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It has been well-defined that tumor-infiltrating lymphocytes (TILs) play critical

roles in pancreatic cancer (PaCa) progression. This research aimed to

comprehensively explore the composition of TILs in PaCa and their potential

clinical significance. A total of 178 samples from the TCGA and 63 samples from

the GSE57495 dataset were enrolled in our study. ImmuCellAI was applied to

calculate the infiltrating abundance of 24 immune cell types in PaCa and further

survival analysis revealed the prognostic values of TILs in PaCa. Moreover, the

Hallmark enticement analysis of differentially expressed genes (DEGs) between

low- and high-risk groups was performed as well. Immunohistochemistry

staining was used to evaluate NEUROD1 expression. As result, different kinds

of TILs had distinct infiltrating features. In addition, Specific TILs subsets had

notable prognostic values in PaCa. We further established a 6-TILs signature to

assess the prognosis of PaCa patients. Kaplan-Meier and Cox regression

analyses both suggested the significant prognostic value of the signature in

PaCa. Based on the prognostic signature, we screened a great deal of potential

prognostic biomarkers and successfully validated NEUROD1 as a novel

prognostic biomarker in PaCa. Overall, the current study illuminated the

immune cells infiltrating the landscape in PaCa and identified a TILs-

dependent signature and NEUROD1 for prognostic prediction in PaCa patients.
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Introduction

Pancreatic cancer (PaCa) is one of the most fatal cancerous

diseases worldwide, which is characterized by dreadful

aggressiveness and poor prognosis. PaCa mainly affects older

adults, and as the percentage of adults > 65 years old increases

with the aging of the baby boomers, the prevalence is expected to

rise over the coming decade (Winer and Dotan, 2021). The early

diagnosis of PaCa is difficult due to the obscure symptoms, and

its morbidity and mortality have been increasing significantly in

recent years (Siegel et al., 2022). According to the newest

statistical data published by the American Cancer Society,

there will be about 62,210 new PaCa cases and nearly

50,000 cancer-causing deaths in 2022 in the United States

(Siegel et al., 2022). Thus, further exploration of the molecular

mechanisms underlying oncogenesis and development is

essential to control the threat of PaCa.

With the constant development of advanced therapeutic

strategies, immunotherapy is becoming a novel promising

hotspot in the field of PaCa treatment (Foley et al., 2016).

The tumor immune microenvironment, which contains

extracellular matrix, fibroblasts, endothelial cells, and multiple

immune cells, plays a critical role in determining response to

immunotherapy (Dougan, 2017). Increasing evidence reveals

that tumor progression is significantly affected by the host

immune response, which is represented by the abundance of

tumor-infiltrating lymphocytes (TILs) (Tahkola et al., 2018;

Stenzel et al., 2020; Cai et al., 2021). However, the profiles

and clinical significance of TILs in PaCa have not been well

defined.

In the past decades, high-throughput sequencing

technologies, including RNA sequencing (RNA-seq) and

microarray, produce massive transcriptome data, which makes

estimating the abundance of TILs by gene expression data

possible. Several classic algorithms, including CIBERSORT

(Newman et al., 2015), xCell (Aran et al., 2017), TIMER (Li

et al., 2017), EPIC (Racle et al., 2017), and MCPcounter (Becht

et al., 2016) have been established to calculate immune cell

abundance based on transcriptome data of tumor samples.

Encouragingly, Miao et al. developed a highly accurate

method named ImmuCellAI to estimate the infiltrating levels

of immune cells from transcriptome data (Miao et al., 2020).

ImmuCellAI expands the scope of infiltrating assessment of more

T cell subsets, such as regulatory T cell (Treg), cytotoxic T cell

(Tc), and exhausted T cell (Tex). In addition, compared with

other methods, ImmuCellAI has the highest consistency with

flow cytometry results for most immune cells.

In this research, based on the ImmuCellAI approach and

PaCa transcriptome data from TCGA and GEO datasets, we

conducted an in-depth analysis of the TILs in PaCa samples. As a

result, six kinds of immune cells, including nTreg, T helper 1 cell

(Th1), Th17, dendritic cell (DC), CD4+ T cell, and CD8+ T cell,

were developed as a promising predictive signature for

prognostic assessment for PaCa patients. Based on the novel

signature, we screened a great deal of potential prognostic

biomarkers and successfully validated NEUROD1 as a novel

prognostic biomarker in PaCa.

TABLE 1 Baseline characteristics of PaCa patients from the TCGA and
GSE57495 datasets.

Characteristics TCGA-PaCa GSE57495

Cases Proportion Cases Proportion

Gender

Female 80 44.94% 30 47.62%

Male 98 55.06% 33 52.38%

Age

≤60 59 33.15% - -

>60 119 66.85% - -

Subdivision

Body 14 7.87% - -

Head 138 77.53% - -

Tail 15 8.43% - -

Other 11 6.18% - -

Histology grade

Well-Differentiated 30 16.85% 6 9.52%

Moderate-Differentiated 96 53.93% 35 55.56%

Poor-Differentiated 50 28.09% 18 28.57%

Unknown 2 1.12% 4 6.35%

T stage

T1 7 3.93% 2 3.17%

T2 24 13.48% 14 22.22%

T3 142 79.78% 47 74.60%

T4 3 1.69% - -

Unknown 2 1.12% - -

N stage

N0 50 28.09% 30 47.62%

N1 123 69.10% 32 50.79%

Unknown 5 2.81% 1 1.59%

M stage

M0 80 44.94% - -

M1 5 2.81% - -

Unknown 93 52.25% - -

TNM stage

TNM 1 21 11.80% 13 20.63%

TNM 2 146 82.02% 50 79.37%

TNM 3 4 2.25% - -

TNM 4 5 2.81% - -

Unknown 5 2.81% - -

OS status

Alive 85 47.75% 21 33.33%

Dead 93 52.25% 42 66.67%
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Materials and methods

Data acquisition

Normalized RNA-seq data and clinical information of

PaCa samples were downloaded from the UCSC Xena

website (https://xenabrowser.net/datapages/). Patients with

missing or insufficient data were excluded from this

research. Finally, 178 tumor samples with immune cell

infiltrating data were reserved for further analysis. To

validate the established prognostic signature, the gene

expression data normalized by the RMA algorithm and

clinical information of GSE57495 was obtained from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE57495) (Chen et al., 2015), a total of 63 PaCa

samples were included. The detailed clinic-pathological

characteristics of PaCa patients from two datasets were

exhibited in Table 1.

Immune infiltration analysis

ImmuCellAI (http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/)

is an emerging tool to estimate the abundance of 24 immune cells

based on gene expression profile (Miao et al., 2020). Infiltrating data

of TILs corresponding to TCGA-PaCa samples was downloaded

from the ImmuCellAI website. Besides, TILs abundance of PaCa

samples from the GSE57495 dataset was predicted by the “Analysis”

module of ImmuCellAI by uploading gene expression data.

LASSO Cox analysis

In survival analysis, the overall survival (OS) event was set

as the end point of observation. To establish a TILs-dependent

prognostic signature, univariate Cox regression was first used

to screen the prognostic values of 24 TILs abundance. The

least absolute shrinkage and selection operator (LASSO) Cox

regression model was then applied for the further selection of

prognostic TILs. The R package “glmnet” was used for LASSO

analysis and for establishing the final model. Risk-score was

calculated using a combination of the infiltrating abundance

of TILs and regression coefficients. Kaplan-Meier curves and

log-rank analysis were used to identify survival differences by

setting the cut-off value at the median risk-score. Receiver

operating characteristic (ROC) curves of the risk-score were

generated using the R package “ROCR” to assess the

prognostic accuracy of risk signature. Univariate and

multivariable Cox analyses were used to study the

independent prognostic value of risk-score combined with

other clinic-pathological characteristics. At last, the

GSE57495 dataset was used as the validation cohort to

certify the effect of the risk-score signature.

Identification of differentially expressed
genes

R language was applied to screen differentially expressed

genes (DEGs) between low-risk and high-risk samples using the

R package “limma”. The thresholds of extracting DEGs were as

follows: |log2(fold change (FC))| > 1, and p < 0.05. Volcano plots

were drawn using the SangerBox tool (Shen et al., 2022).

Function enrichment analysis

For gene set enrichment analysis, we downloaded the

h.all.v7.4.symbols.gmt subclass from the Molecular Signatures

Database (Liberzon et al., 2011), which was used as the

background. The enrichment analysis was performed using the R

package “clusterProfiler”. To obtain the results of gene set enrichment,

the minimum gene set was set to 5 and the maximum gene was set to

5,000. The top 5 terms were exhibited as results.

Collection of PaCa samples

The tumor tissue microarray of PaCa (TMA, HPanA150Su01)

was purchased from Outdo BioTech (Shanghai, China). The

HPanA150Su01 cohort contained 90 PaCa and 60 para-tumor

samples. Detailed clinic-pathological information on the TMA

and follow-up data were provided by Outdo BioTech. Ethical

approval was granted by the Clinical Research Ethics Committee

in Outdo Biotech (Shanghai, China).

Immunohistochemistry staining and semi-
quantitative assessment

Immunohistochemistry (IHC) staining was conducted on the

HPanA150Su01 TMA according to the standardized procedures.

The TMA was washed with xylene for three 5-min. The sections

were rehydrated by successive washes in 100, 90 and 70% graded

ethanol. Hydrogen peroxidase was used to block endogenous

peroxidase activity for 20 min. The antigen retrieval solution is

Ethylene Diamine Tetraacetic Acid. The primary antibody used in

our research was anti-NEUROD1 (1:200 dilution, Cat. 12081-1-AP,

ProteinTech). Antibody staining was visualized with DAB and

hematoxylin counterstain, and stained TMA was captured using

Aperio Digital Pathology Slide Scanners. During the IHC staining

processes, two samples were separated, thus a total of 88 samples

were included in further analysis. The stained TMA was

independently evaluated by two pathologists. Expression levels of

NEUROD1 in tumor cells were semi-quantitatively assessed by

estimating the immunoreactivity score (IRS) (Mei et al., 2020;

Mei et al., 2021). Briefly, the percentage of positively stained cells

was scored as 0–4: 0 (< 5%), 1 (6–25%), 2 (26–50%), 3 (51–75%) and
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4 (>75%). The staining intensity was scored as 0–3: 0 (negative), 1

(weak), 2 (moderate), and 3 (strong). The IRS equals the percentages

of positive cells multiplied by staining intensity. Samples with

NEUROD1 IRS ≥ 2 were deemed to be the high-expression

group, and the others were deemed to be the low--expression group.

Statistical analysis

R 4.0.2, SPSS 22.0, and GraphPad Prism 8.0 were applied

as main tools for the statistical analysis and figures exhibition.

The LASSO Cox regression model was employed for the

FIGURE 1
The distribution and prognostic roles of TILs in PaCa. (A) The heatmap of the 24 immune cells abundance based on the TCGA data. (B) The
proportion of 24 immune cells in PaCa. (C) Overview of Kaplan-Meier analysis of the prognostic values of 24 selected TILs in PaCa. (D) High Tex
infiltration predicted worse prognosis in PaCa patients. (E) Low MAIT infiltration predicted worse prognosis in PaCa patients. (F) High monocyte
infiltration predicted worse prognosis in PaCa patients. (G) Low CD4+ T cell infiltration predicted worse prognosis in PaCa patients.
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further selection of prognostic TILs by “glmnet”. Kaplan-

Meier survival plots were generated with survival curves

compared by log-rank test. The Chi-square test was used to

evaluate differences in clinic-pathological variables between

groups with different risks or NEUROD1 expression.

Univariate and multivariate Cox regression models were

used to calculate hazard ratio (HR) of risk-score and other

clinic-pathological variables for OS. For DEGs screening, R

language was applied using the R package “limma”. For all

analyses, differences were considered statistically significant

when p-value < 0.05.

Results

The distribution and prognostic value of
TILs in PaCa

To obtain a systematical insight into TILs in PaCa, the

ImmuCellAI tool was applied to calculate TILs composition in

PaCa samples from the TCGA dataset. A heatmap was drawn to

illustrate 24 immune cell proportions in these samples

(Figure 1A). The fraction of immune cells varied significantly

among different samples. Due to the limited number of adjacent

FIGURE 2
The establishment and validation of TILs-related signature in PaCa. (A) LASSO coefficient profiles of 8 selected TILs. (B) 10-fold cross-validations
result which identified optimal values of the penalty parameter λ. (C) The distribution of LASSO Cox coefficients in the TILs-related signature. (D) The
heatmap of six TILs infiltrating levels in the training set. (E) Patients in the high-risk group exhibitedworseOS compared to those in the low-risk group
in the training set. (F) ROC analysis in the training set. (G) The heatmap of six TILs infiltrating levels in the validated set. (H) Patients in the high-risk
group exhibited worse OS compared to those in the low-risk group in the validated set. (I) ROC analysis in the validated set.
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non-cancer samples, we failed to compare the difference in TILs

abundance in tumor and para-tumor samples. We next

compared the proportion of different TILs in PaCa samples.

The results showed that type 1 regulatory T cell (Tr 1), natural

killer cell (NK), macrophage, etc. had higher abundance in PaCa,

but CD4+ naïve cell, effector memory T cell (Tem), Tex, etc. had

lower abundance (Figure 1B).

To assess the prognostic values of infiltrating TILs for PaCa

patients, survival analysis with log-rank test was applied based on

the TCGA-PaCa data. The patients were divided into two groups

according to the median infiltration levels of TILs. The result

showed that most TILs had no obvious prognostic values in PaCa

patients (Figure 1C). However, patients with higher levels of Tex

and monocyte had significantly worse OS (Figures 1D,F), while

high infiltrating levels of mucosal-associated invariant T cell

(MAIT) and CD4+ T cell predicted better prognosis in PaCa

patients (Figures 1E,G). Overall, these findings suggest that

several TILs may play a critical role in tumor progression and

have specific prognostic values in PaCa.

Establishment and validation of a TILs
signature

In view of the prognostic values of TILs, we next try to

establish a TILs-associated prognostic signature. We first

conducted univariate Cox regression to initially screen

TILs with significant impacts on PaCa prognosis. A total

of 8 TILs had promising prognostic impacts in PaCa

(Supplementary Table S1). Subsequently, LASSO Cox

analysis with ten-fold cross-validation was performed in

the TCGA-PaCa dataset to further narrow the effective

TILs (Figures 2A,B). Six TILs were identified and

subsequently used to construct a prognostic signature. We

next constructed a 6-TILs signature to assess the prognosis of

PaCa patients based on the infiltrating levels of these 6 TILs

and their regression coefficients (Figure 2C).

Patients in the TCGA cohort were divided into the low-

risk group (n = 89) and the high-risk group (n = 89) utilizing

the median risk-score as the cut-off value. The infiltrating

abundance of these six TILs had an obvious distinction

between the two groups (Figure 2D). The Kaplan-Meier

curves exhibited that high-risk patients had notably poor

prognosis in the training set (Figure 2E). The multivariate

Cox analysis uncovered that this prognostic signature was an

independent prognostic factor for PaCa patients (Table 2). We

next conducted the ROC analysis to assess the prognostic

accuracy of the risk-score, and the result showed that the risk-

score had a nice prognostic accuracy (Figure 2F). Moreover,

the Chi-square test showed that the risk-score was associated

with several clinic-pathological features, such as age, tumor

subdivision, and OS status (Table 3).

To further validate the prognostic value of signature in PaCa,

we next used 63 patients from the GSE57495 dataset as the

validation cohort. Similar to the training cohort, the infiltrating

abundance of these six TILs had an obvious distinction between

the low-risk group (n = 32) and the high-risk group (n = 31)

(Figure 2G). Kaplan-Meier curves suggested that the high-risk

group patients had significantly worse outcomes than the low-

risk group (Figure 2H), and the ROC analysis verified that the

risk-score had good prognostic accuracy (Figure 2I). To sum up,

our results indicated a satisfactory value of the TILs-associated

signature for survival prediction.

Identification of DEGs and enrichment
analysis

To further understand the progression of PaCa, we exacted

DEGs between two groups in the TCGA and

GSE57495 datasets (Figures 3A,B). We next extracted co-

DEGs in the TCGA and GSE57495 datasets for enrichment

analysis (Figure 3C). Then, the Hallmark enrichment analysis

was performed. The results showed that highly expressed

TABLE 2 Univariate and multivariate analysis of survival factors in patients with PaCa.

Characteristics Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

Gender 0.81 0.54–1.22 0.320

Age 1.03 1.01–1.05 0.010 1.01 0.99–1.04 0.271

Subdivision 0.92 0.69–1.24 0.585

Grade 1.45 1.09–1.93 0.010 0.77 0.51–1.18 0.230

T stage 1.60 1.00–2.40 0.046 0.98 0.59–1.63 0.940

N stage 2.16 1.29–3.63 0.004 1.86 1.08–3.19 0.025

Clinical stage 1.20 0.84–1.74 0.319

Risk-score 66.20 12.93–338.95 <0.001 30.48 5.19–179.22 <0.001
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genes in the high-risk groups were significantly associated

with estrogen response and KRAS signaling (Figure 3D), and

highly expressed genes in the low-risk groups were

significantly associated with pancreas beta cells and KRAS

signaling (Figure 3E). Considering enrichment numbers, we

further chose genes in the “pancreas beta cells” terms for

further analysis. A total of 15 genes in the “pancreas beta cells”

terms were highly correlated with each other in the TCGA and

GSE57495 datasets (Figures 3F,G), and the PPI network

showed that NEUROD1 was the hub gene among these

relative genes (Figure 3H). Taken together, we selected

NEUROD1 for further investigation.

Validation of the role of NEUROD1 in PaCa

Given that NEUROD1 was uncovered based on the TILs-

based prognostic signature, we supposed that NEUROD1may be

associated with immune cell infiltrations. However,

NEUROD1 was not correlated with stromal score, immune

score, and ESTIMATA score (Figures 4A–C). Similarly,

NEUROD1 was not correlated with most immune checkpoints

and immune cells, except MAIT and CD4+ T cell (Figures 4D,E).

Moreover, the results from the GSE57495 dataset were also

similar (Supplementary Figure S1E). Overall, NEUROD1 was

not associated with anti-tumor immunity in PaCa.

TABLE 3 Association between risk-score and patients’ characteristics in PaCa.

Characteristics Cases Low-risk High-risk χ2 p-value

Cases Proportion (%) Cases Proportion (%)

Gender 0.363 0.547

Female 80 42 52.50 38 47.50

Male 98 47 47.96 51 52.04

Age 7.327 0.007

≤60 59 38 64.41 21 35.59

>60 119 51 42.86 68 57.14

Subdivision 10.916 0.012

Body 14 6 42.86 8 57.14

Head 138 69 50.00 69 50.00

Tail 15 4 26.67 11 73.33

Other 11 10 90.91 1 9.09

Grade 3.553 0.314

G1 30 18 60.00 12 40.00

G2 96 49 51.04 47 48.96

G3 48 22 45.83 26 54.17

G4 2 0 0.00 2 100.00

T stage 5.635 0.131

T1 7 4 57.14 3 42.86

T2 24 17 70.83 7 29.17

T3 142 65 45.77 77 54.23

T4 3 1 33.33 2 66.67

N stage 1.673 0.196

N0 50 21 42.00 29 58.00

N1 123 65 52.85 58 47.15

TNM stage 5.221 0.156

TNM1 21 14 66.67 7 33.33

TNM2 146 71 48.63 75 51.37

TNM3 4 1 25.00 3 75.00

TNM4 5 1 20.00 4 80.00

OS status 14.073 <0.001
Alive 85 55 64.71 30 35.29

Dead 93 34 36.56 59 63.44
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We next validated the expression and prognostic value of

NEUROD1 in PaCa. NEUROD1 was significantly

downregulated in tumor samples compared with para-tumor

samples and most tumor samples lowly expressed NEUROD1

(Figures 5A–C). Moreover, NEUROD1 expression was notably

associated with N stage and OS status (Table 4). In addition, in

the HPanA150Su01 cohort, high expression of NEUROD1 was

significantly correlated with better prognosis (Figure 5D).

However, NEUROD1 was not an independent survival factor

in PaCa (Table 5). Collectively, NEUROD1 could be used as a

novel prognostic biomarker in PaCa.

Discussion

Infiltrating immune cells in the tumor microenvironment have

been uncovered to play prominent and respective roles in the

biological behaviors of various cancers (Mattei et al., 2012;

Miyazaki et al., 2018; Georgouli et al., 2019). For example, high

infiltration of CD8+ T cells usually inhibited cancer progression and

indicated better prognosis in most cancers, but was associated with

poor prognosis in clear cell renal cell carcinoma (Qi et al., 2020; Wu

et al., 2021). It has been revealed that identifying subtypes of the

immune microenvironment in PaCa provides promising

FIGURE 3
DEGs between low- and high-risk groups. (A,B) The volcano plot of DEGs with the thresholds of |log2[fold change (FC)]| >1 and p < 0.05 in the
TCGA and GSE57495 datasets. © Intersection of co-DEGs between the TCGA and GSE57495 datasets. (D,E) Hallmark enrichment analysis of highly
expressed genes in the high-risk and the low-risk groups. (F,G) Correlation analysis of 15 genes in the “pancreas beta cells” terms. (H) PPI network
analysis of 15 genes in the “pancreas beta cells” terms.
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FIGURE 4
NEUROD1 was not related to anti-tumor immunity in the TCGA dataset. (A–C) Association between NEUROD1 expression and stromal score,
immune score, and ESTIMATA score in the TCGA dataset. (D,E) Association between NEUROD1 expression and immune checkpoints expression as
well as immune cell infiltrations in the TCGA dataset.

TABLE 4 Association between NEUROD1 expression and baseline characteristics in PaCa.

Characteristics n NEUROD1 expression χ2 p value

Low High

Gender Female 32 23 9 0.155 0.694

Male 56 38 18

Age ≤60 41 27 14 0.351 0.554

>60 46 33 13

Unknown 1

Grade Well-differentiated 56 41 15 1.099 0.294

Poor-differentiated 32 20 12

T stage T1-2 72 51 21 0.103 0.748

T3 15 10 5

Unknown 1

N stage N0 46 27 19 4.777 0.029

N1 37 30 7

Unknown 5

TNM stage 1 37 22 15 3.057 0.080

2 48 37 11

Unknown 3

OS status Alive 23 11 12 6.763 0.009

Dead 65 50 15
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opportunities for therapeutic development based on the

personalization of systemic immunotherapies (Danilova et al.,

2019). Thus, summarizing the features of immune cells in the

tumor microenvironment is essential for risk classification,

treatment, and prognosis assessment for PaCa. In the current

study, we assessed infiltrating levels of 24 immune cells and

explored their potential prognostic values in PaCa through the

ImmuCellAI algorithm.

The TILs are mainly composed of B cells, T cells,

macrophages, monocytes, NK cells, etc., which act as

significant roles in promoting and/or suppressing cancer

progression (McAllister and Weinberg, 2014; Pushalkar et al.,

2018). B cells, producers of antibodies, not only are significant

components of the adaptive immune system, but also could co-

operate with other TILs by secreting cytokine and presenting

antigens (Gupta et al., 2019). T cells contain a large family,

FIGURE 5
Expression and prognostic value of NEUROD1 protein in PaCa. (A) Representative microphotographs of NEUROD1 in tumor and para-tumor
samples. Brown, NEUROD1. Blue, hematoxylin. Original magnification: ×200. Samples with NEUROD1 IRS ≥ 2 were deemed to be the high-
expression group, and the others were deemed to be the low-expression group. (B) The expression of NEUROD1 protein in PaCa tissues and para-
tumor tissues. A significant decrease in NEUROD1 expression was observed in PaCa tissues. (C) NEUROD1 protein expression intensity
proportion of PaCa tissues and para-tumor tissues. Low expression: IRS < 2; high expression: IRS ≥2. (D) Kaplan-Meier analysis of NEUROD1 in the
HPanA150Su01 cohort. High NEUROD1 expression predicted better prognosis in PaCa patients.

TABLE 5 Univariate and multivariate analysis of prognostic factors in PaCa.

Characteristics Univariate analysis Multivariate analysis

HR 95%CI p value HR 95%CI p value

Gender (male vs. female) 1.13 0.68–1.88 0.635

Age (>60 vs. ≤60) 1.17 0.72–1.91 0.521

Grade (poor vs. well-differentiated) 2.06 1.25–3.40 0.004 2.92 1.66–5.15 <0.001
T stage (T3 vs. T1-2) 0.91 0.46–1.79 0.791

N stage (N1 vs. N0) 1.78 1.07–2.96 0.027 1.95 0.73–5.16 0.181

TNM stage (2 vs. 1) 1.81 1.08–3.05 0.026 1.39 0.52–3.67 0.512

NEUROD1 (high vs. low expression) 0.79 0.55–1.11 0.173
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including CD8+ T cells, CD4+ T cells, Th cells, Treg cells, and

MAITs. Most T cell subsets play critical roles in tumor control

(Vigano et al., 2019), but several kinds of T cells can also

promote cancer progression. For example, as a member of

CD8+ T cell subsets, Tex loses robust effector functions by

expressing multiple inhibitors, which are defined by alterant

transcriptional programs (Wherry and Kurachi, 2015). A

previous study uncovered that high level of CD8+ Tex

expressing PD1 predicted worse clinical outcomes in

hepatocellular carcinoma (Ma et al., 2019). Multiply

studies have demonstrated that infiltrating abundance of

specific TILs is associated with improved or unfavorable

clinical outcomes in different cancers (Stanton and Disis,

2016; Liu et al., 2017; Bubie et al., 2020). In this study, we

found that high infiltrating levels of Tex and monocyte

predicted worse OS, while low abundance of MAIT and

CD4+ T cell were associated with poor prognosis in PaCa

patients, suggesting several types of TILs had encouraging

prognostic impacts on PaCa.

As well known, PaCa has been identified as a type of

aggressive malignancy with awfully poor prognosis. Growing

numbers of studies attempt to systematically summarize the

malignant characterization of PaCa and develop prognostic

risk identifiers from the multi-omics perspective (Thomas

et al., 2014; Bailey et al., 2016). Besides, immune-related

genes are also treated as hotspots in the field of prognostic

assessment. Zhang et al. developed a PD-L2-based immune

signature to exactly predict survival in resected PaCa (Zhang

et al., 2019). Meng et al. screened DEGs between high and low

immune score groups, and further established an 8-mRNA

signature prognostic identifier for PaCa (Meng et al., 2020).

However, as far as we know, no exploration of prognostic

values of combinations of multiple immune cells has been

conducted in cancers to date. In this report, we developed a

TILs-related prognostic signature, consisting of Th17, Th1,

DC, nTreg, CD8+ T cell, and CD4+ T cell, which could

precisely indicate prognosis in PaCa patients. These

findings suggested that different TILs combinations might

obtain better predictive values in prognostic assessment for

cancerous diseases.

Additionally, we screened the risk-related DEGs and

identified NEUROD1 as a novel biomarker in PaCa.

NEUROD1 has been identified as a subtype marker in

neuroendocrine tumors, especially small-cell lung cancer

(Dora et al., 2022). However, NEUROD1 is also revealed to

express in other tumor cells and play a significant role in

tumor progression. For example, NEUROD1 promotes

neuroblastoma progression and is mediated by LINC00839/

miR-454-3p axis (Zhang et al., 2022). In addition,

NEUROD1 promotes tumor cell proliferation and

tumorigenesis by directly activating the pentose phosphate

pathway in colorectal cancer (Li et al., 2021). In addition to

regulating the tumor progression, NEUROD1 could be also a

drug target in cancer therapy. In small-cell lung cancer,

NEUROD1-dependent genes are specific targets of

lurbinectedin (Costanzo et al., 2022). Moreover,

NEUROD1 could be used as a marker for efficacy

monitoring as well. Breast cancer patients with positive

serum pretreatment NEUROD1 methylation exhibited poor

prognosis (Fiegl et al., 2008). In this research, we found

NEUROD1 was associated with better prognosis in PaCa,

but its functional role still needed to be explored.

Conclusion

To sum up, we analyzed the 24 TIL subgroups in PaCa

samples based on transcriptome data using the ImmuCellAI

tool. As an important result, we identified and validated a six-

TILs prognostic signature, which could precisely predict

prognosis in PaCa patients. Moreover, based on the novel

signature, we also identified NEUROD1 as a novel

biomarker in PaCa. However, the findings of the current

research should be further validated using large-scale clinical

cohorts.
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