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Reduction in parvalbumin expression not @
loss of the parvalbumin-expressing GABA
interneuron subpopulation in genetic
parvalbumin and shank mouse models of

autism
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Abstract

Background: A reduction of the number of parvalbumin (PV)-immunoreactive (PV*) GABAergic interneurons or a
decrease in PV immunoreactivity was reported in several mouse models of autism spectrum disorders (ASD). This
includes Shank mutant mice, with SHANK being one of the most important gene families mutated in human ASD.
Similar findings were obtained in heterozygous (PV+/-) mice for the Pvalb gene, which display a robust ASD-like
phenotype. Here, we addressed the question whether the observed reduction in PV immunoreactivity was the
result of a decrease in PV expression levels and/or loss of the PV-expressing GABA interneuron subpopulation
hereafter called "Pvalb neurons”. The two alternatives have important implications as they likely result in opposing
effects on the excitation/inhibition balance, with decreased PV expression resulting in enhanced inhibition, but loss
of the Pvalb neuron subpopulation in reduced inhibition.

Methods: Stereology was used to determine the number of Pvalb neurons in ASD-associated brain regions
including the medial prefrontal cortex, somatosensory cortex and striatum of PV-/-, PV+/-, Shanki-/- and Shank3B-/-
mice. As a second marker for the identification of Pvalb neurons, we used Vicia Villosa Agglutinin (WWA), a lectin
recognizing the specific extracellular matrix enwrapping Pvalb neurons. PV protein and Pvalb mRNA levels were
determined quantitatively by Western blot analyses and qRT-PCR, respectively.

Results: Our analyses of total cell numbers in different brain regions indicated that the observed “reduction of PV*
neurons” was in all cases, i.e., in PV+/-, Shank1-/- and Shank3B-/- mice, due to a reduction in Pvalb mRNA and PV
protein, without any indication of neuronal cell decrease/loss of Pvalb neurons evidenced by the unaltered
numbers of VWA™ neurons.

Conclusions: Our findings suggest that the PV system might represent a convergent downstream endpoint for
some forms of ASD, with the excitation/inhibition balance shifted towards enhanced inhibition due to the down-
regulation of PV being a promising target for future pharmacological interventions. Testing whether approaches
aimed at restoring normal PV protein expression levels and/or Pvalb neuron function might reverse ASD-relevant
phenotypes in mice appears therefore warranted and may pave the way for novel therapeutic treatment strategies.
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Background

Autism spectrum disorders (ASD) consist of a group of
heterogeneous neurodevelopmental disorders, with a
high prevalence of ~1/100 children [1]. Core symptoms
of ASD are deficits in social interaction and communica-
tion, together with restricted interests and repetitive be-
haviors [2—4]. The etiology of ASD remains unclear, but
a strong genetic component is evident. ASD candidate
genes are often implicated in synaptic transmission, are
part of synapse formation/maintenance and/or affect the
neurodevelopment during particular moments, e.g.,
during the “critical period” [5, 6]. Functionally, these
changes affect the excitation/inhibition (E/I) balance and
subsequently influence network properties [7, 8].

One of the most important gene families mutated in
ASD is the SHANK gene family [9], coding for multi-
domain scaffolding proteins located in the postsynaptic
density of glutamatergic synapses [10]. In individuals
with ASD or schizophrenia patients with ASD traits,
mutations were repeatedly reported for all SHANK gene
family members [4, 9, 11, 12], namely SHANKI1 [13],
SHANK?2 [14-16] and SHANK3 [17-21]. Moreover,
SHANKS3 haploinsufficiency has been found in patients
affected by the Phelan-McDermid 22q13 deletion mental
retardation syndrome [22-25], often characterized by
ASD features [26]. Importantly, mutations of SHANK
genes were detected in the whole spectrum with a
gradient in severity in mental retardation. Specifically,
SHANK1 mutations were found in individuals with ASD
and normal intelligence, whereas SHANK2 and SHANK3
mutations were associated with mild and severe mental
retardation, respectively [9]. Consistent with the import-
ant role of the SHANK gene family in ASD, genetic
Shank mouse models display behavioral alterations with
relevance to all human ASD core symptoms. Shankl
null mutant mice display social and communication defi-
cits [27], alterations in repetitive behavior, with elevated
self-grooming behavior, particularly in social situations
[28], and a mixed cognitive phenotype resembling aber-
rant cognitive processing evident in some ASD cases
[29, 30]. Likewise in two Shank2 models, strong ASD-
related behavioral alterations are evident [17-19, 31, 32].
In the various Shank3 models severity of the ASD
phenotype varies with genetic manipulation, with a com-
paratively mild phenotype in the Shank3 model lacking
the ANK domain [33, 34], but strong phenotypes in the
other models [35-37], see also [38—40].

In the process of brain development, GABAergic sig-
naling plays an essential role. Thus, it is not surprising
that its disturbance/disruption has been related to the
pathogenesis of ASD [41, 42]. Investigations on the role
of the GABAergic system during neurodevelopment,
however, are impeded by the fact that GABAergic inter-
neurons are made up of different subtypes displaying
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heterogeneous morphological and physiological features;
in the hippocampus, up to 21 subtypes have been identi-
fied [43]. One way to classify GABAergic, e.g., cortical
interneurons, is based on the expression of Ca**-binding
proteins such as parvalbumin (PV; gene symbol:
PVALB), calbindin D-28k and calretinin [44]. Among
these specific subpopulations, PV-expressing interneu-
rons seem to be highly impacted in several neuropsychi-
atric disorders including schizophrenia, bipolar disorder
and ASD [45]. While in none of the previous studies in
humans the PVALB gene itself was found to be mutated,
a reduction in the order of 20-25 % in the number of
PV-immunoreactive (PV") neurons has been reported in
ASD individuals [46] and mouse ASD models [47], see
Table S1 in [48]. However, so far the question was not
thoroughly addressed as to what extent the reduction in
PV" neurons was the result of improper neurodevelop-
ment (e.g., altered GABA interneuron subtype), neuron
loss (neuronal death) or PV down-regulation (mRNA
and/or protein). This is of high relevance, since the alter-
natives likely have distinct and even opposing effects on
the excitation/inhibition balance: while loss of the Pvalb
neuron subpopulation is likely to result in reduced in-
hibition, decreased PV expression results in enhanced
inhibition. The absence of PV in PV-/- Pvalb neurons
does not affect basal synaptic transmission, but enhances
facilitation [49, 50] and shortens delayed transmitter re-
lease [51]. This asynchronous release augmented in the
presence of PV is assumed to be important to
desynchronize large fractions of local networks and pre-
vent/disrupt excessive synchronized activity [52]. In line
the observed increased regularity of spiking of PV-/- stri-
atal Pvalb FSI in vitro [53], the appearance of synchronous
160-Hz oscillations in the cerebellum of PV-/- mice
in vivo [54] and facilitation of the GABA,-ergic current
reversal caused by high-frequency stimulation in PV-/-
hippocampal Pvalb FSI in vitro [55], all together provide
evidence that PV plays a key role in the regulation of local
inhibitory effects on pyramidal neurons, as well as on
other interneurons (for more details, see [56]). Import-
antly, at the behavioral level, mice with reduced PV ex-
pression (PV+/-) or without PV (PV-/-) display a robust
ASD-like phenotype [48]. Although qualitative immuno-
histochemistry revealed no striking differences with re-
spect to VVA™ (putatively Pvalb) neurons in PV-/- mice
[55, 57], a quantitative and systematic analysis of Pvalb
neurons by unbiased stereology in different brain re-
gions including ASD-implicated regions such as the
medial prefrontal cortex (mPFC), somatosensory cor-
tex (SSC) and striatum was still missing. Besides de-
termining the number of Pvalb neurons in PV+/- and
PV-/- mice, we quantified the number of this inter-
neuron subpopulation in two well-established ASD
mouse models, i.e., ShankI-/- and Shank3B-/- mice,
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covering the extremes of the spectrum with a gradi-
ent in severity in mental retardation.

Methods

Animals

All mice were group housed in temperature-controlled
animal facilities (24 °C, 12:12 h light/dark cycle), either
at the University of Fribourg, Switzerland, or at the
University of Marburg, Germany, and fed ad libitum.
PV-deficient (PV-/-; strain name: B6.Pvalb™%2) mice
were generated by homologous recombination as previ-
ously described [58] and are considered as congenic
with C57Bl/6 ] [59]. C57Bl/6 ] wild-type (WT) mice
were used to generate the heterozygous PV+/- group.
In some experiments mice expressing EGFP in the
Pvalb neurons (line B6.Tg(Pvalb-EGFP)1Hmon [53])
were used. ShankI-/- mice (B6.129S4-Shank1'™!5hng/y)
were generated in the laboratory of M. Sheng (29).
Shank3B-/- mutant mice (B6.129-Shank3™26fMe/J, http://
jaxmice.jax.org/strain/017688 html) were purchased from
The Jackson Laboratory (Bar Harbor, Maine, USA) and
were initially generated by Peca and colleagues [36]. Geno-
types were determined according to established and previ-
ously described protocols [28, 36, 58]. Only male animals
were used in this study. All experiments were performed
with permission of the local animal care committees
(Canton of Fribourg, Switzerland; Regierungsprasidium
GiefSen, Germany) and according to the present Swiss/
Germany law and the European Communities Council
Directive of 24 November 1986 (86/609/EEC).

Tissue preparation and immunohistochemistry

Mice at postnatal day 25 (PND25) were anesthetized
(Esconarkon, Streuli Pharma AG, Uznach, Switzerland)
and perfused with 0.9 % saline solution followed by 4 %
PFA. Brains were removed and post-fixed for 24 h in
4 % PFA before being cryopreserved in 30 % sucrose-
TBS at 4 °C. Coronal and sagittal sections were cut
rostro-caudally using a freezing microtome (Frigomobil,
Reichert-Jung, Vienna, Austria) and six series of equi-
distant sections were collected using stereological
systematic random sampling principles (see below).
Free-floating sections were first incubated with TBS
0.1 M plus 0.4 % Triton X-100 and 10 % newborn calf
serum (NBS) for 1 h at room temperature, then washed
three times with TBS 0.1 M, and incubated with PV
antibody (anti-rabbit PV25, Swant, Marly, Switzerland)
at a dilution 1:1000 and Vicia Villosa Agglutinin
(biotinylated-VVA, Reactolab, Servion, Switzerland);
10 pg/ml in TBS 0.1 M plus MgCl,, MnCl,, CaCl, (final
salt concentration: 0.1 mM) overnight at 4 °C. Sections
were washed once with TBS, then twice with Tris-HCl
and incubated protected from light at room
temperature with anti-rabbit Cy3-conjugated antibody
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(1:200 dilution) and Alexa488 streptavidin-conjugated
antibody (1:200 dilution, Milan Analytic AG,
Switzerland) in Tris-HCL Nuclei of fixed cells were
stained with DAPI (1:500 dilution, LuBio Science
GmbH, Luzern, Switzerland) in PBS 0.1 M. After rins-
ing, slides were coverslipped with Hydromount
(National Diagnostics, Atlanta, Georgia, USA).

Stereological quantification

The optical fractionator method [60] was used to esti-
mate the total number of parvalbumin-positive (PV™")
and Vicia Villosa Agglutinin-binding (VVA") cells in
brain regions of interest (ROIs) using the Stereo In-
vestigator system (Version 11, MicroBrightField, Will-
iston, VT, USA). The system was connected to a
Zeiss Axioplan microscope coupled with a Hamamtsu
Orca Camera and with a motorized x-y stage (Ludl
Electronic Products, LTD, NY, USA). ROIs were de-
termined based on stereotactic coordinates provided
by the Paxinos and Franklin atlas [61] at 1.78-1.18
from bregma for the medial prefrontal cortex (mPFC),
1.10 to-0.46 mm from bregma for the striatum and
1.20-3.25 mm lateral to the midline for the somato-
sensory cortex (SSC). Counting was done on images
obtained with oil immersion objective lenses (x100
NA =140 and x63 NA =1.30). Five animals derived
from heterozygous breedings were analyzed per geno-
type, with mice from the same litter but different ge-
notypes, i.e., littermate controls, being included.

Counting criteria

Sampling parameters are reported in Table 1. VVA" and
PV™ cells were counted independently and according to
the following criteria: (1) Well visible DAPI-stained nu-
cleus; (2) well-defined perineuronal net (PNN) with a
web-/lattice-like morphology for VVA™ cells; examples are
shown in Fig. 1) and (3) PV staining surrounding the
DAPI-stained nucleus for PV" cells. Section thickness was
measured at every fifth sampling location, and the mean
of all measurements was used in all computations. At each
sampling location, the microscope was focused down
through the disector sample to count any cell within that
particular counting frame according to disector counting
rules. Since the fractionator method does not require a
measurement of tissue volume or any other dimensional
quality, the cell number estimate is valid, even if the tissue
volume changes during processing. The total number of
cells (N) in the ROIs was estimated as outlined by West
et al. [60, 62] using the equation:

N = Qx(1/ssf) x (1/asf) x (1/tsf),

where ssf, asf and tsf are referred to the sampling sam-
ple fraction, the area sampling fraction and the thickness
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Table 1 Stereological sampling parameters

Brain Cutting No. of  Section Height of Guard zone Counting frame Sampling grid Measured CE
region  plane sections evaluation disector (um) height (um) area (um) area (um) section thickness
interval mean (um)

mPFC coronal 4-5 6 20 05 90 x 70 150 % 200 224 CEn-1007<CES<
CEn=o 0.09

Striatum  coronal 7-8 6 20 0.5 110% 90 300 x 300 230 CEnei006 <CES
CEnz00.09

SSC sagittal 10-12 6 20 0.5 5835x%3356 250 x 250 234 CEnei007 < CES
CEme00.10

Merge + DAPI

*

PV+/+
20x

PV+/+
40x

PV-/-
40x

Fig. 1 Representative PV and WA™ cells from PND25 mouse cortex. a, b Single channel acquisition of @) PV* (magenta) and (b) WA™ (green)
cells. (¢, d) Merged images showing PV (magenta) and WA (green) overlapping in the PND25 cortex of a WT mouse, in (d) additionally with DAPI
(light blue) counterstaining. In PV* cell bodies (magenta), where most of the cell including the nucleus evidenced by DAPI staining (blue) was
within the thickness of the section, the PNN (green) surrounding the cell was clearly visible. a-d) Low magnification and e-h) High magnification
images. Arrowheads indicate the PV"WA" double-positive neurons that are in focus. In the overlay image, the rim of the cells was lighting up in
white, indicative for “co-localization” of PV and WA. i-l) High magnification images of PV* (magenta) and WA™ (green) cells from PND25 PV-/-
mouse cortex. The morphology of PNNs in PV-/- animals does not differ from the one of WT mice. Scale bar: 100 um (a-d), 50 um (e-I)
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sampling fraction, respectively. The precision of the esti-
mates N is described by the coefficient of error CE
(Table 1), which is the sampling error related to count-
ing noise, systematic uniform random sampling and var-
iances in section thickness [63]. A CE of 0.10 is
generally accepted for most biological samples. CEs for
both m=1 and m=0 are provided and are likely to
bracket the true CEs of the estimates. Unlike in most
double-labeling studies, strictly individual images for ei-
ther PV" or VVA" structures were counted without
crosschecking the other channel. In such a way, a cell,
or more likely a cell segment resulting from the section-
ing with “low” staining intensities (below the predefined
threshold) and/or “atypical” shape (i.e., not easily dis-
cernable as cell-like) was considered negative, even if a
check of the other channel would have identified this
cell or cell segment as (likely also weakly) positive for
the second marker.

RT-qPCR

Total RNA was extracted from mouse brain tissue using
peqGold TRIzol reagent (Peqlab, VWR International
GmbH, Erlangen, Germany). cDNA was synthesized
using Promega’s reverse transcriptase kit (Promega AG,
Diibendorf, Switzerland). qRT-PCR was carried out to
examine the expression of mRNA of the 18S rRNA and
Pvalb genes using the universal 2X KAPA SYBR FAST
qPCR Master Mix (Axonlab AG, Mont-sur-Lausanne,
Switzerland). Details about the primer sequences are
listed in Table 2. Gene expression quantitation was car-
ried out in a DNA thermal cycler (Corbett Rotor gene
6000, QIAGEN Instruments AG, Hombrechtikon,
Switzerland), according to the following two-steps proto-
col: a denaturation step of 95 °C for 3 min; 40 cycles of
denaturation at 95 °C for 3 s and annealing/extension/
data acquisition ranging from 60 to 62 °C for 20 s. The
housekeeping gene 18S ribosomal RNA (18S) was used
as an endogenous control to normalize the mRNA con-
tent for each sample. Normalized mRNA levels were
quantified by the 2 — 42Ct method [64].

Western blot analyses

Brains from euthanized mice were quickly removed, ho-
mogenized and soluble proteins extracted for Western
blotting experiments as described before [65]. Proteins
(30 pg) were separated by SDS-PAGE (15 %). After

Table 2 gRT-PCR primers
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electrophoresis, the proteins were transferred on nitro-
cellulose membranes (MS solution, Chemie Brunschwig,
Basel, Switzerland). The membranes were then blocked
in 5 % non-fat milk in TBS-T for 60 min at room
temperature and incubated with primary antibodies:
rabbit anti PV25 (Swant, Marly, Switzerland), rabbit anti
Calbindin D-28k (Swant, Marly, Switzerland) diluted
1:10,000 in 2 % non-fat milk in TBS-T overnight at 4 °C.
Membranes were washed three times in TBS-T and in-
cubated for 1 h with secondary antibody (goat anti-
rabbit IgG HRP conjugated, Sigma-Aldrich, Buchs,
Switzerland) diluted at 1:10,000 in TBS-T. Finally, mem-
branes were repeatedly rinsed in TBS-T and developed
using ECL (Merck Millipore, Schafthausen, Switzerland).
Bands visualized by ECL were quantified using Alpha
VIEW SA software (California, USA). The levels of PV
signals were normalized to calbindin D-28k (CB) signals,
a protein previously shown to be unaltered in PV-/-
mice [57, 66] to control for differences in loading. CB
levels were found to be unaltered in Shankl-/- and
Shank3B-/- brains (data not shown). Alternatively the
GAPDH signal on Western blots or the integral of the
protein signals per sample of the Ponceau Red-stained
membranes was used for normalization. No significant
differences existed between PV signals quantitatively
evaluated by either normalization method (not shown).

Statistical analysis and cell number estimates

mRNA and protein levels were compared between geno-
types by the Student's ¢-test. Stereological data were ana-
lyzed using the GraphPad Prism software (San Diego,
USA). Since no differences were encountered when
comparing the ROIs of the two hemispheres in the same
animal, data were pooled together and analyzed. The
morphological data were first checked for normal distri-
bution by the Kolmogorov-Smirnov test and then ana-
lyzed with a one-way ANOVA with genotype as factor.
Tukey’s test was performed as post hoc test. A p-value
<0.05 was considered statistically significant.

Results

The numbers of PV* (Pvalb) interneurons are not changed
in PV-reduced (PV+/-) and in PV-deficient (PV-/-) mice
Parvalbumin fast-spiking interneurons (PV-FSI) are prefer-
entially ensheathed by perineuronal nets (PNNs) [67, 68]
consisting of specialized extracellular matrix components

Primer Sequence 5-3' Nt position Gene Gene accession number
18S rRNA For: TCAAGAACGAAAGTCGGAGGTT 1026-1047 Rn18s NR_003278

Rev: GGACATCTAAGGGCATCACAG 1493-1513
PV For: TGTCGATGACAGACGTGCTC 24-43 Pvalb NM_013645

Rev: TTCTTCAACCCCAATCTTGC 309-328
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that form a lattice-like structure around the somata and
proximal dendrites of PV-expressing neurons. Various
staining methods allow visualizing PNNs including Vicia
Villosa Agglutinin (VVA), a lectin that binds to N-acetyl-
galactosamine residues of PNN components. PV* and VVA
" cells were identified by fluorescent staining methods.
Since neither the morphology nor the distribution of PNNs
were shown to be altered in PV+/- and PV-/- mice in com-
parison to PV+/+ mice [57, 69], VVA staining was used as
reliable marker for visualizing the specific neuronal
subpopulation of “PV-FSI” cells, defined as Pvalb neurons,
irrespective of reduced or absent PV expression in PV
+/- and PV-/- mice, respectively. Representative sam-
ples demonstrating the quality of the stainings for PV
and VVA of PND25 PV+/+ and PV-/- mouse brains
are depicted in Fig. 1. As expected and reported be-
fore [57], no positive staining for PV was detectable
in the sections from PV-/- mice (Fig. 1).

Cell numbers were estimated using the optical frac-
tionator method in three selected ROIs: the medial pre-
frontal cortex (mPFC), the somatosensory cortex (SSC)
and the striatum of PV+/+, PV+/- and PV-/- mice. CE
values ranged from 0.06 to 0.10 (Table 1) indicating a
sufficient precision of the estimates for both cell popula-
tions [63]. We observed a significant reduction in the
number of PV" interneurons in PV+/- and PV-/- mice
compared to PV+/+ in all ROIs. On average, PV" cells
in PV+/- mice were reduced to 60 % of PV+/+ controls;
representative immunofluorescence images of mPFC
from a WT and a PV+/- mouse are shown in Fig. 2a.
The reduction in PV staining intensity in PV+/- samples
is most striking by the decreased intensity of neuropil
staining as previously observed in the temporal cortex
(Fig. 2a in [57]). Evidently, the count in PV-/- cells was
essentially zero. With respect to the number of VVA*
cells, no significant differences existed between all three
genotypes and all three ROIs (Fig. 3a, left). An average
of the three regions resulted in values of 98 % and 99 %
of WT control for PV+/- and PV-/-, respectively, indicat-
ing that while PV expression levels were decreased, the
number of Pvalb cells was unchanged (Table 3). Since
expression of PV and PNNs are developmentally regu-
lated, modulated by neuronal activity, e.g., during “sensi-
tive” or “critical” periods, and moreover altered under
pathological conditions (see discussion), we additionally
used a transgenic mouse line, where EGFP is expressed
under the control of the Pvalb promoter [53, 70] to esti-
mate the number of Pvalb cells. Cell counts of EGFP*
cells in PV+/+EGFP mice revealed the number of
positive cells to be nearly identical to either PV" or
VVA™ cell numbers in the three ROIs, ie., mPFC,
SSC and striatum (Table 3). This indicates that the
number of VVA™ cells represents a reliable estimate
of the Pvalb cells.
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We then determined the number of cells positive for
both PV and VVA in PV+/+ and PV+/- mice. The per-
centage of double-labeled cells was rather homogeneous
among brain regions and in the order of 70 % in PV+/+
and 55 % in PV+/- brains (Fig. 3a, middle). The differ-
ence between genotypes was significant in all ROIs. For
this calculation in PV+/+ mice, we used the average of
the PV" and VVA" cells, reckoning that this number
represented the “real” number of Pvalb neurons; the use
of PV" cell number only would not have significantly
changed the results presented in Fig. 3a (not shown). Al-
though PNNs enwrap mostly PV™ neurons [69, 71], this
overlap is not absolute. Hence, we first calculated the
percentage of PV" cells that are surrounded by VVA™
PNNs. This percentage was found to be ~75 % in all the
ROIs and there were no significant differences between
PV+/+ and PV+/- mice (Fig. 3a, right). Vice versa, VVA*
cells that also showed PV staining accounted for around
68 % in PV+/+ mice for all the three ROIs. Values were
clearly lower in PV+/- mice, on average 45 %, i.e., ap-
proximately one third fewer double-labeled cells com-
pared to WT (Fig. 3a, right). This indicates that all
identified PV" cells were highly likely to show VVA
staining, while in a fraction of VVA™ cells, PV expression
levels, more prominently in PV+/- mice were below the
predefined PV expression threshold and were thus not
considered as double-labeled cells. PV protein levels in
the forebrain of PND25 PV+/- mice were reduced by
approximately 50 % determined by semi-quantitative
Western blot analyses (Fig. 3b), in line with previous
findings in PV+/- adult mice [57]. No Western blot sig-
nal for PV was observed in samples from PV-/- mice as
shown before [49, 57]. For the normalization of the PV
signals either CB or GAPDH bands were used (Fig. 3b)
and results were not different when using either protein
for the normalization. Pvalb mRNA levels were de-
creased to a similar extent (=50 %) indicative of a regula-
tion at the transcriptional level (Fig. 3c).

PV expression levels are reduced in two canonical ASD
models, Shank1-/- and Shank3B-/-, while VVA* Pvalb
neuron numbers are unaltered

As already reported in several studies [47, 72—74] canon-
ical ASD mouse models were shown to display a reduc-
tion in the number of PV-immunoreactive cells in
various brain regions. In most studies this was assumed
to result from a cell loss of the PV" subpopulation. Al-
though ASD-linked gene defects/mutations were found
to be of rather non-homogeneous origin, including pro-
teins implicated in synaptic transmission, neurodevelop-
ment, transcriptional regulation, etc., the morphological
brain alterations observed in 26 ASD mouse models
allowed a grouping into 3 major subgroups [75]. Knock-
out mice in group 1 including null mutants for En2,
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100 umg Shank3B-/-

Fig. 2 PV immunofluorescence images from mPFC of a PV+/- (a), SSC of a Shank1-/- (b) and striatum of a Shank3B-/- (c) mouse in comparison to
the same regions of a WT mouse. PV expression levels (= signal intensity) varied considerably between individual PV* neurons. Note the generally
weaker somatic staining in the mutant mice (right panels), also evident by the fainter staining of the PV-ir neuropil. The weaker staining results in
a lower number of neurons considered as positive for PV as shown in Figs. 3, 4 & 6. Scale bars: 100 pm in a, ¢; 200 pm in b

Fmrl and Shank3 show an increase in the frontal and neuroanatomical changes are present in PV-/- (Pvalb)
parieto-temporal lobes and a volume decrease in the mice, i.e., a transient cortical hypertrophy and a decrease
cerebellum, as well as a decrease in PV staining. Similar  in cerebellar volume at young age [48], indicating that
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(See figure on previous page.)

Fig. 3 a Left: Stereological estimations of PV* (light gray) and WA (dark gray) cells in mPFC (upper row), SSC (middle row) and striatum (lower row) of
PND25 WT, PV+/- and PV-/- male mice. Significant differences are observed in PV" cells between WT, PV+/- and PV-/- animals (p-value <0.05).
*Significant vs. WT mice. Asterisks represent *P < 0.05, **P < 001, **P < 0.001, respectively. Middle: stereological estimation of double-labeled (PV" WA
) cells of PND25 WT and PV+/- mice (white bars); Right: percentage of PV* cells surrounded by WA (light gray) and VWA™ cells showing PV expression
(dark gray) in WT and PV+/- mice. b Quantitative Western blot analysis of forebrain samples of P25 WT PV+/- and PV-/- mice. A representative Western
blot (left) and the quantification of PV protein levels in WT and PV+/- forebrain are shown (right). No PV signal was detectable in PV-/- mice. The
Ponceau Red-stained protein markers loaded on the same membrane as the brain extract samples are shown with their respective molecular mass on
the left. Data are from three independent experiments and are shown as mean + SEM. Results are expressed as a percentage of normalized PV levels
measured in control (WT), defined as 100 %. GAPDH or calbindin D-28k (CB) signals served as loading controls and were used for the normalization of
the PV signals. Both, CB and GAPDH expression levels were unchanged in PV+/- and Shank mutants compared to WT mice (data not shown). ¢ gRT-
PCR values from P25 PV+/- mice representing Pvalb mRNA levels were normalized to 185 mRNA levels and expressed as fold change compared to WT.
Data from three independent experiments were pooled together and are shown as mean + SD. In all graphs, asterisks indicate statistical significance

vs. WT (p-value <0.05, p =0.0003)

PV-/- likely belongs to the group 1 ASD models. Thus
we extended our studies to two well-established genetic
mouse models for ASD, namely Shanki-/- and
Shank3B-/- mice. The two models display behavioral
phenotypes with relevance to all core symptoms of ASD
in humans [38-40] and cover the extremes of the
spectrum with a gradient in severity in mental retard-
ation [9]. Global PV expression levels as well as the ones
in PV* neurons in various brain regions are currently
unknown in these two mouse mutants; a decrease in PV
staining intensity and puncta density of PV-ir neurons
contacting pyramidal cells in the mouse insular cortex
has been reported in Shank3B-/- mice [76].

Since expression patterns of the two proteins are
quite different, i.e., high mRNA levels of Shankl in

cortex and hippocampus and of Shank3 in striatum
and cortex [36, 77] (see also mouse Allen Brain atlas),
we hypothesized to find the largest differences in PV
expression in regions with high expression of the two
Shank members. Thus, SSC and striatum were ana-
lyzed for Shankl-/- and Shank3B-/- mice, respectively.
The number of PV" and VVA" cells was estimated as
for the PV null-mutant mice by the optical fraction-
ator method using the same counting criteria.

Results in the SSC of Shankl-/- mice were highly simi-
lar to the ones observed in the SSC of PV+/- mice. The
number of PV™" cells was significantly reduced to 62 % of
PV+/+ in Shankl-/- mice, while the number of VVA*
cells was unaltered (Fig. 4a, left & Table 4); representa-
tive PV immunofluorescence images of SSC from a WT

Table 3 Mean total number of PV and WA™ cells in the mPFC, SSC and striatum of PV+/+, PV4+/-, PV-/-, as well as in PV4+/+EGFP
reporter mice

mPFC PV* mPFC WA*

Mean Range p-value Mean Range p-value
PV+/+ 8908 7606-10417 9292 6921-10,987
PV+/- 5541 4321-7194 0.0003 9015 7901-10,627 03429
PV-/- - - <0.0001 7421 5343-10,589 0.0503
PV+/+ EGFP 8732 6915-9713 0.7861 8664 7202-10,093 0.1079

SSC pv* SSC WA*

Mean Range p-value Mean Range p-value
PV+/+ 153729 144,549-166,441 149709 129,498-169,086
PV+/- 95157 82476-109,745 <0.0001 143609 137,087-154,975 04419
PV-/- - - <0.0001 149594 120,020-174,596 0.9925

striatum PV* striatum WA™

Mean Range p-value Mean Range p-value
PV+/+ 23332 22,384-25,012 21724 20,003-24,431
PV+/- 11036 8330-13,501 <0.0001 22445 17,158-24,801 0.6613
PV-/- — — <0.0001 20713 17,682-22,348 03875
PV+/+ EGFP 18562 17,670-19,681 <0.0001 19881 18,158-21,118 0.0875
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Fig. 4 a Left: stereological estimations of PV* (light gray) and WA" (dark gray) cells in SSC of WT and Shank1-/- PND25 male mice. Middle:
estimation of double-labeled cells in SSC of PND25 WT and Shank1-/- mice. Right: percentage of PV* cells surrounded by WA (light gray) and
percentage of WA" cells displaying PV expression and thus identified as PV" cells (dark grey) in WT and Shanki-/- mice. b Representative Western
blot and quantification of PV protein levels in Shanki-/- mice. CB signals were used as loading controls and served for the normalization of the PV
signals. Data are from three independent experiments and are shown as mean + SEM. Results are expressed as percentage of normalized PV levels
measured in control (WT) samples, defined as 100 %. ¢ Quantitative RT-PCR analysis of forebrain samples of Shanki-/- mice. PV (Pvalb) mRNA levels
were normalized to 185 mRNA levels and expressed as fold change. Data from three independent experiments were pooled together and are shown
as mean + SD. In all graphs, asterisks indicate statistical significance vs. WT (p-value <0.05, p = 0.0006)

and a Shankl-/- mouse are depicted in Fig. 2b. The protein levels, respectively (Fig. 4b, c), were significantly
lower PV levels not only led to weaker somatic PV sig-  decreased, demonstrating that the PV down-regulation
nals, but also the staining intensity of the PV-positive  occurs at the transcriptional level. As we expected to de-
neuropil was clearly reduced. Also results from the co-  tect the largest differences in PV expression levels in
localization experiments (Fig. 4a, middle & right) are  brain regions with high Shankl expression, as a control
essentially identical to the ones of PV+/- strongly indica- ~ we also investigated PV expression in the striatum, a re-
tive of PV down-regulation and not PV" cell loss. In  gion with low Shankl expression levels evidenced by
support, quantitative RT-PCR results and moreover ISH [36]. Qualitatively, immunofluorescence images re-
Western blots showed that both PV mRNA level and vealed no prominent differences with respect to staining

Table 4 Mean total number of PV" and WA™ cells in the SSC of Shank1-/- and in the striatum of Shank3B-/- mice in comparison to
WT (PV+/+) mice in the two ROIs

SSC pV* SSC WA*

Mean Range p-value Mean Range p-value
PV+/+ 153729 144,549-166,441 149709 129,498-169,086
Shank1-/- 96000 85,803-114,459 <0.0001 143392 128,601-166,705 0.6250

striatum PV* Striatum WA*

Mean Range p-value Mean Range p-value
PV+/+ 23332 22,384-25,012 21724 20,003-24,431

Shank3B-/- 12881 10,132-14,808 <0.0001 19951 16,887-22,811 0.1910
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intensity and PV' neuron density between WT and
Shankl-/- mice in the striatum (Fig. 5).

For the Shank3B-/- mice we focused on the striatum,
a region with high Shank3 expression levels, as well as
containing the subpopulation of PV-FSI, whose function
were previously shown to be altered in the absence of
PV [53]. While the number of VVA" cells was un-
changed, the number of PV" cells was reduced to ap-
proximately 58 % (Fig. 6a, left & Table 4). The decrease
was clearly visible on immunofluorescence images of the
striatum of a Shank3B-/- mouse in comparison to a WT
animal (Fig. 2c). The co-localization studies also revealed
a decrease of double-labeled cells, again mostly resulting
from a reduction in PV" cells showing VVA staining
(Fig. 6a, middle). Interestingly, in the Shank3B-/- mice,
the number of PV" cells also expressing VVA was even
slightly increased (Fig. 6a, right). However, counting and
co-localization results show globally similar results as
for PV+/- and ShanklI-/- mice, i.e., a reduction of PV ex-
pression in the unchanged number of striatal VVA*
cells. Both RT-PCR and Western blot analysis revealed
the PV mRNA and protein expression levels to be
significantly lower, i.e., to 53+ 8 and 50+ 9 % of PV+/+
levels for mRNA and protein, respectively (Fig. 7b, c).
Based on the rather low Shank3 ISH signals in the cor-
tex and the hippocampus, we hypothesized to observe
minor (if any) effects on PV expression in these brain re-
gions. Qualitatively, immunofluorescence images of cor-
tex (Fig. 7a, b) and hippocampus (Fig. 7c, d) revealed no
obvious differences between WT (a, ¢) and Shank3B-/-
(b, d) mice. Quantitatively, the PV Western blot signals

Page 11 of 17

(Fig. 7e) were not significantly different between geno-
types (100 +15 % in WT vs. 103 £ 25 %; in Shank3B-/-;
mean * S.D., n =5 mice per genotype; p = 0.78).

Thus, in both Shank knockout ASD models, PV pro-
tein expression levels were decreased in those brain re-
gions normally expressing high levels of either Shankl
or Shank3 in WT mice likely arising from alterations at
the transcriptional level, in view of the similar decrease
in Pvalb mRNA. Importantly, in all three ASD models
there was no evidence for a Pvalb neuron loss.

Discussion

One of the difficulties in gaining knowledge on the
mechanisms underlying the pathogenesis of ASD is
the large number (>100) of putative ASD risk genes
identified in genetic studies in humans and animal
models [4, 78, 79]. An important line of evidence has
centered on mutations in genes implicated in synapse
structure and/or function including NRXN, NLGN
and SHANK family members [17-19, 80]. Such muta-
tions might eventually lead to an alteration of the E/I
balance as demonstrated in some ASD mouse models
[7, 8]. Other hypotheses on ASD-associated genes
and/or gene/environment relationships come from
many computational studies (GWAS, transcriptomic
expression network analyses); several ones revealed
impaired Ca®* signaling, i.e., alterations in the Ca**
node in gene networks [4, 81, 82] to represent a
convergence of mechanisms relating to ASD, in line
with previous propositions [83—-85]. PV plays an im-
portant role in the Ca>* homeostasis regulating many

Shank1-/- -

Fig. 5 Representative PV immunofluorescence images from the striatum of a WT and a Shank1-/- mouse. No qualitative differences in the
number and signal intensities of PV neurons were observed between genotypes. Scale bar: 200 um
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Fig. 6 a) Left: stereological estimations of PV* (light gray) and WA™ (dark gray) cells in the striatum of WT and Shank3B-/- PND25 male mice.
Middle: estimation of double-labeled cells in SSC of PND25 WT and Shank3B-/- mice. Right: percentage of PV* cells surrounded by WA (light gray)
and WA™ cells with PV expression (dark grey) in WT and Shank3B-/- mice. b) Representative Western blot and quantification of PV protein levels
in Shank3B-/- mice. CB was used as loading control for the normalization of the PV signal, since CB expression levels were unchanged in
Shank3B-/- mice (data not shown). Data are from three independent experiments and are shown as mean + SEM. Results are expressed as a
percentage of normalized PV levels measured in control (WT), defined as 100 %. ¢) Quantitative RT-PCR analysis of forebrain samples of Shank3B-/-
mice. PV (Pvalb) mRNA levels were normalized to 185 mRNA levels and expressed as fold change. Data from three independent experiments were
pooled together and are shown as mean + SD. In all graphs, asterisks indicate statistical significance vs. WT (p-value <0.05, p =0.0002)
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aspects of neuronal signaling (short-term plasticity,
synchronization, precision of spike timing, etc.) in the
subpopulation of PV interneurons [56]. Absence/
down-regulation of PV in PV-/- and PV+/- mice, re-
spectively, not only affects the properties of the Pvalb
neurons, but also of neurons impacting on Pvalb
cells, and leads to a robust ASD-like behavioral
phenotype characterized by impaired social interaction
behavior, reduced pro-social ultrasonic vocalizations
and deficits in reversal learning [48]. Of relevance, a
decrease in the number of PV" cells has been reported in
many genetic ASD mouse models in various brain regions
including mPFC, SSC and striatum; (see Table S1 in [48]).
Also in the few human studies, a decrease in PV" cells
and/or PVALB mRNA was reported [46, 86]. Thus, the
networks containing Pvalb neurons were hypothesized to
be strongly implicated in ASD [45].

While an involvement of Pvalb neurons in ASD is ra-
ther undisputed, it remains unclear whether the ob-
served reduction of PV" cells in a particular brain region
is the result of I) a truly decreased number of Pvalb neu-
rons resulting from the many putative mechanisms in-
cluding an immature or perturbed developmental state
(e.g., layer- and/or region-inappropriate localization of
Pvalb neurons, increased susceptibility, premature cell
death, etc.) or II) alternatively from the down-regulation
of PV protein levels or the failure to express adequate
levels of the protein. To address this question, one needs
to identify Pvalb cells by another means; one of the most
common marker is the particular extracellular matrix
surrounding Pvalb cells that can be visualized by VVA
staining. Of note, the appearance of VVA staining is de-
velopmentally and layer-dependent regulated as shown
in the mouse visual cortex (V1) [87] and the barrel
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B Shank3B-/-

Fig. 7 Representative PV immunofluorescence images (a—d) and Western blot analyses (e) from cortex and hippocampus of WT (a, ¢) and

E kDa

17—

10_—-_'---—.__PV

J- WT -~ WT -~ WT

Shank3B-/- (b, d) mice. No apparent differences in the number or signal intensity of PV neurons in both brain regions were evident between WT
and Shank3B-/- mice. Scale bars in a and b: 100 pm; in ¢ and d: 200 um. e) Western blot signals from brain homogenates containing cortex and
hippocampus showed relatively high signal variability independent of the genotype. For the normalization of the PV signal either the GAPDH
Western blot signal (upper part) or the intensity of the Ponceau Red-stained membrane (PR) was used. Results from 3 WT and 3 Shank3B-/-mice
are depicted. The positions of the molecular weight markers are indicated. Due to the large difference in signal intensities for GAPDH and PV, the

membrane was cut and exposed individually

cortex [88]. Moreover, PNNs are regulated by activity
and are decreased under certain pathological conditions
such as oxidative stress [89] or Alzheimer’s disease [90].
Thus, in the first step we ascertained by stereology [60]
that the number of VVA™ cells was unchanged in mice
with reduced (PV+/-) or absent (PV-/-) PV expression in
the mPFC, SSC and striatum. In agreement with previ-
ous results obtained in the cortex and hippocampus of
adult PV-/- mice [55, 57], there was no indication of a
cell decrease/loss of Pvalb neurons. Moreover, in a
mouse line expressing EGFP in Pvalb neurons, the
number of EGFP" cells was found to be the same as for
PV' and VVA" cells in PV+/+ mice indicative of the
identification of the essentially same Pvalb cell popula-
tion, where either morphological or functional abnor-
malities have been reported in ASD [91-93]. Analyses of
double-labeled (VVA" and PV™) cells using either the
total of PV* or VVA™ cells for normalization revealed
approximately 70-80 % of co-stained cells within the
mPFC, SSC and striatum of WT mice. Similar numbers
were reported in the mouse cortical V1 region, where

82 % of all VVA™ cells were found to also express PV [87].
While the percentage of PV" cells enwrapped by PNN
(VVA™) was not different between sections from WT and
PV+/- mice, as the result of decreased PV protein expres-
sion levels in PV+/- mice, both the total number of PV"*
cells, as well as the percentage of VVA™ cells expressing
PV was significantly decreased in all regions analyzed in
our study.

Thus, we wondered, whether the previously reported
decrease in PV" cells in other canonical ASD mouse
models might not be -globally or in part- the result of PV
down-regulation. We therefore assessed PV protein ex-
pression and VVA as a marker for Pvalb cells in the
Shankl and Shank3 mouse models. The selection among
the many ASD mouse models available was based on the
fact that more than 900 patients with genetic alterations
in SHANK genes were identified, with the SHANK gene
family being the primary gene family implicated in ASD
[9]. Shankl and Shank3 mouse models were selected to
cover both extremes of the spectrum, namely SHANKI
mutations found in individuals with ASD and normal
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intelligence and SHANK3 mutations associated with se-
vere mental retardation [9]. The selection was further fa-
cilitated by a recent comprehensive neuro-morphological
MRI study on 26 ASD mouse models [75]. Similar to the
most consistent finding in humans [94, 95], an increase in
the frontal and parieto-temporal lobes and decreased vol-
ume of the cerebellar cortex were observed in one of the
three subgroups (“group 1”) identified among the 26 in-
vestigated models [75]. A prominent example of the
“group 1”7 ASD mouse models are Shank3 null mutant
mice. Importantly, however, also the morphological
changes in PV-/- mice follow the same pattern, as we
recently demonstrated: increased neocortical volume and
a decreased size of the cerebellum [48]. A further link ex-
ists between Shank protein expression and Pvalb neurons
[76, 96]. In Shankli-/- hippocampal PV" FSI the absence
of Shankl functionally leads to a decrease in excitatory
synaptic inputs and inhibitory synaptic outputs to pyram-
idal neurons and furthermore to molecular changes in-
cluding the down-regulation of the postsynaptic proteins
GKAP, PSD-95 and gephyrin [96]. These alterations affect
the E/I balance in CA1l pyramidal neurons. Whether a
similar situation prevails in Shankl-/- cortical PV* FSI is
currently unknown. In Shank3 knockout mice, a reduction
in PV" puncta staining (intensity and puncta numbers)
around pyramidal cells in the insular cortex of Shank3B-/-
mice was associated with weakened GABAergic circuit
function and impaired postnatal pruning [76]. Moreover,
the decrease in PV-ir puncta intensity in Shank3B-/-
hinted towards a PV expression-related phenomenon,
although the question of PV expression levels was not dir-
ectly addressed in this study.

For the Shank models our interest was focused on re-
gions with high expression of either protein, ie., SSC for
Shankl-/- and striatum for Shank3B-/-. In both ASD
models, the VVA™ cell number was unchanged and the
number of PV™ cells was decreased, also evidenced by the
decreased percentage of PV™ cells among all VVA™ cells.
A decrease in PV protein levels and Pvalb mRNA levels
to approximately 50 % of WT in both Shank mutants are
in full support of a down-regulation of PV. In addition,
the demonstration that PV levels are decreased may indi-
cate a shift in the E/I balance towards an increased inhib-
ition, taking into account the proven role of PV in
synaptic transmission [52, 53, 55, 97, 98]. In striatal PV*
FSI the increased facilitation (increased inhibition) be-
tween FSI and medium spiny neurons (MSN) caused by
the absence of PV in PV-/-mice [53] is partly compensated
by a decrease in the excitatory synaptic input from cortical
pyramidal cells, a mechanism hypothesized to compensate
for the increased output of PV-/- neurons [48]. The modi-
fication of the E/I balance within the PV-circuitry in PV-/-
mice is reminiscent of the situation in schizophrenia,
where NMDA receptor hypofunction leads to the
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reduction of glutamic acid decarboxylase 67 (GAD67)
levels and thus GABA synthesis. The concomitant de-
crease in PV expression levels might be viewed as an
adaptive/compensatory response in order to enhance fa-
cilitation (inhibition) and to compensate —at least par-
tially— for the decrease in GAD67 [99-101].

How might the absence of either Shank proteins lead to
PV down-regulation? The similar magnitude in down-
regulation of PV and Pvalb mRNA in both Shank mutants
is indicative of a regulation at the transcriptional level.
Currently little is known on the physiological regulation of
PV expression in the brain. The enfeebled GABAergic cir-
cuit function reported in Shank3B-/- [76] and Shankl-/-
mice [96] is likely to decrease somatic Ca** signals and
subsequently modify the Ca®* signaling components of
Pvalb neurons; a neuronal activity-related Ca®*-dependent
transcriptional regulation of PV expression was proposed
before [100]. Thus, the impairment in GABAergic func-
tion reported in both Shank models is likely to impact on
the Ca**-dependent excitability-transcription (E/T) coup-
ling including transcription of the Pvalb gene. Alterations
in other genes implicated in E/T coupling have been ob-
served before in ASD individuals and include Ca®* signal-
ing components such as the voltage-dependent channels
Ca,1.2 (CACNAIC), Ca,1.3 (CACNAID) and the «-8
auxiliary subunit of L-type voltage-gated Ca®>* channels
(CACNA2D3) [102, 103]. Evidence has accumulated that
mutated ASD risk genes are critical components of
activity-regulated signaling networks often controlling
synapse development and morphology, as well as struc-
tural and functional plasticity [8]. In summary, the ob-
served decrease in PV expression in Shank mutant mice
might be viewed as an adaptive or compensatory mechan-
ism to possibly restore (increase) synaptic output accord-
ing to the concept of the Ca®* homeostasome [104].

Our findings might have important implications for
novel treatment strategies for ASD, particularly as most
current strategies aim to enhance inhibition in order to
compensate for a presumed increase in excitatory neuro-
transmission, e.g., by the GABAjg receptor agonist barba-
clofen [80, 105]. Our findings indicate the exact opposite,
namely that an enhancement of excitatory neurotransmis-
sion onto PV" neurons possibly restoring PV levels and
thus PV-modulated functions (e.g., short-term plasticity,
synchronization, precision of spike timing) may ameliorate
ASD symptoms. Alternatively, one might envisage that
direct up-regulation of PV might be a means to ameliorate
PV-circuitry function resulting in the attenuation -or in
the best case abolition- of the ASD phenotype.

Conclusions

Stereological analysis of Pvalb neurons in mice heterozy-
gous and homozygous for a deletion of the functional
Pvalb gene (PV+/- and PV-/- mice, respectively, both



Filice et al. Molecular Brain (2016) 9:10

showing an ASD-like phenotype) revealed their numbers
to be unaltered in comparison to WT mice. A similar situ-
ation as in PV+/- mice prevailed in the two ASD mouse
models Shankl-/- and Shank3B-/-: the number of Pvalb
neurons was unchanged in brain regions with high expres-
sion of either protein, while PV protein and Pval/b mRNA
levels were decreased by approximately 50 %. Based on
the similar magnitude in PV down-regulation and impair-
ment in the E/I balance reported before in all three
models we hypothesize that the PV system, in particular
reduced PV expression levels, might represent a conver-
gent downstream endpoint for some forms of ASD.
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