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Abstract: The emergence of the novel coronavirus in December 2019 in China marked the beginning
of a pandemic that impacted healthcare systems and economic life all over the world. The virus
primarily targets the respiratory system causing severe acute respiratory syndrome (SARS) in some
patients, and therefore received the name of SARS-CoV-2. The pathogen stands out among other coro-
naviruses by its rapid transmission from human to human, with the majority of infected individuals
being asymptomatic or presenting with only minor illness, therefore facilitating the pathogen spread.
At the same time, people from the risk groups, such as the elderly, patients suffering from chronic
diseases, or obese individuals, have increased chances of developing a severe or even fatal disease.
The search for risk factors explaining this phenomenon continues. In this review, we focus on the
known mechanisms of SARS-CoV-2 infection affecting the functioning of the immune system and
discuss potential risk factors responsible for the severe disease course. Oxidative stress is one of such
factors, which plays a prominent role in innate immunity activity, and recent research has revealed its
tight involvement in SARS-CoV-2 infection. We discuss these recent findings and the development
of excessive inflammation and cytokine storm observed during SARS-CoV-2 infection. Finally, we
consider potential use of antioxidant drugs for alleviating the severe symptoms in affected patients.

Keywords: oxidative stress; SARS-CoV-2; innate immunity; macrophage

1. Introduction

In December 2019, patients presenting with a novel respiratory disease caused by
coronavirus, SARS-CoV-2, were reported in Wuhan, Hubei Province, China. The newly
discovered virus was able to spread from human to human, and quickly led to a pandemic
covering much of the world. By spring 2020, it became clear that the world healthcare
and economic systems are facing a crisis never seen before. However, the coronavirus
infection as such is not a novelty, and other coronaviruses are among known causes of
human diseases.

The name “coronavirus” comes from the typical microscopic appearance of the vi-
ral particle, which has protruding spike proteins that resemble a crown. A member of
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coronavirus family HCoV-229E that affects bats and humans was first identified back in
the 1960s. The pathogen is a single-chain RNA virus that interacts with aminopeptidase
N, which serves as a virus receptor [1]. The HCoV-229E can infect humans causing up-
per respiratory tract disease, and is considered as one of the widespread causes of the
human common cold. Since then, several other human coronaviruses have been detected
and characterized. In 2003, a novel type of coronavirus, HCoV-NL63, was detected in
the Netherlands in a 7-month-old child presenting with lower respiratory tract illness.
The virus uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host
cells. HCoV-NL63 was shown to be associated with moderate respiratory infection [2].
A powerful coronavirus outbreak that touched on more than 20 countries around the
world occurred in 2002. The virus that caused it was called SARS-CoV because it caused
severe acute respiratory syndrome (SARS). More than 8000 people were exposed to the
virus during the outbreak [3]. Like HCoV-NL63, SARS-CoV uses ACE2 as a functional
receptor [4]. The search for natural sources of the virus demonstrated that Egyptian bats
can act as a reservoir for SARS-CoV, while intermediate hosts are civets, badgers, raccoon
dogs, and other small mammals. Transmission from animals to humans has apparently
occurred through consumption of badly cooked meat and inhalation of the waste products
of bats. Because of the spread of SARS-CoV in numerous countries, the infection has
acquired a mini-pandemic status [5]. In 2012, another type of coronavirus was isolated
from a 60-year-old patient who died in a hospital in Saudi Arabia. The coronavirus caused
the illness known as Middle East respiratory syndrome (MERS) and received the name
of MERS-CoV [6]. The emergence of MERS-CoV caused much anxiety because it was
associated with fatal lung failure reminiscent of SARS induced by SARS-CoV. The mortality
rate in patients with MERS-CoV was estimated at 43%, which is a high rate, although
the total number of MERS-CoV cases was only about 2500. MERS-CoV uses dipeptidyl
peptidase 4 (DPP4) as its receptor [7].

A new dangerous coronavirus named SARS-CoV-2 was first described in the Chinese
city of Wuhan in December 2019. The disease caused by the virus, COVID-19, is character-
ized by significant mortality and severity of symptoms, especially in at-risk populations,
such as the elderly and individuals with comorbidities. Moreover, the virus can be eas-
ily transmitted between humans, including asymptomatic carriers. These factors helped
COVID-19 become the most prominent of all coronavirus outbreaks detected so far, with
over 10 million people worldwide already infected by the time this article was written, and
this number continues to grow.

2. Structural Characteristics of SARS-CoV-2

SARS-CoV-2 is a β-coronavirus potentially mediating the development of SARS [8].
SARS-CoV-2 belongs to the order Nidovirales, family Coronaviridae, subfamily Orthocoro-
navirinae, genus Betacoronavirus and a species of coronaviruses provoking SARS [9]. It is
an enveloped virus possessing continuous positive-stranded RNA varying from 26 kb to
32 kb in length. The diameter of SARS-CoV-2 viral particle can range from 70 to 90 nm [10].

Along with other members of coronaviruses, SARS-CoV-2 has four structural proteins,
including Spike protein (S), Envelope protein (E), Membrane protein (M), nucleocapsid
protein (N), together with 16 non-structural proteins (NSP) that are necessary for proper
viral replication [11]. Given that SARS-CoV-2 is genetically similar to SARS-CoV, the
virus structure data mapping was already largely available, allowing for relatively rapid
characterization of the new pathogen [12].

Spike glycoprotein is a membrane-spanning protein that consists of two subunits and
has the molecular mass of about 150 kDa. It forms homotrimers protruding outside of the
viral particle and facilitates binding of the virus envelope with the host cells [13]. Once in
the host cells, the S-protein is cleaved by furin-like protease (TMPRSS2) into two subunits:
S1 and S2. The S1 subunit is responsible for binding with the host cellular receptor, and S2
subunit ensures the fusion of viral and cellular membranes [14].
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The ACE2 protein, which is a functional receptor for SARS-CoV-2, is highly expressed
in pneumocytes (type 2) of the respiratory epithelium [15]. The S1 subunit contains the
N-terminal domain and receptor-binding domain (RBD), while S2 subunit is composed
of the fusion peptide (FP), heptad repeats (HR), transmembrane domain (TM), and the
cytoplasmic domain (CM) [16]. Despite the similarity of S-proteins between SARS-CoV
and SARS-CoV-2, the affinity of SARS-CoV-2 S-protein to ACE2 is 10 to 20 times higher.
That can be explained by the additional insert at the interface between S1/S2 sites, which
can be cleaved by furin, whereby ligand-receptor interaction is increased, providing for a
bigger opportunity for SARS-CoV-2 spreading [16–18].

The coronavirus N-protein is a highly conserved protein with a molecular weight of
about 50 kDa. This structural component of SARS-CoV-2 participates in the processes of
replication, transcription, and packaging of the viral genome. Moreover, it is involved in the
cellular response of host cells to viral infection [19]. It was found that N-protein shares an
amino acid homology of approximately 90% with SARS-CoV [20]. The interaction between
RNA, N-protein, M-protein, and NSP3 leads to the formation of the ribonucleoprotein
complex that is needed for virion assembly [21,22]. Structurally, N-protein consists of the
N-terminal domain required for RNA binding, C-terminal domain necessary for oligomer-
ization processes and a central Ser/Arg (SR)-rich linker, which has phosphorylation site
and probably increases the affinity of N-protein to the viral RNA [23]. Given that N-protein
is the most abundant coronavirus protein, and possesses a high immunogenic activity
inducing the massive production of IgG and IgM, it can be potentially used for diagnostic
purposes [24–26].

M-protein is a quite conserved integral protein among β-coronaviruses, which has a molec-
ular weight of about 25–30 kDa. It is composed of three transmembrane-spanning domains
connecting with a short N-terminal ectodomain and a long C-terminal endodomain [27,28].
M-protein was found to participate in the budding process, interaction with N-protein for
stabilization of the nucleocapsid and the virion assembly facilitation [29,30].

One of the smallest coronaviral proteins is the E-protein, with a molecular weight
of about 8–12 kDa [31]. This transmembrane protein has an N-terminal ectodomain, hy-
drophobic α-helical domain, and C-terminal hydrophilic endodomain. As has been seen,
this protein takes part in the viral assembly, virions releasing, and it is implicated in the
viral pathogenesis [32]. An important role of E-protein as viroporin has been demonstrated.
Viroporins are viral proteins that have an impact on membrane permeability, ion flows,
membrane remodeling, and glycoprotein traffic through forming a hydrophilic pore [33,34].
Consequently, E-protein is included in the pathogenesis of coronavirus infection through
acting on the inflammasome formation and the release of Ca2+ from the Endoplasmic
reticulum-Golgi intermediate compartment (ERGIC) [35]. In addition, viroporins are en-
gaged in the assembly and release of virions from the infected cells, potentially through
the disturbance of the chemoelectrical barrier and thus the membrane potential of the
plasma membrane, which promotes the viral budding [34]. Moreover, a perturbation of
ion homeostasis induced by viroporins may lead to apoptotic cell death [36].

3. SARS-CoV-2 Infection Is Associated with Oxidative Stress

Viral infection can affect cellular homeostasis, including the redox balance. Common
viruses causing respiratory infections, such as human respiratory syncytial virus (RSV),
influenza (IV), human rhinovirus (HRV), human metapneumovirus (HMPV), parainfluenza,
adenoviruses and coronaviruses, usually cause only mild symptoms [37]. Presence of
chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, or
mucoviscidosis, can influence the disease course by shifting the balance towards increased
oxidative stress and reactive oxygen species (ROS) formation [38].

Oxidative stress is an imbalance between ROS production and the ability of the body
to eliminate them by protective (antioxidant) mechanisms [39]. Under physiological condi-
tions, ROS play a role as important signaling molecules which are capable of regulating the
activity of enzymatic or transcription factors, therefore controlling metabolic processes [40].
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It was shown that oxidative stress is associated with an increase of redox signaling, acti-
vation of transcription factors, stimulation activity of pro-inflammatory and pro-fibrotic
cascades, DNA damage, and also stress-dependent kinases induction [41]. Furthermore,
massive ROS generation (oxidative burst) is used by the immune cells to destroy the invad-
ing pathogens. Such excessive production of ROS can also have a direct destructive effect
on the surrounding host cells, including the lung cells. That may be a possible mechanism
inducing the severe lung pathology in SARS-CoV-2-infected patients [42,43]. Accordingly,
the mechanisms underlying lung dysfunction may depend on the degree of oxidative stress
manifestation being in close connection with the innate immune system activity.

The accumulating information on the clinical course of coronavirus disease shows
that, so far, the majority of cases ascertained through testing appear to be asymptomatic
or associated with only minor symptoms. At the same time, about 15% of the infected
patients present with severe pneumonia, and 5% with multiple organ failure, toxic shock
syndrome, and acute respiratory distress syndrome (ARDS) [44,45]. To date, the reason
for such difference is not clear, but it is likely that the course of the individual’s immune
response to the pathogen may play a role in it. The major cause of mortality associated
with SARS-CoV-2 involves ARDS and associated so-called cytokine storm: an uncon-
trolled systemic inflammatory response provoking the expression of pro-inflammatory
cytokines and chemokines by the effector cells [46]. The link between pro-inflammatory
cytokine signaling and oxidative stress is being actively explored. For instance, it was
shown that overexpression of pro-inflammatory cytokines can induce an increase in ROS
generation [47].

Monocytes and macrophages are the key players of the innate immune response,
which plays a prominent role in the inflammatory reactions associated with COVID-19
disease. These cells can release a number of pro-inflammatory cytokines, such as IL-1β,
IL-6, IL-8, TNF, concentration of which may influence the severity of coronavirus infection.
Therapeutic value of blocking the cytokine response is currently being studied [48]. It was
found that patients with coronavirus infection presented with increased levels of circulating
neutrophil extracellular traps (NET), indicative of neutrophil activation [49]. Moreover,
high neutrophil proportion, which was observed in critically ill COVID-19 patients, was
predictive of in-hospital mortality [50]. In their turn, neutrophils are among the main
ROS producers. Antioxidant systems that evolved to alleviate ROS-associated damage
in mammals are orchestrated by the expression of nuclear factor erythroid 2p45-related
factor 2 (Nrf2) [51]. Under normal conditions, Nrf2 is retained in the cytoplasm by a protein
cluster and rapidly degraded there. However, during oxidative stress, the factor is activated
and stimulates a number of genes responsible for cytoprotection and detoxication. It was
found that some viruses can suppress the Nrf2 pathway, therefore affecting the antioxidant
response in the body. In particular, respiratory viral infections were shown to be associated
with Nrf2 inhibition and activation of NF-kB pathway, leading to increased oxidative
damage and promoting inflammation [37,50]. For instance, in RSV infection, which affects
lower respiratory tract and is associated with respiratory insufficiency, ROS generation is
induced in the epithelial cells of the respiratory system. This process is accompanied by
transcription factor activation and cytokine and chemokine production. Moreover, RSV
can induce lipid oxidation and decrease glutathione (GSH) concentration in alveolar type
II-like epithelial cell line and inhibit the Nrf2 pathway, therefore reducing the expression of
hemoxigenase-1 (HO-1), superoxide dismutase 1 (SOD1), superoxide dismutase 3 (SOD3),
glutathione S-transferase (GST), catalase (CAT), and glutathione peroxidase (GPx) [52,53].
Moreover, a link was found between the decreased lung expression of SOD3 and COVID-19
severity in elderly people [54].

It is important to mention that the deteriorating effect of ROS is not limited to the
respiratory epithelium, but affects other cell types, such as erythrocytes, which may con-
tribute to the observed hypoxic respiratory failure in some patients with COVID-19 [55,56].
Hemolysis can increase the concentration of free heme and hemoglobin, which can further
aggravate oxidative stress. Furthermore, elevated ROS generation affects the erythrocyte
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membrane, promoting phagocytosis in macrophages and neutrophils [52]. These processes
are likely to contribute to the disease severity in COVID-19 patients and should be taken
into account for future therapy development.

4. The Role of the Innate Immunity in Coronavirus Infection

Innate immune system is the first line of host defense that recognizes invading
pathogens through sensing of pathogen-associated molecular patterns (PAMPs), such as
foreign polysaccharides, glycoproteins, lipoproteins, and nucleic acids, as well as damage-
associated molecular patterns (DAMPs) that include molecules generated as a result of
damage of host cells and tissues. This task is performed by a variety of pattern recognition
receptors (PRR) expressed by the innate immunity cells, such as monocytes/macrophages.
Viral entry of the host cells induces the host immune response, which is initially mediated
by antigen-presenting cells (APC); for example, dendritic cells (DCs) densely populating
the respiratory tract [57]. Alveolar surface is a common site of encounter with bacterial and
viral pathogens inhaled with air. Correspondingly, alveolar macrophages have a strong
lytic potential, including the ability for oxidative burst [58]. Studies of coronavirus infec-
tion have shown so far that the initiation of the immune response to coronavirus typically
begins in the respiratory epithelium. The APCs present in these sites express PRRs, such as
toll-like receptor (TLR), nucleotide-binding oligomerization domain (NOD) like receptor
(NLR) and retinoic acid-inducible gene (RIG) I-like receptors (RLR). Viral infection in the
alveolae is therefore triggering PAMP recognition by the innate immune cells and the
following initiation of the immune response [59].

TLRs are type I transmembrane glycoproteins that are expressed on both the immune
cells (DCs, macrophages, B- and T-cells) and non-immune cells (fibroblasts, epithelial cells).
Their extracellular part contains leucine-rich repeats (LRR) that mediate PAMP recognition,
while the intracellular part contains a Toll/IL-1 receptor domain (TIR), which can interact
with adapter molecules and trigger signaling pathways. In humans, 10 variations of TLRs
are currently known. These receptors can be expressed both on the cell surface (TLR1,
TLR2, TLR4, TLR5, TLR6, TLR10) and intracellularly (TLR3, TLR7, TLR8, TLR9) and are
known to recognize different ligands. The cell surface TLRs bind to various components of
the bacterial cell wall, such as lipids, bacterial lipopolysaccharide (LPS) and proteins, such
as flagellin. The intracellular TLRs are able to recognize nucleic acids [59]. The recognition
of SARS-CoV-2 by the innate immune system is being extensively studied. It was shown
that the S-protein is recognized by TLR2 and TLR4, while viral genome fragments interact
with TLR3 and TLR7/8 [60,61].

Two principal ways of TLR signaling transduction have been described: MyD88-
dependent pathway (myeloid differentiation primary response protein 88) and TRIF-
dependent pathway (TIR domain-containing adaptor-inducing IFNβ). Activation of MyD88-
dependent pathway is associated with TIRAP binding (TIR domain-containing adaptor
protein) followed by a myddosome complex formation that contains kinases of IRAK (IL-1R
associated kinase) family [62]. This pathway activates nuclear factor-kappa B (NF-κB) and
activator protein 1 (AP-1) transcription factors. Activation of the TRIF-dependent path-
way occurs through recruitment of TRIF adaptor protein for the latter activation of TRAF
(TNF receptor-associated factor) proteins, which in turn results in NF-κB and interferon
regulatory factors (IRFs) activation.

NLRs are cytosolic receptors of innate immunity cells that play a key role in the
regulation of the innate immune response. These receptors can induce the expression of
pro-inflammatory cytokines in response to PAMP recognition, but also influence embryonic
development, regulate apoptosis and participate in the reactions of the acquired immune
system. NLRs are preferentially expressed in macrophages, DCs, and lymphocytes, but
were also found in non-immune cells, such as epithelial cells. The spectrum of NLR ligands
includes components of the bacterial cell wall, microbe toxins, DAMPs, and viral RNA.
NLRs are large proteins containing 3 domains. In humans, as many as 22 members of
the NLR family have been identified, differing by domain structure and functions. Based
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on a structural N-terminal domain organization, NLRs are divided into 4 subfamilies:
NLRA, NLRB, NLRC, NLRP and also a single-member subfamily represented by NLRX1,
a mitochondrial member of the NLR family [63]. The central domain of NLRs consists of
12 conserved motifs and is required for nucleotides and oligomerization (NOD/NACHT)
binding. The N-terminal domain is variable, involved in protein–protein interactions, and
has effector functions. This domain can contain caspase activation and recruitment domain
(CARD), pyrin domain (PYD), acidic transactivation domain (AD) and baculovirus IAP
repeat domain (BIR). The C-terminus contains LRRs that recognize PAMPs. Class II ma-
jor histocompatibility complex transactivator (CIITA) and neuronal apoptosis inhibitory
protein (NAIP) belong to the NLRA and NLRB families, respectively. CIITA of the NLRA
family is a transcription regulator for the MHC II class, while NAIP, which belongs to
the NLRB family, is involved in flagellin recognition, determination of type III secretion
system components (T3SS), inflammasome formation and suppression of apoptosis [64–66].
The NLRC family is composed of 5 members: NOD1 (NLRC1), NOD2 (NLRC2), NLRC3
(NOD3), NLRC4 (IPAF), and NLRC5. Receptors of this family recognize many bacterial
components mediating the host defense against bacterial infections. Moreover, the NLRC
family is important for the tissue homeostasis and autophagy regulation [67,68]. The hall-
mark of this family of receptors is the presence of the CARD domain. Oligomerization
of NOD1 and NOD2 leads to the recruitment of CARD-containing kinase RIP2 (receptor-
interacting protein kinase) through the CARD–CARD interaction and further to nodosome
formation and NF-κB activation [69]. Moreover, RIP2-kinase can induce mitogen-activated
protein kinase (MAPK) pathway activation [70]. Activation of the abovementioned signal-
ing pathways mediates synthesis of pro-inflammatory cytokines and the progression of the
inflammatory response.

The NLPR family of receptors includes 14 members. The specific feature of this family
is the presence of the N-terminal PYD domain that refers to the death effector domains
(DED). It is known that DED takes part in apoptosis and the inflammatory processes. The
members of the NLRP family, NLPR1, NLRP3, NLRP6, and NLRP7, were shown to form
inflammasomes upon interaction with PAMP or DAMP. Inflammasomes are multimeric
complexes that play a prominent role in the inflammatory response of the innate immune
system [71]. Interaction of NLRPs with ligands induces receptor oligomerization and
recruitment of ASC, apoptosis-associated speck-like protein, which contains PYD-CARD
domains. Interaction between PYD domains of NLRP and ASC leads to the formation of
polymeric filamentary structures and the recruitment of pro-caspase 1, which also contains
a CARD [72]. Binding of CARD domains provoke the autocatalysis and activation of pro-
caspase 1. In turn, active caspase 1 promotes generation of active forms of pro-inflammatory
cytokines. The most studied inflammasome is NLRP3 (NOD-, LRR-, and pyrin domain-
containing 3), also called cryopyrin (NALP3) [73]. Excessive activation of the NALP3
inflammasome is considered to be an essential factor during the initiation of cytokine storm
and the following multiple organ failure in patients with COVID-19 [74]. Factors leading
to NALP3 activation include nucleic acids, the cell wall components, DAMPs and several
toxins which are capable of forming pores [75]. It was shown that viroporin E, ORF3a (open
reading frame), and ORF8a are involved in the pathogenesis of the coronavirus infection
and they are able to activate the NALP3 inflammasome via alteration of potassium efflux,
cell volume, Ca2+ signaling, and lysosomes destruction [76–78].

RIG-I-like receptors are cytosolic proteins that participate in sensing the viral genome
and the interferon synthesis for protecting from viral infection. Currently, 3 members of
RLR have been defined: RIG-I, melanoma differentiation-associated protein 5 (MDA5), and
laboratory of genetics and physiology 2 (LGP2), which belong to the DEAD-box protein
family of RNA helicases. RLRs are abundantly expressed in myeloid, epithelial, and nerve
cells. RLRs recognize viruses and execute antiviral activity through initiation of signaling
cascades thanks to their specific structure. It was demonstrated that RLRs have 2 CARD
domains on the N-terminus, the central RNA helicase core consisting of RecA-like Hel1 and
Hel2 domains with the RNA-dependent ATPase activity and the C-terminus [79,80]. In the



Diseases 2021, 9, 17 7 of 15

absence of viral components, RIG-I has a closed inactive conformation that is maintained
by the C-terminus interacting with CARD. When PAMP is recognized by the helicase and
the C-terminal domains, it leads to post-translational modifications performed by Riplet
(RING-Type E3 Ubiquitin Transferase RNF135) and TRIM25 (tripartite motif-containing
protein 25) proteins leading to RIG-I dimerization, conformational changes, and the release
of the CARD domain. That allows for CARD–CARD interaction with the mitochondrial
antiviral signaling protein (MAVS), which is located on the external mitochondrial mem-
brane [79,81]. Binding of RIG-I/MDA5 with MAVS leads to the recruitment of the adaptor
proteins mediating the activation of transcription factors. For example, recruitment of
TRAF6 determines NF-κB activation while TRAF3 is responsible for IRF3/7 activation
and follow-up induction of the interferon-stimulated genes, which help to restrict viral
replication and promote antiviral response [82]. Therefore, RIG-I/MDA5 is considered to
be a cytosolic sensor during coronavirus infection, which can recognize single-stranded
RNA (ssRNA) and the intermediates of double-stranded RNA (dsRNA) in the course
of SARS-CoV replication [83]. The role of these receptors can be demonstrated on the
example of the immune evasion of SARS-CoV-2. It was noted that ORF9b interacts in-
directly with Tom70 protein, causing suppression of MAVS signaling. That probably
reflects the involvement of RLRs in the SARS-CoV-2 pathogenesis [84]. However, further
studies are required for a detailed definition of PRRs contribution in the pathogenesis of
COVID-19. Such investigations can potentially help finding some perspective targets for
SARS-CoV-2 treatment.

Another group of proteins mediating antiviral response, which is especially impor-
tant in the context of coronavirus infection, are interferons (IFNs), a group of signaling
molecules. Two groups of IFNs can be distinguished: type I IFNs include IFN-α, IFN-β,
and IFN-ω, and are also called viral IFNs, while type II IFN, IFN-γ, is also known as
immune IFN. Type I IFNs are released in response to viral infection, and type II IFN—in
response to mitogenic or antigenic stimuli [85]. Expression of different IFNs is triggered
in response to PAMP-induced IRFs activation. Interaction of IFNs with their receptors
leads to the activation of JAK-STAT (signal transducers and activators of transcription)
pathway and the expression of IFN-stimulated genes that are involved in the antiviral
response. However, coronaviral infection was shown to be associated with inhibition of the
host’s antiviral response through certain mechanisms. It was found that SARS-CoV-2 can
inhibit STAT phosphorylation, leading to reduced transcription of IFN-stimulated genes in
monocyte-derived dendritic cells and macrophages [86]. Another study demonstrated that
SARS-CoV-2 infection strongly inhibited type I and II IFN signaling through preventing
nuclear translocation of STAT1 and 2, leading to reduced expression of IFN-stimulated
genes. This anti-IFN activity was attributed to viral accessory protein Orf6, which is capable
of interacting directly with Nup98-Rae1 factor, affecting the nuclear transport [87]. These
mechanisms protect coronavirus against IFN-mediated host response, therefore increasing
its pathogenicity.

5. Can Oxidative Stress Contribute to the Development of a More Severe SARS-Cov-2
Infection Course?

ROS are highly active agents that readily interact with and modify various molecules
in cells and tissues, including nucleic acids, carbohydrates, and proteins [40]. Because
of that, ROS are involved in both normal physiological and pathological reactions, and
the increased levels of ROS are known to be associated with different human diseases.
In human cells, ROS are produced mainly owing to the activity of diverse isoforms of
NAPDH-oxidases through the electron leakage during the oxidative phosphorylation
system (OXPHOS) by mitochondrial enzyme complexes which transfer electrons. In
addition, the electron leakage is dependent on several enzymes such as xanthine oxidase,
nitric oxide synthase (NOS), lipo- and cyclooxygenases, cytochrome P450, and activity of
peroxisomes [88].

A prominent ROS-producing enzyme playing a key role in oxidative stress is nicoti-
namide adenine dinucleotide phosphate oxidase (NOX), which is a multi-subunit enzy-
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matic complex. The family of NADPH-oxidases is represented by 7 members: NOX1, NOX2,
NOX3, NOX4, NOX5, DUOX1, and DUOX2. All members of this family serve as electron
carriers catalyzing the production of free radicals through reduction of molecular oxygen.
Depending on the isoform, NOX proteins are expressed in different types of cells, such as
epithelial, endothelial, smooth muscle, phagocytic cells, as well as in fibroblasts and osteo-
clasts [89]. NOX2 is the first described enzyme of this family which was discovered on the
phagosomal membrane. This isoform is composed of integral gp91phox (β-subunit) and
p22phox (α-subunit) proteins that together form a large heterodimeric Cyt b558 subunit.
The p40phox, p47phox, p67phox subunits are cytosolic components and activation signals
are required for their translocation toward the plasma membrane and further assembly
of the complex [90]. Formation of active NADPH-oxidase requires phosphorylation of
p47phox through PKC (protein kinase C), which leads to the assembly of the triple complex
and its translocation toward the membrane [91]. Moreover, GTPase Rac1/2 is required
for a proper NOX activity. Rac1/2 and p67phox are catalytic subunits that mediate the
electron transfer from NADPH to the prosthetic group of gp91phox (FAD and heme), and
eventually, electrons transmission to molecular oxygen and superoxide ion formation [92].

Cytokine storm is a life-threatening condition associated with uncontrolled cytokine
expression, observed in some severe human disorders, including severe cases of COVID-19.
The main representatives of the innate immune system in the airways are epithelial cells,
macrophages, and DCs which detect the viral particles and trigger the inflammatory cas-
cades [57]. Because SARS-CoV-2 has a tropism to the airway epithelium, the expression of
cytokines, chemokines, and cell adhesion molecules is induced by the virus-infected cells.
Generation of these molecules gives rise to the signals for attracting more immune cells
which mediate tissue damages and further amplification of the inflammatory response [93].
Hence, cytokines appear to be among the most important molecules during SARS-CoV-2
infection. At the same time, activation of PRRs and production of the pro-inflammatory
cytokines is a substantial factor for oxidative stress development. For instance, it was found
that TLR signaling can be involved in NOX priming, activation and translocation towards
the plasma membrane by NOX subunits phosphorylation [94]. Thus, TLR signaling is an
influential mechanism promoting NADPH-oxidase assembly, and therefore accelerating
ROS production. Apart from this, it was shown that activation of NF-κB signaling increases
the expression of the gp91 subunit [95]. The increase of ROS concentration, as well as
decrease of antioxidant defense leads to oxidative stress development [41]. It is worth men-
tioning that ROS not only mediate direct ROS-induced oxidative damage of biomolecules,
but also participate in redox signaling, influencing the activity of transcription factors,
kinases, caspases, receptors through post-translational modifications [96]. Moreover, ROS
can perform a double role during oxidative stress. On one hand, they are able to activate
NF-κB pathway that leads to the induction of the pro-inflammatory cytokines and cell
adhesion molecules (ICAM-1, VCAM-1, P- and E-selectin) expression on the endothelial
cells, where they facilitate interaction with lymphocytes. That is especially important
during ARDS emergence, when polymorpho-nuclear neutrophils are one of the main ROS
producers [39,43,97,98]. On the other hand, ROS have the ability to repress of NF-κB
signaling through an adaptive mechanism for decreasing the severity of inflammation
and oxidative stress [95]. Interestingly, NF-κB activation may induce synthesis of different
antioxidant proteins that can reduce the concentration of free radicals as well [99].

There are several other factors that can amplify oxidative stress in the body during
SARS-CoV-2 infection. For example, it is well known that electron leakage is observed
during OXPHOS in I and III mitochondrial complexes that lead to the formation of mito-
chondrial ROS (mtROS) and stimulate gradual mitochondrial damage [100]. It is supposed
that mtROS together with oxidized mitochondrial DNA induce NALP3 activation [101].
Mitophagy is a process for degradation of damaged or dysfunctional mitochondria that
allows maintaining of functional population of these organelles in the cell. Certain nuclear
and mitochondrial DNA mutations can suppress mitophagy, which was found to be asso-
ciated with increased pro-inflammatory response and inflammation chronification [102].
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Mitochondrial dysfunction and deficient mitophagy are present in various human chronic
diseases. It is possible that presence of mitochondrial dysfunction coupled with oxida-
tive stress contributes to the increased severity of SARS-CoV-2 infection. Several other
conditions are known to be associated with increased oxidative stress as well. Obesity
is known to be one of them. It was found that accumulated adipose tissue produces the
pro-inflammatory cytokines, thereby provoking ROS generation [103,104].

Smoking is another factor that greatly contributes to oxidative stress. It was demon-
strated that cigarette smoking impacts the endothelial functions, intensifies oxidative stress,
and causes platelet activation [105]. Moreover, ACE2 expression is increased in response
to lung injure and inflammation caused by smoking [106]. Together, these factors may
explain the observed more severe course of SARS-CoV-2 infection in smokers. At the
same time, several groups have reported the so-called “smoker’s paradox”: the fact that
smokers appear to be underrepresented among COVID-19 patients in some populations.
Epidemiological and case-control studies reported that the prevalence of active smokers
among hospitalized COVID-19 patients was lower than expected, but the reasons for this
phenomenon remained unclear [107]. The existing hypotheses include blunted immune
response in active smokers, elevated nitric oxide in the smokers’ respiratory tract, and
anti-inflammatory effects of nicotine. However, the data available so far are quite limited,
and not free from biases. Moreover, the deteriorating effect of smoking on the respiratory
tract is likely to aggravate the disease severity [108]. More systematic studies are needed
to explore the “smoker’s paradox”, which should be treated with caution until solid data
are obtained.

Older age is another factor associated with increased oxidative stress, since the pro-
tective capabilities of the antioxidant systems of the body are generally reduced in older
adults [109]. That can be associated with aggravated pro-inflammatory response that leads
to ARDS development [110]. Therefore, several factors that are known to be associated
with increased oxidative stress, such as chronic diseases, including morbid obesity and
diabetes mellitus, smoking, and older age, were also listed as risk factors for a more severe
course of COVID-19 [111].

The information on the possible involvement of oxidative stress in the pathogenic
mechanisms of SARS-CoV-2 infection is constantly accumulating. The information available
to date is presented in Figure 1. The search for old and new medications that can alleviate
the symptoms of the disease and reduce mortality is currently a top priority, and antioxidant
drugs should be considered as well. A potential agent which can decrease oxidative stress
for SARS-CoV-2 patients is N-acetylcysteine (NAC). It is a precursor of glutathione (GSH),
which in turn serves as the most important regulator of intracellular redox potential.
Moreover, NAC is able to inhibit NALP3 inflammasome that lowers the inflammatory
response and ROS-mediated synthesis [112]. Furthermore, clinical guidelines for COVID-19
treatment suggest using NAC, vitamins E/C and melatonin. Melatonin is considered to be a
powerful antioxidant because it is capable of scavenging a wide pool of free radicals and has
an anti-inflammatory effect which increases the expressions of antioxidant enzymes [113].
Finally, an animal model of ARDS was used to demonstrate alpha-lipoic acid and vitamins
E/C using for increasing the GSH level and the decline of TNF-α (tumor necrosis factor)
and IL-1β concentration. Thus, antioxidant therapy is necessary for reducing the severity
of SARS-CoV-2 and its applying can prevent ARDS development [114]. Further studies
will undoubtedly improve our understanding of the potential of antioxidant drugs for
treatment of COVID-19 disease.
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Figure 1. Possible ways of oxidative stress involvement in the COVID-19 disease. SARS-CoV-2 binds
with ACE2 receptor; as a result, this virus enters into the host cells by endocytosis. The different virus
components are recognized by PRR. For example, S-protein is distinguished by TLR2/4; ssRNA of
coronavirus is distinguished by TLR7/8. Besides, RIG-I/MDA5 could identify dsRNA, a replication
intermediate for RNA viruses. When sensing of dsRNA is performed, it leads to the cooperation
with MAVS and further oligomerization process that attracts the adaptor proteins with subsequent
activation of NF-κB and IRF factors. Also, viroporin E is capable of changing the ion flows of
Ca2+ and K+ which drive to NALP3 activation. TLRs sensing provides the recruitment of adaptor
proteins which can form the myddosome complex for NF-κB activation. NF-κB signaling is linked by
expression of interleukin precursors. The activation effects on NALP3 inflammasome are necessary
to realize the olizomerization process and ASC recruitment. Eventually, the formed inflammasome
converts pro-caspase-1 to active caspase-1 in order to execute the processing of pro-interleukins.
Stimulation of NF-κB signaling is associated with increasing of NOX expression, succeeded by ROS
production. ROS can serve as signaling molecules that induce NF-κB signaling as well. Thus, the
excessive ROS production mediates the hyper-inflammation and development of cytokine storm that
impact both the possibility of ARDS development and severity of ARDS course.

TLR, toll like receptors; ACE2, angiotensin-converting enzyme 2; ssRNA, single-
stranded RNA; dsRNA, double-stranded RNA; MAVS, mitochondrial antiviral-signaling
protein; IRF, interferon regulatory factor; ASC, apoptosis-associated speck-like protein
containing a CARD; ROS, reactive oxygen species; NOX, NADPH-oxidase.

6. Conclusions

The SARS-CoV-2 pandemic has become a great challenge for the world community
and has already led to more than 700 thousand deaths all over the world. However, the
disease severity and mortality vary widely across populations, and it is now clear that
certain risk factors should exist that explain such substantial differences. Some patients
develop ARDS, which is preceded by a cytokine storm, which in turn is associated with
virus detection by PRRs and subsequent hyperactivation of the NALP3 inflammasome.
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Future investigations should put special emphasis on PRRs that mainly participate in
virus recognition. Currently available data on receptors for SARS-CoV-2 detection are
limited. The known risk factors of severe disease course and mortality from SARS-CoV-2
infection include a number of chronic diseases, such as diabetes, obesity, and older age.
Interestingly, the list of these factors overlaps with the known list of human conditions
associated with increased oxidative stress. Certain signaling pathways of oxidative stress
can have a direct influence on cytokine storm triggering during the infection. Therefore, the
impact of ROS on the severity of coronavirus infection is an important question and should
be investigated by future studies. Appropriate antioxidant therapy will probably make a
significant contribution to decreasing the hyperinflammation rate as well as reducing the
severity of ARDS.
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