowlands.

Most malaria infections are caused by P. falciparum and P. vivax, but P. malariae and P. ovale
are also endemic. Papua Province has historically harboured high levels of antimalarial drug

resistance in both P. vivax and P. falciparum [27]. Surveys conducted between 2004 and 2006

demonstrated 65% treatment failure against CQ monotherapy at day-28 for vivax malaria and

48% failure against CQ plus sulphadoxine-pyrimethamine (SP) for P. falciparum [14]. Epide-

miological surveillance data collected from local health facilities and cross-sectional studies in

Mimika District showed an overall decrease of malaria incidence assuming shifts in treatment-

seeking behaviour, from 889 infections per 1,000 person-years in 2004–2006 to 522 in 2010–

2013 [1]. The incidence of P. falciparum cases fell from 511 per 1,000 person-years in 2004–

2006, to 249 in 2010–2013 and, the incidence of P. vivax cases fell from 331 to 239 per 1000

person-years over the same periods [1].

Patient sampling framework

Samples were sourced from patients recruited to clinical and ex vivo surveillance studies car-

ried out in Mimika between 2004 and 2017 [14, 28–32]. The same sampling strategy was

applied throughout the study period and ensures a homogenous patient catchment areas and

demographics. Briefly, blood samples were collected from consenting, symptomatic patients

with uncomplicated malaria attending the Rumah Sakit Mitra Masyarakat (RSMM) hospital.

Peripheral parasitaemia and species identity were determined by light microscopy examina-

tion of Giemsa-stained blood smears. Available samples were selected for parasite genotyping.

Genomic DNA (gDNA) was extracted from either 2 mL of venous blood using the QIAamp

DNA Midi Kit (Qiagen), or 100 μL of red blood cell pellet using the QIAamp DNA Mini Kit.

Species confirmation was performed using a nested PCR protocol [33].

Microsatellite typing

Nine short tandem repeat (STR) markers (ARAII, PfPK2, poly-alpha, TA1, TA42, TA60, TA81,

TA87 and TA109) described by Anderson et al were used to genotype P. falciparum isolates

[34]. For P. vivax, a panel comprising eight STR markers (MS1, MS5, MS10, MS12, MS20,

MS16, msp1F3, and PV3.27) described by Koepfli et al and Karunaweera et al. were used [35,

36]. The primers and PCR conditions for the assays are described elsewhere [37]. The labelled

PCR products were sized on an ABI 3100 Genetic Analyser with GeneScan LIZ-600 size stan-

dard (Applied Biosystems). The resulting electrophoretograms were analysed using the online,

open-access vivaxGEN platform [38]. All genotypes can be accessed in vivaxGEN. The P. vivax
genotypes are available under the batch codes IDPV-XXV, IDPV-TES, IDPV-ACT and IDP-

V-ACT2, and the P. falciparum genotypes are available under IDPF-XXV, IDPF-TES, IDP-

F-ACT and IDPF- ACT2. An arbitrary intensity threshold of 100 relative fluorescence units

(RFU) and minimal 33% peak intensity of minor relative to predominant peaks was used to

reduce background noise/artefacts. Only samples with information in at least 50% of the loci

were considered successfully genotyped.
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Data analysis

Sample grouping. Samples were grouped according to their collection date into 5 prede-

fined periods: pre-ACT-Policy change (April 2004 to March 2006–24 months); early transition

to ACT-Policy (April 2006 to March 2009–36 months); late transition to ACT-Policy imple-

mentation (April 2009 to March 2012); early Post-ACT implementation (April 2012 to March

2015–36 months); and late Post-ACT implementation (April 2015 to May 2017–24 months).

Population genetic analysis. Multiple parasite clones were defined if more than one allele

at one or more loci was present in an individual sample. The MOI was defined as the maxi-

mum number of alleles at any locus for a given sample. The number of MLOCI was also esti-

mated for closer inspection of the complexity of individual infections in the effort to identify

any subtle changes in transmission patterns over time.

Temporal analysis of the genetic relatedness between infections was conducted by assess-

ment of the proportion of shared alleles, frequency and duration of repeated MLGs, and the

proportion of repeated MLGs per period and illustrated with neighbour-joining trees gener-

ated using the ape package in R [39]. Isolates without missing data were used to build MLGs

from the predominant allele at each locus. The frequency and temporal duration of repeated

MLGs was estimated using the R packages adegenet and RClone [40].

LD, which is the non-random association of alleles at different loci, was measured using the

standardised index of association (IAS). IAS compares the observed variance of the number of

mismatched loci between haplotypes to the expected variance if the loci were randomly associ-

ated.[21]. The web-based LIAN 3.5 software was used to calculate the estimates [41]. Briefly,

multi-locus LD was compared between groups in search of evidence of increasing LD. Ten

thousand permutations of the data was used to assess the significance of the estimates. LD

analysis was performed on all MLGs and using low complexity infections (maximum of 1

multi-allelic locus) only.

Population genetic diversity was estimated using the allelic richness (Rs), a measure of the

number of alleles at a given locus with normalisation (rarefaction) for sample size. Rs was cal-

culated using the hierfstat package in R [42]. Measures of the expected heterozygosity (HE)

were also provided for comparison with previous studies.

Population structure was assessed using STRUCTURE software version 2.3.3 [43]. The sim-

ulation was run using 20 replicates, with 100,000 burn-in and 100,000 post burn-in iterations

for each estimate of K (number of sub-populations), ranging from 1–10. The model parame-

ters included admixture with correlated allele frequencies. The delta K method was used to

derive the most probable K, implemented with STRUCTURE HARVESTER [44, 45]. An arbi-

trary threshold of 85%> was used to define ancestry to the different K subgroups. Distruct

software version 1.1 was used to display the results from STRUCTURE as bar plots [46].

Statistical tests. SPSS software (version 24) was used for statistical analysis. Differences in

MOI, percentage of polyclonal infections, proportion of infections with multiply observed

MLGs, allelic richness (Rs), and expected heterozygosity (HE) between subgroups and species

were assessed using the Mann-Whitney U or Kruskal-Wallis test, spearman correlation for

continuous trends and chi-square test for trends and differences in proportion.
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