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Abstract

Scientists have unprecedented access to a wide variety of high-quality datasets. These

datasets, which are often independently curated, commonly use unstructured spreadsheets

to store their data. Standardized annotations are essential to perform synthesis studies

across investigators, but are often not used in practice. Therefore, accurately combining rec-

ords in spreadsheets from differing studies requires tedious and error-prone human cura-

tion. These efforts result in a significant time and cost barrier to synthesis research. We

propose an information retrieval inspired algorithm, Synthesize, that merges unstructured

data automatically based on both column labels and values. Application of the Synthesize

algorithm to cancer and ecological datasets had high accuracy (on the order of 85–100%).

We further implement Synthesize in an open source web application, Synthesizer (https://

github.com/lisagandy/synthesizer). The software accepts input as spreadsheets in comma

separated value (CSV) format, visualizes the merged data, and outputs the results as a new

spreadsheet. Synthesizer includes an easy to use graphical user interface, which enables

the user to finish combining data and obtain perfect accuracy. Future work will allow detec-

tion of units to automatically merge continuous data and application of the algorithm to other

data formats, including databases.

Introduction

Scientists have access to an extensive and varied array of high-quality datasets collected by

independent laboratories/studies. The availability of data has resulted in synthesis studies.

These synthesis studies combine data across independent studies to arrive at new and exciting

conclusions. Many of the independent studies are collected into public domain databases so

that they are readily accessible to researchers. For example, in the case of human cancers, data-

bases such as Gene Expression Omnibus (GEO) and Array Express contain high-throughput,
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multi-platform characterizations of tumors from thousands of independent datasets (see Fig

1a for numbers of datasets per database). In regards to cancer research, combining data in

public databases also increases the number of tumors available for molecular profiling by any

individual investigative team [1] enabling public domain analysis tools sufficient sample size

to validate molecular biomarkers [2, 3].

Though synthesis studies do not involve manual data collection, there are still costs associ-

ated with using disparate datasets. A critical and time intensive first step in using multiple

datasets is to merge the annotations of each sample manually. These sample annotations are

frequently provided as labels in data tables and often do not conform to any standards. For

example, in a set of highly utilized genomic databases, none of the column names for sample

phenotypes were shared across every dataset preceding curation (Fig 1b). Only 25% of the

sample annotations were shared across the datasets after intensive human curation to match

sample phenotypes to a common standard (Fig 1c). In regards to cancer data, there are thou-

sands of genomic datasets in the public domain. However, only a handful of the datasets fea-

tures curated clinical annotations (as illustrated in Fig 1a) due to the time cost associated with

manual annotation [4, 5].

In the past, both information retrieval (IR) and natural language processing researchers

have worked to map datasets to existing ontologies in order to aid scientists when synthesizing

datasets. Numerous systems, including MetaMap [6] and Mgrep [7] have been developed to

link biomedical text to existing terms and index biomedical literature. These programs are lin-

guistically sophisticated, employing word sense disambiguation, text negation, and detecting

author-defined abbreviations and acronyms. [8] apply MetaMap and Mgrep to obtain ontol-

ogy based labels of genomics data. This work has also been used to select appropriate datasets

to analyze to explore the interaction between phenotype, disease, environmental and experi-

mental data [9] and impute phenotypes [10]. Nonetheless, manual curation is still a critical

part of preparing sample annotations to perform the robust statistical analyses required in

meta-analysis studies.

In the quest to create more useful queries, the Information Retrieval field is advancing in its

ability to recognize commonalities between words. In its infancy, information retrieval systems

related words by searching for exact matches in sets of documents. Today’s IR systems are

more advanced and can define a “semantic context” that describes related words, in a process

called query expansion. These contexts could frequently derive from synonyms, hypernyms,

and collocates between words in lexical databases like WordNet [11] or the Corpus of Contem-

porary American English (COCA) [12]. Diverse applications built on IR concepts such as Goo-

gle, metaphor identification software [13], and sentiment analysis [14] all use query expansion.

We propose that the ability to integrate text data without an explicit context can be used to

annotate samples across a wide range of biomedical studies.

To our knowledge, there is currently no publicly accessible software that automatically

combines unformatted spreadsheets from disparate datasets using NLP concepts. The closest

application in regards to functionality was Google Refine. The Refine software allowed the

user to import data in various formats and did automatically combine identically labeled col-

umns. However, unlike the software presented in this paper, Google Refine did not automati-

cally combine data with differently named columns. Also, Google Refine has been renamed to

OpenRefine [15], and is no longer supported by Google.

We propose a novel information retrieval algorithm to mine and standardize data tables

by introducing semantic context. NLP concepts used in the proposed algorithm, such as

term collocation and cosine similarity, are commonly used in text mining applications,

however, to our knowledge they have not previously been applied to merge unformatted

data. The proposed IR/NLP algorithm, combined with a user-friendly drag and drop
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web application called Synthesizer facilitates the seamless standardization of data. We dem-

onstrate the efficacy of the algorithm and software to standardize patient phenotype anno-

tation using a comprehensive collection of genomics datasets for four human cancers. Only

data from one of the cancer types (Head and Neck Squamous Cell Carcinoma, HNSCC)

Fig 1. Number of datasets available before and after curation.

https://doi.org/10.1371/journal.pone.0175860.g001
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was used to tune the Synthesize algorithm, with all other datasets used for testing. The

algorithm had high accuracy when tested to standardize sample annotations for other can-

cer types and three ecological datasets, suggesting its general applicability to other

disciplines.

1 Methods

1.1 The synthesize algorithm

We developed a novel information retrieval algorithm to standardize sample annotations

called Synthesize (workflow outlined in Fig 2). The inputs to the algorithm are files in comma

separated value (CSV) format. The algorithm merges labels of sample annotations based on

their similarity in a “semantic space”. For explanatory purposes, we will use an ongoing exam-

ple which includes two spreadsheets, A and B (see Table 1).

To begin merging columns, the algorithm queries the COCA database to find word collo-

cates for each of the terms for header and values in a given column of data. We will define a set

for each column of data containing its header string and all individual words (or unigrams) in

that column. In the case that either the column header or the value is a phrase containing mul-

tiple words, each word in that phrase is added independently to the set. For a given column x
in spreadsheet k, this set is referred to as lk

x. For example, the set generated for lA
gender in Spread-

sheet A would be the terms “gender”, “male”, “female”. The set lk
x defined from each column is

then extended to include the unique set of collocates for all of its terms as (ck
x). Thus, the set

generated for cA
gender would include “gender”, “male”, “female” and then collocates of each term

such as “difference”, “age”, and all other collocates of gender, female, and male (enumerated in

Table 2.) Note that at this stage each term in the set is not stored as a frequency count but is

marked as either 1 or 0 to indicate presence or absence.

Now that each set ck
x contains the original terms with their collocates, the next step in the

algorithm finds the columns from the input spreadsheets to merge (Fig 3A). To begin this pro-

cess, we calculate the cosine similarity between each set of composite labels in each pair of

spreadsheets. Cosine similarity is a formula that leverages the number of features two vectors

have in common versus the number of features that they do not have in common. In this case,

Fig 2. System figure for the synthesizer application.

https://doi.org/10.1371/journal.pone.0175860.g002
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it is calculated for the sets c as follows:

jcj
x \ ck

yj
ffiffiffiffiffiffiffi

cj
x
�
�
�
�

q ffiffiffiffiffiffi
jck

yj
q ð1Þ

where |�| refers to the size of the specified set, for all columns x in spreadsheet j and all columns

y of spreadsheet k. Note that Eq 1 is the Ochiai coefficient, which is essentially identical to the

classical equation for cosine similarity when used with bitwise vectors. We provide the applica-

tion of this metric to our example in Fig 3B. When comparing pairs of spreadsheets, this com-

parison results in a matrix with dimensions given by the number of columns in each matrix

that is analyzed (called cs_matrix, Fig 3C).

The next step of the Synthesize algorithm is to determine which columns to merge. In this

step, the Synthesize algorithm finds the pairs of columns from both spreadsheets with the max-

imum cosine similarity. Specifically, it finds the element in cs_matrix with the maximal cosine

similarity. The algorithm then associates the corresponding row and column of cs_matrix. The

algorithm deletes the selected row and column of cs_matrix i and the process continues until

no comparisons remain. All the pairs associated rows and columns correspond to two distinct

columns from each spreadsheet in the comparison. Selection of pairs for merge begins if the

resulting estimate for the cosine similarity is above a fixed threshold. In our analyses, we use a

threshold value of 0.5 based on our training data (further discussed in Section 2). Therefore, in

our running example, the columns sex and gender from Spreadsheets A and B will be merged.

The algorithm follows a similar process when there are three or more spreadsheets to merge.

In this case, the algorithm applies the comparison between columns and threshold to all col-

umns in every pair of spreadsheets. Rarely, two pairs of combined columns belonging to three

spreadsheets will share a column in common. In this case, merging is transitive. Therefore,

any columns below the cosine similarity threshold will be merged if their paired columns are

merged in the comparison of another pair of spreadsheets.

Any two columns in a pair of spreadsheets that have a cosine similarity below the threshold

value are compared to the merging performed in all other pairs of spreadsheets. If they were

merged in a distinct set of spreadsheets, they are also merged for the query pair of columns

and spreadsheets. This can result in a scenario where a pair of labels in spreadsheets A and B
may have a cosine similarity below the threshold and the corresponding label from spreadsheet

B and a new spreadsheet C might be above the threshold. In this case we are erring on the side

of caution and merging all three columns together.

Table 1. Example spreadsheets with data types.

Spreadsheet Column header Column Datatype Column values

A gender discrete male, female

B sex discrete male, female

B grade discrete moderate, poor, well

https://doi.org/10.1371/journal.pone.0175860.t001

Table 2. COCA collocates for the gender column.

Term Collocates

gender difference, age, ethnic, effect, issue, significant, race, role, between, class

female both, participate, voice, bodily, figure, student, male, than, athlete, first

male young, black, white

https://doi.org/10.1371/journal.pone.0175860.t002
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The final task of the algorithm is to export the distinct spreadsheets as a single, merged

spreadsheet with rows containing all elements from each dataset. In the merged dataset, the

algorithm gives each new set of joined columns a shared “grouping” label. By default, this is

the text of the shortest label of the columns in any spreadsheet. Therefore, in the running

example, we would choose the term sex as the group name and the label to merge “gender” in

spreadsheet A and “sex” in spreadsheet B. However, the user can modify this algorithm

assigned label in the Synthesizer visual software (which the authors discuss in the next section).

During the merging process, the algorithm does not change the values of each column. The

user can also update these values to a standard set of user defined text elements using the Syn-

thesizer software, without performing manual editing of each entry.

Fig 3. A) Venn diagram showing the common collocates between the column “gender” in spreadsheet A (cAgender) and column “sex” in

spreadsheet B (cBsex) of Table 1, respectively. B) Eq 2 applied to running example to compute the C) matrix of cosine similarity measures

between spreadsheet A and B (cs_matrix).

https://doi.org/10.1371/journal.pone.0175860.g003
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1.2 Synthesizer interactive annotation merger software

The Synthesizer system is a web-based application built on top of the Cappuccino Application

Development Framework, inspired by Apple’s OS X Cocoa APIs. It provides an abstraction

layer from HTML and CSS, allowing developers to create rich user interfaces on the web with-

out spending the time to implement interface elements from scratch. Both the framework

itself, as well as Synthesizer web application, are written in the Objective-J programming lan-

guage. The public access Synthesizer software code is available at https://github.com/

lisagandy/synthesizer; this code repository also has a link to the online graphical user interface

which we will discuss below.

The Synthesizer system uses a graphical user interface (GUI) that employs point and click

technology to upload files, merge labels from sample datasets and download merged datasets

in a seamless workflow. This GUI is part of an online system that runs in a web browser.

The user begins by uploading sample datasets using a simple drag and drop interface (see

Fig 4). Alternatively, the user can upload their data by clicking and using the native file

browser system for their operating system. The system then uploads the data to a data server

and implements the Synthesize algorithm to merge sample annotations.

As shown below in Fig 5, the Synthesizer interface lists suggested labels on the left-hand

side of the screen for merged groups of columns. When the user clicks on the proposed label,

the original columns are listed on the right-hand side of the screen.

The user now has the option to click and move labels between merged groups, and also

manually create new groupings. The Synthesizer interface also features the ability to change

dataset values individually or by using a global search and replace option (Fig 6).

Once the user has merged labels and changed the data to their satisfaction, they can then

obtain a merged spreadsheet by choosing the merge option provided in the interface.

1.3 Dataset description

1.3.1 Training data. We trained the Synthesize algorithm on the sample annotations for

gene expression from two head and neck squamous cell carcinoma datasets (GSE6791 [16]

and GSE3292 [17]) previously curated and used for a synthesis study [18].

Fig 4. Synthesizer upload files.

https://doi.org/10.1371/journal.pone.0175860.g004
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1.3.2 Test data. To test the accuracy of the Synthesize algorithm, we collected sample

annotations from gene expression datasets measured with Affymetrix hgu133plus2.0 arrays

from breast, colorectal, prostate, and renal cancers from Gene Expression Omnibus (accession

numbers and references in S1 Dataset). For each cancer type considered, only datasets corre-

sponding to clinical cohorts and with at least ten samples were included. The authors excluded

any studies for which no clinical or pathological information was available from the test data.

For each dataset, phenotypic information was extracted from the ExpressionSet instance, saved

in a text file (TAB-delimited text), and manually curated/reviewed for data consistency and

Fig 5. Synthesizer user interface.

https://doi.org/10.1371/journal.pone.0175860.g005

Fig 6. Global find and replace.

https://doi.org/10.1371/journal.pone.0175860.g006
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quality. By default, unidentifiable GEO characteristics indices were relabeled based on the infor-

mation contained in the column itself. However, the individual study of interest defined the

relabeling and so relabeling was inconsistent across spreadsheets. Also, no column values were

modified. The resulting data files are available in S1 Dataset. The authors converted the datasets

to a comma-delimited format (CSV) before being used to train the Synthesize algorithm.

To assess the applicability of the Synthesize algorithm to merge annotations for synthesis

studies in scientific disciplines beyond oncology, we tested the algorithm using three Ecology

datasets in the public domain (provided in S1 Dataset). The datasets included data from sea-

grass monitoring, insect abundance, and amphibian life history.

In regards to the seagrass monitoring data, researchers collected samples of eelgrass (Zos-

tera marina L.) and widgeon grass (Ruppia maritima) from Barnegat Bay and Little Egg Har-

bor Estuary in New Jersey along a gradient of human population density and development.

Quadrant, core, and hand sampling of seagrass, following SeagrassNet monitoring and sam-

pling protocols [19] were conducted between 2004 and 2013.

The insect abundance dataset (http://www.pollardbase.org/) is a series of observations of

specific lepidopteran taxa made by citizen science programs in North America. Researchers

recorded numeric abundance along with a taxon name, location, time, and some environmen-

tal measurements. Researchers also collected the data under a moderately standardized proto-

col, but several significant differences exist in the terms used. The amphibian data set (http://

eol.org/, https://github.com/diatomsRcool/MexicanAmphibians) is the result of a literature

search for extrinsic and intrinsic traits of Mexican amphibians. Several researchers manually

entered data into each spreadsheet.

2 Results

2.1 Determining the threshold value for merging on test HNSCC

datasets

As discussed in Section 1.3, for training purposes, we use the Synthesize algorithm to merge

annotations from two sample HNSCC tumor datasets [16, 17]. As part of training, We estimate

the cosine similarity between each pair of columns between the two datasets (Fig 7A). Terms

with shared column labels have the highest cosine similarity, but the reader can also observe

high values for mismatched column labels and values corresponding to the same annotation.

The one exception to this trend is the “Institute” and “Source” columns, which both refer to

abbreviations referencing the institution collecting the data, and which were not identifiable in

the collocate algorithm. High cosine similarity values are also observed for unrelated terms,

such as race and gender, but remain smaller than the columns corresponding to the same

annotation. The final merging of the Synthesize algorithm depends on the threshold cut-off

value between each pair of columns. To determine this value, we compare accuracy as a func-

tion of threshold in Fig 7B. As the cosine similarity threshold increases from zero, the accuracy

also increases as more columns are incorrectly merged (as they should be left ungrouped). As

the cosine similarity surpasses 0.5, accuracy then decreases. Therefore, we select this value of

0.5 as the threshold cosine similarity for merging. With this value, the algorithm combines all

columns that should be merged and leaves columns correctly ungrouped (except “Institute”

and “Source”) (Fig 7C).

2.2 Accuracy of synthesize on merging annotations for cancer genomics

datasets

We compare the accuracy of the columns in the cancer datasets combined with Synthesize to

hand curation of the annotations. In Fig 8a we give a breakdown of error types. Errors can be
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broken down into three distinct categories: (1) not grouped by the algorithm but grouped in

hand curation (2) grouped by the algorithm but not in hand curation, and (3) placed in differ-

ent groups by both the algorithm and hand curation. We find that Synthesize accurately

merges 89% of 200 columns in 16 spreadsheets for breast cancer, 91% of 137 columns in 10

spreadsheets for colorectal cancer, 92% of 74 columns in 7 spreadsheets for prostate cancer

and 100% of the 23 columns in 3 spreadsheets for renal cancer. When examining exact column

matches only, the accuracy reduces to 69% of 71 columns for breast cancer, 70% of 43 columns

for colorectal cancer, and 53% of 15 columns for prostate cancer and remains at 100% of 5 col-

umns for renal cancer. In the last case, all of the remaining columns are correctly not grouped.

This trend indicates that as the number of overall columns increases the accuracy decreases

but is still high. The Pearson correlation coefficient between the number of columns and the

algorithm accuracy for the four datasets described is −0.87 (p-value of 0.01).

In Fig 8b and 8c we give a further breakdown of the two cancer datasets with the most

errors: breast and colorectal. In these datasets, 3% of errors occurred in category 1, 5% in cate-

gory 2 and 2% in category 3. The most errors occur when columns are grouped together when

they should be left ungrouped (category 2) as opposed to being incorrectly ungrouped (cate-

gory 1) or placed in the wrong group (category 3). Within the breast cancer data, we observe

errors merging the column labeled “pr” or “pr.status” in datasets GSE11001, GSE23593 with

Fig 7. Synthesize cosine similarity threshold selection on two training HNSCC datasets (GSE6791 and GSE3292). A) Cosine

similarity between labels and columns of each pair of columns in the two datasets. B) Accuracy of automatic merging as a function of the

cosine similarity merging threshold. C) Accuracy of resulting merging for each set of columns using a threshold cosine similarity value of 0.5.

https://doi.org/10.1371/journal.pone.0175860.g007
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the “progesterone receptor status” in dataset GSE36774. Also, the system was unable to merge

the measurements for the HER2 receptor for a dataset that contained independent measure-

ments with fluorescence in situ hybridization (column labeled “her.fish” in dataset GSE29431)

and immunohistochemistry (column labeled “her.ihc” in dataset GSE29431). Finally, the sys-

tem merged a column labeled “description.1” in the GSE23593 datasets to “methylation.bar-

code” in the GSE20711 and GSE20712 datasets due to the alphanumeric categories in both.

2.3 Accuracy of synthesize on merging annotations for ecological

datasets

To demonstrate the generality of Synthesizer on unstructured datasets across disciplines, we

applied the algorithm to merge several ecological datasets. In regards to this data, the accuracy

Fig 8. Synthesize accuracy with regards to cancer genomics datasets.

https://doi.org/10.1371/journal.pone.0175860.g008
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of the system compared to hand annotation was 85% of 410 columns in 9 spreadsheets cor-

rectly merged in regards to seagrass ecology data, 95% of 34 columns for insect data and 92%

of 54 columns in regards to amphibian data. As with the cancer data, the accuracy tends

towards decreases with the number of columns (Fig 9a, Pearson correlation coefficient of

−0.98) that does not reach statistical significance (p-value of 0.11).

When the authors remove exact column matches between spreadsheets, the algorithm accu-

rately merges 77% of 259 columns in regards to seagrass ecology data, 92% of 26 columns in

regards to insect data and 92% of 53 columns in regards to amphibian data.

Fig 9b–9d, summarize error types for each ecology dataset. For these data, 2% of the anno-

tations were incorrectly not grouped, 2% grouped when they should be ungrouped, and 10%

placed in the wrong group.

Fig 9. Synthesize accuracy with regards to ecology datasets.

https://doi.org/10.1371/journal.pone.0175860.g009
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3 Discussion

This paper presents Synthesizer, which eases the time challenges related to synthesis studies

through the ability to quickly and easily combine data. We develop a new NLP algorithm, Syn-

thesize, to merge sample annotations, with an intuitive interface for human-computer interac-

tions to refine merged columns in data. We train the Synthesize algorithm on annotations for

head and neck cancer genomics datasets and demonstrate that the algorithm retains high accu-

racy (ranging from 89%–100%) merging annotations for independent cancer genomics data-

sets. The overall accuracy for ecology data (ranging from 85%–95%) was comparable to that of

the cancer data, despite the fact that the authors trained the system on head and neck cancer

annotations from head and neck cancer and abbreviations were resolved against medical

terms. In all cases, the number of errors scaled with the total number of columns in the data-

sets. For example, the seagrass ecology dataset had nearly double the number of columns (410)

of the largest cancer dataset (200) and a corresponding decrease in accuracy (85% for seagrass

data and 89% for breast cancer). Therefore, we anticipate that Synthesizer would have similar

accuracy in merging annotations from new medical and scientific disciplines. The flexible

interface for Synthesizer to input unformatted, comma delimited text files of data further sup-

ports data merging for such cross-disciplinary synthesis analysis. Errors in merging annota-

tions fall into free common causes: (1) use of abbreviations, (2) multiple columns in one

dataset that described a measurement, and (3) bias in the NLP algorithm towards grouping

sample labels.

The first factor involves the incorrect resolution of abbreviations by the system. Our system

currently uses a generalized list of medical abbreviations which does not only pertain to can-

cer. We chose a generalized list so that the system could be more adaptable to different types of

medical datasets. Still, in regards to cancer datasets, the use of generalized medical abbrevia-

tion occasionally causes errors. Consider the case of a column labeled “pr” in the breast cancer

data referring to the status of the “progesterone receptor” in a breast tumor. In this instance

the system would resolve “pr.status” to “prothrombin ratio status” and therefore would be less

likely to merge “pr.status” and a column labeled “progesterone receptor”. The authors plan to

mitigate such errors in future extensions of Synthesizer by enabling the user to specify a con-

text-dependent abbreviation dictionary.

The second factor involves the division of clinical information into one of more columns in

a dataset. For instance, in the breast cancer dataset, one spreadsheet features a column labeled

“her”, referring to the presence of the genomic amplification of the HER2 gene. In another

spreadsheet, clinicians record HER2 status with two independent assays by immunohis-

tochemistry (her.ihc) and fluorescence in situ hybridization (her.fish). In this case, a missing

metadata issue is present. It is unclear even to a human expert in genomic testing how to com-

bine the two columns without additional information. The current system groups “her” and

“her.ihc” together, which is arguably correct, though the algorithm does not group her.fish

with the other columns in this case.

Finally, the system is biased towards grouping data, resulting in liberal sample mergers. An

example would be a column labeled “description.1” in the breast cancer dataset, which con-

tains information regarding a phenotype encoded using letter and number combinations such

as A1, B1, . . . F1. The system groups this column with “methylation.barcode” from another

spreadsheet in the same dataset. Although incorrect, this merge occurred because the methyla-

tion barcode column has a series of letters then numbers just like description.1.

While having high accuracy, as with any NLP system Synthesizer may have errors and miss

terms in merging datasets. We note that combining data based upon similarity of collocates is

general to other pair-wise matching criterion or thresholds. Altering these terms may enhance
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this accuracy in certain applications. However, it cannot eliminate all NLP errors. Therefore,

the human-computer interaction implemented in this software enables users to correct for all

errors introduced by the NLP algorithm. We have specifically added features such as the ability

to create new groups, move labels between groups to facilitate any remaining manual curation.

Also, we have added extra features such as the capacity to change the data in each column or

find/replace of data to aid in data modification. As a result, it is possible to obtain perfect accu-

racy in regards to merging data but with the added benefit of far less work when manually

merging all data. Future work is needed to include automatic unit recognition and unit con-

version of continuous variables stored in these spreadsheets.

Regarding medical ontologies, we see this work as a complement and not a de facto replace-

ment. One could imagine that in the future Synthesizer could offer a list of widely used ontolo-

gies in the medical field and then aid the user in mapping the ontology onto their current

dataset. Also, Synthesizer could be used to help researchers map two ontologies onto each

other. In future enhancements of the system, this mapping could be saved and used for future

merges of datasets. By incorporating medical ontologies, Synthesizer would encourage users to

make use of standardized mappings, but with the aid of its automated merge capabilities and

easy to use interface.
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S1 Dataset. Cancer and ecology datasets.
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