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Abstract

Purpose

Changes in cerebral cortical regions occur in HIV-infected patients, even in those with mild neu-

rocognitive disorders. Working memory / attention is one of the most affected cognitive domain

in these patients, worsening their quality of life. Our objective was to assess whether cortical

thickness differs between HIV-infected patients with and without working memory deficit.

Methods

Forty-one adult HIV-infected patients with and without working memory deficit were imaged

on a 1.5 T scanner. Working memory deficit was classified by composite Z scores for perfor-

mance on the Digits and Letter-Number Sequencing subtests of the Wechsler Adult Intelli-

gence Scale (third edition; WAIS-III). Cortical thickness was determined using FreeSurfer

software. Differences in mean cortical thickness between groups, corrected for multiple

comparisons using Monte-Carlo simulation, were examined using the query design estimate

contrast tool of the FreeSurfer software.

Results

Greater cortical thickness in left pars opercularis of the inferior frontal gyrus, and rostral and

caudal portions of the left middle frontal gyrus (cluster 1; p = .004), and left superior frontal

gyrus (cluster 2; p = .004) was observed in HIV-infected patients with working memory defi-

cit compared with those without such deficit. Negative correlations were found between

WAIS-III–based Z scores and cortical thickness in the two clusters (cluster 1: ρ = –0.59;

cluster 2: ρ = –0.47).
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Conclusion

HIV-infected patients with working memory deficit have regions of greater thickness in the

left frontal cortices compared with those without such deficit, which may reflect increased

synaptic contacts and/or an inflammatory response related to the damage caused by HIV

infection.

Introduction

More than 1 million individuals in the United States and more than 40 million people world-

wide are currently infected with the human immunodeficiency virus (HIV) [1]. The advent of

highly active antiretroviral therapy (HAART) has markedly reduced HIV-associated mortality,

but no comparable reduction of neurological complications has been achieved [2]. Despite a

decline in the incidence of HIV-associated dementia, the prevalence of milder HIV-associated

neurocognitive disorders (HAND) remains unchanged [3]. Central nervous system (CNS)

involvement persists, probably due to the persistence of HIV reservoirs in the brain, despite

blood viral suppression and immune reconstitution [4].

The definitive diagnosis of HAND, preferably using standardized neuropsychological tests,

is based on evaluation of the following cognitive domains: working memory / attention, inhi-

bition/cognitive flexibility, memory (learning and recall), speed of information processing,

sensory-perceptual and motor skills, and verbal language [3]. The main cognitive domains

affected in HAND are visual and verbal working memory and attention [5, 6]. Working mem-

ory, defined as the ability to retain and manipulate information for short periods of time is

required for the maintenance of awareness and concentration, and is very important for execu-

tive functions and learning. Although HAART generally improves neuropsychological func-

tion in HIV-infected patients, it does not improve working memory deficit, and may even

exacerbate it with ongoing infection [7]. Working memory deficit in HIV-infected patients is

related to poorer medication adherence, self-reported cognitive complaints [8], and depen-

dence in activities of daily living [9]. Moreover, patients with HAND of all stages have an

increased mortality risk [10].

Many neuroimaging studies have demonstrated the occurrence of volumetric changes in

gray and white matter in the brains of HIV-infected patients [11–15]. Specifically, volume

reductions in the amygdala, caudate nucleus, thalamus, and hippocampus, as well as in neo-

cortical regions such as the cingulate cortex, have been described [16]. Such cerebral atrophy

has been correlated with poor cognitive performance in some studies [15, 16], but not in others

[17]. However, most studies of this nature have not involved the consideration of cognitive

domains or the inclusion of patients with HIV-associated dementia [12]. A clear understand-

ing of the relationship between cortical thickness and working memory in HIV-infected

patients is needed to identify structural brain changes that are involved in neurocognitive dete-

rioration in these patients. Thus, this study was conducted to investigate brain cortical thick-

ness in HIV-infected patients with and without working memory deficit.

Materials and methods

Ethics committee approval

This study was approved by the Ethics Committee of the Clementino Fraga Filho University

Hospital (CEP151/08), and all participants provided written informed consent prior to inclu-

sion in this study.
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Subjects

Between September 2011 and February 2015, 55 patients with HIV infection for�5 years, as

confirmed by enzyme-linked immunosorbent assay and western blot, were selected randomly

from the hospital’s database. Exclusion criteria were self-reported illicit drug use within the

past year (cocaine and crack cocaine, marijuana, hallucinogens and dissociative drugs, syn-

thetic cannabinoids, methylenedioxymethamphetamine (MDMA–ecstasy or molly), metham-

phetamine, opium, heroin and other opioids), neurological disorder (e.g., current or past CNS

infection), psychiatric illness, magnetic resonance (MR) imaging contraindication, and abnor-

mal findings on conventional brain MR imaging sequences. Five patients had to be excluded

from the study because they met clinical exclusion criteria or had MR imaging

contraindication.

All 50 patients underwent MR imaging and neuropsychological testing. Five were excluded

because of MR imaging alterations secondary to previous neurological diseases or opportunis-

tic infection. An additional 4 patients were excluded in the subsequent matching of the two

groups by age, years of education, and gender.

All the remaining 41 patients were divided into two groups according to the presence or

absence of working memory deficit, based on composite Z scores for the Digits and Letter-

Number Sequencing subtests of the Wechsler Adult Intelligence Scale (third edition; WAI-

S-III) [18].

All HIV-infected patients who participated in this study had undetectable plasma viral

loads (below 50 copies of HIV-1 RNA per milliliter of blood) and were receiving HAART. Of

those with working memory deficits (n = 17; Table 1) 11 patients had Memorial Sloan Ketter-

ing (MSK) ratings [3] of 0.0, 3 had ratings of 0.5, and 3 had ratings of 1.0. Of the 24 participants

without working memory deficits, 17 had ratings of 0.0, 5 had ratings of 0.5, and 2 had ratings

of 1.0. The divisions of groups according to the Fascati criteria [3] show that of the patients

with working memory deficit (n = 17), 11 met the definition of HAND, of these 6 were asymp-

tomatic neurocognitive impairment (ANI) and 5 were mild neurocognitive disorder (MND).

In the group of patients without working memory deficit (n = 24), 12 met the definition of

HAND, of which 10 were ANI and 2 were MND.

All participants were Brazilian, right-handed and only spoke Portuguese. No significant dif-

ference in sex, age, years of education, duration of known HIV infection, years on HAART, or

CD4 T lymphocyte count nadir and at the time of MR imaging was found between HIV-

infected patients with and without working memory deficit (see Table 1).

Neuropsychological assessment

Working memory scores were calculated based on WAIS-III tasks [19] and converted to Z
scores [(raw score–normative mean) / normative standard deviation]. Participants with com-

posite Z scores [(Z Digit Span + Z Letter-Number Sequencing) / 2]� –1.5 were considered to

have working memory deficits. The cut-off of –1.5 standard deviations below the normative

mean has been used widely to identify clinically relevant deficits and aligns with the diagnostic

criteria for mild cognitive impairment [20, 21].

The WAIS-III is used widely to assess intelligence and cognitive components. The Digits

and Letter-Number Sequencing tasks were used in this study to assess participants’ working

memory. Cunha et al. [22] has reported on the adaptation of the WAIS-III for the Brazilian

population, and its validation and normative application in this population.

To avoid bias by other critical cognitive functions involved in working memory ability, as sug-

gested by Antinori et al. [3], we assessed and compared between groups the speed of information

processing, sensory-perceptual and motor skills, verbal language, and executive functions
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domains. Table 2 shows the variables comprising each cognitive domain and the neuropsycholog-

ical tests used to assess them. Mean Z scores showed no significant difference in performance

between groups in any domain, except working memory (Mann–Whitney U test; Table 3). A

neuropsychologist (RPF) with specific training and 8 years of experience in cognitive testing

administered all neuropsychological tests on the day of MR imaging examination.

MR imaging protocol

MR imaging was performed using a 1.5 T scanner (Avanto; Siemens, Erlangen, Germany)

with an eight-channel phased-array head coil. The MR imaging protocol included axial

Table 1. Sociodemographic and clinical data of HIV-infected patients.

Groups Mean Standard

deviation

Rangec df t p

Age in yearsa HIV-infected with working memory deficit 52.53 6.92 (41–62) 39.00- 1.01 - .32

-HIV-infected without working memory

deficit

50.33 6.83 (31–65)

Years of known HIV infectiona HIV-infected with working memory deficit 13.26 3.49 (8–21) 39.00- 0.05 - .96

-HIV-infected without working memory

deficit

13.17 5.43 (3–23)

Years on HAARTa HIV-infected with working memory deficit 12.21 4.38 (3–18) 39.00

-

0.05 - .96

-HIV-infected without working memory

deficit

12.28 5.47 (3–20)

Years of educationa HIV-infected with working memory deficit 8.41 4.30 (3–15) 39.00- -1.77

-

.14

-HIV-infected without working memory

deficit

10.63 3.70 (4–20)

CD4 T Lymphocyte count at the time of MRI (cells/

μL)a
HIV-infected with working memory deficit 649.65 338.31 (47–1198) 39.00- -0.32

-

.75

-HIV-infected without working memory

deficit

685.83 365.03 (138–

1819)

CD4 T Lymphocyte count nadir (cells/μL)a HIV-infected with working memory deficit 208.31 110.62 (16–341) 39.00- -0.70

-

.49

-HIV-infected without working memory

deficit

183.09 107.16 (38–480)

Sexb HIV-infected with working memory deficit 14M/

3W

- - 1.00 - - - .40

-

HIV-infected without working memory

deficit

17M/

7W

- -

M, men; W, women. Statistical analyses used
aindependent t test
bchi-squared test
c(minimum value and maximum value).

https://doi.org/10.1371/journal.pone.0261208.t001

Table 2. Cognitive domains with their corresponding neuropsychological tests and specific variables for the composite scores.

Cognitive Domains Neuropsychological Tests Variables

Executive functions Trail making test Time B and Errors B, B/A Time, B-A time

Stroop color and word test Time Color-word Page Score, interference score

Hayling test B/15 errors, B/45 errors, B-A time

Processing speed Bells cancellation test Time 1

Hayling test and trail making test Times Parts A

Sensory-perceptual and motor skills Brazilian brief neuropsychological assessment battery NEUPSILIN Constructive praxis task

Verbal language Montreal communication evaluation battery Semantic and phonemic verbal fluency tasks

Working memory Wechsler adult intelligence scale–III Digits and letter-number sequencing tasks

https://doi.org/10.1371/journal.pone.0261208.t002
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FLAIR; TR, 9000 ms; TE, 83 ms; FOV, 230 mm; matrix, 244 × 256; section thickness, 4.5 mm

with a 10% gap; flip angle, 180˚; inversion time, 2500 ms and sagittal T1 three-dimensional

(3D) MPRAGE–weighted (TR, 2730 ms; TE, 3.26 ms; TI, 1000 ms; FOV, 256 mm; matrix,

192 × 256; section thickness, 1.3 mm; flip angle, 7˚; voxel size, 1.0 mm × 1.0 mm × 1.3 mm)

sequences. Subject’s heads were stabilized with tape across the forehead and padding around

the sides. A neuroradiologist (ELG) with 16 years of experience reviewed the MR images. All

images acquired were of sufficient quality for postprocessing.

Assessment of cortical thickness and statistical analysis

Cortical reconstruction of sagittal T1 3D MPRAGE–weighted images was performed using

FreeSurfer (version 5.3.0; http://surfer.nmr.mgh.harvard.edu) as described previously [23, 24].

Briefly, the procedure included motion correction, the removal of nonbrain tissue deforma-

tion, Talairach transform computation, correction for signal intensity and automated topol-

ogy, tessellation of the gray/white matter boundary, and inflation and registration of the

cortical surface. This technique uses intensity and continuity information from the 3D image

volume to represent cortical thickness, defined as the distance between the gray/white matter

boundary and the gray matter/cerebrospinal fluid boundary. Cortical thickness maps were

made for each patient, and mean cortical thickness was measured. Cortical thickness was com-

pared between participants with and without working memory deficits, using a cluster-form-

ing threshold of 1.3 (p< .05), adopting the query design estimate contrast (QDEC) tool in

FreeSurfer [25], application of a smoothing factor of 10, and Monte-Carlo simulation (signifi-

cance at p< .05) to correct for multiple comparisons. FreeSurfer enables the hypothesis-free

assessment of differences in cortical thickness between groups.

Correlations of cortical thickness with working memory Z scores in areas with significant

differences in the whole sample were examined using the Spearman’s rank correlation

coefficient.

Results

Following the correction for multiple comparisons, adjusted analyses revealed greater cortical

thickness in two clusters in HIV-infected patients with working memory deficit compared

with those without such deficit (Table 4). Cluster 1 affected areas in the left pars opercularis of

the inferior frontal gyrus, and the rostral and caudal portions of the left middle frontal gyrus.

Table 3. Comparative analysis among groups on cognitive domains Z scores.

Cognitive Domains Groups Median Z Score (IQR) Rangea U p
Executive functions HIV-infected with working memory deficit -0.81 (-1.87–0.03) (-3.51–0.56) 124.00 .06

-0.28 (-0.71–0.06) (-1.25–1.05)HIV-infected without working memory deficit

Processing speed HIV-infected with working memory deficit -0.99 (-2.26 –-0.59) (-3.65–0.41) 151.50 .26

-0.95 (-1.62 –-0.17) (-2.43–1.02)HIV-infected without working memory deficit

Sensory-perceptual and motor skills HIV-infected with working memory deficit -0.37 (-2.07–0.56) (-2.62–0.95) 127.50 .36

-0.06 (-0.98–0.56) (-3.07–1.93)HIV-infected without working memory deficit

Verbal language HIV-infected with working memory deficit -0.68 (-1.20 –-0.36) (-2.08 –-0.1) 136.50 .07

-0.21 (-1.34–0.03) (-2.1–0.95)HIV-infected without working memory deficit

Working memory HIV-infected with working memory deficit -2.02 (-2.50 –-1.80) (-3.68 –-1.57) 0.00 < .001

-0.47 (-1.21–0.12) (-1.49–2.72)HIV-infected without working memory deficit

IQR, interquartile range
a(minimum value and maximum value).

https://doi.org/10.1371/journal.pone.0261208.t003
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Cluster 2 affected areas of the left superior frontal gyrus (Fig 1). Negative correlations were

found between WAIS-III–based Z scores and cortical thickness in the two clusters (cluster 1: ρ
= –0.59; cluster 2: ρ = –0.47; Fig 2). Cortical thickness was not correlated with performance in

any other cognitive domain (Table 5).

Discussion and conclusion

This investigation revealed greater thickness of the left frontal cortices in HIV-infected

patients with working memory deficit compared with those without such deficit. Cortical

thickness in these areas correlated negatively with WAIS-III–based Z scores.

Several postmortem studies have demonstrated widespread neuronal loss involving the

basal ganglia, the entire cerebral cortex, and brain stem structures in HIV-infected patients

[26]. Subcortical gray matter structures are particularly vulnerable to the effects of HIV brain

infection [12], but the reason for this preferential involvement remains unknown [27]. The

pattern of atrophy observed in cognitively impaired HIV-infected patients involves the nigros-

triatal and frontostriatal systems. These changes are consistent with the clinical characteristics

of HAND, including the impairment of working memory, executive function, attention, and

motor function [28].

Working memory is an essential component of many complex cognitive functions, and it is

critically dependent on the integrity of the neural circuitry, including the prefrontal cortex and

Table 4. Clusters of significant altered cortical thickness between HIV-infected patients groups.

Talairach coordinates

Region Hemisphere BA Max-log (p) VtxMax Size (mm2) Thicknessa

(mm)

x y z p

Cluster 1 LH 9/10/44/46 3,672 44,468 1166 (1.86749–

2.5605)

-36 18 20 .004

Cluster 2 LH 8/9/10 2,849 65,563 1186 (2.21775–

2.83781)

-10 45 38 .004

BA, Brodmann‘s area; LH, left hemisphere; aaverage thickness (minimum value and maximum value).

https://doi.org/10.1371/journal.pone.0261208.t004

Fig 1. Clusters of significantly greater cortical thickness the left hemisphere in HIV-infected patients with (vs. HIV-infected without) working

memory impairment. Left pars opercularis of the inferior frontal gyrus (a), caudal (b) and rostral (c) portions of the middle frontal gyrus, and left

superior frontal gyrus (d).

https://doi.org/10.1371/journal.pone.0261208.g001
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striatum. A recent meta-analysis of studies of executive function and HIV serostatus [29] sug-

gested that working memory is the most commonly affected “cognitive” component of execu-

tive function among HIV-infected individuals. The Digits and Letter-Number Sequencing

subtests of the WAIS are used widely to evaluate working memory [30]. We used specific tests

to assess the function of cognitive domains other than working memory for group matching,

Fig 2. Distribution of cortical thickness (in millimeters) in clusters according to Z scores. Clusters 1 (a) and 2 (b) in

HIV-infected patients with (red) and without (blue) working memory deficits.

https://doi.org/10.1371/journal.pone.0261208.g002

Table 5. Correlations between the performance of cognitive domains and the cortical thickness of the clusters.

Cluster 1 Cluster 2

Cognitive Domains ρ p ρ p
Executive functions -0.031 .85 0.032 .85

Processing speed 0.016 .92 -0.039 .81

Sensory-perceptual and motor skills -0.045 .79 0.034 .84

Verbal language -0.249 .12 -0.284 .07

Working memory -0.587 < .001 -0.470 .002

https://doi.org/10.1371/journal.pone.0261208.t005

PLOS ONE Preliminary comparative study of cortical thickness in HIV-infected patients and working memory

PLOS ONE | https://doi.org/10.1371/journal.pone.0261208 December 10, 2021 7 / 14

https://doi.org/10.1371/journal.pone.0261208.g002
https://doi.org/10.1371/journal.pone.0261208.t005
https://doi.org/10.1371/journal.pone.0261208


assessing all cognitive domains recommended in the definition of HAND [3]. As no significant

difference was observed in other domains, our findings can be attributed to working memory

deficit.

Functional MR imaging and positron emission tomography have shown the recruitment of

specific brain regions during a working memory task, demonstrating that activation of the pre-

frontal cortex, parietal regions, cingulate gyrus, and hippocampus is associated with working

memory processing, in unimpaired young adults [31]. The greater frontal lobe cortical thick-

ness in HIV-infected patients with working memory deficit in this study is consistent with

these findings.

The most common neuroradiological brain abnormalities in HIV-infected patients are

nonspecific, consisting of diffuse cerebral atrophy with symmetrical white-matter hyperinten-

sity on T2-weighted and FLAIR sequences, in the absence of contrast enhancement and the

mass effect [32]. Thus, many quantitative methods have been used for the early detection of

brain abnormalities in HIV-infected patients. Previous studies have shown diffuse brain atro-

phy and volumetric reduction in specific cortical and subcortical brain structures [11]. Most

authors have reported correlations of diffuse or regional atrophy with cognitive impairment

[16, 33], motor dysfunction, advanced Centers for Disease Control stages of HIV infection,

and longer disease duration [11]. Previous studies of changes in cortical thickness in HIV-

infected patients have documented atrophy in the primary sensory and motor cortices, medial

frontal and premotor cortices, parietal association cortex [13], posterior and inferior temporal

lobes, parietal lobes, cerebellum [15], and temporal and anterior cingulate cortices [12]. Kal-

lianpur et al. [14] found cortical thinning in the bilateral insula, orbitofrontal and temporal

cortices, right superior frontal cortex, and right caudal anterior cingulate in patients receiving

HAART with detectable HIV DNA in the peripheral blood, compared with patients receiving

HAART with no detectable HIV DNA in the peripheral blood. Differently, in the current

study, we found areas of greater cortical thickness in patients with cognitive impairment com-

pared to patients without such deficit. This may have happened because we included only

patients without dementia. Also, the participating patients with working memory deficits were

in early phases of HAND, different from those found in previous studies, which included

patients with dementia, possibly reflecting advanced phases of HAND [13–15].

Cortical thinning has been observed in the context of aging and in association with numer-

ous diseases [34]. Areas of increased cortical thickness have been described in individuals with

psychiatric disorders, pediatric obstructive sleep apnea and autism, as well as in meditators,

drug users, online gamers, and professional athletes [35–37]. Asymptomatic PSEN1 mutation

carriers for familial Alzheimer’s disease (AD) presented increased cortical thickness in the pre-

cuneus and parietotemporal areas compared to healthy controls, with reduced thickness

observed with disease progression [38]. Several evidences in the literature on morphometric

studies in humans [39–42], as well as in animal models [43, 44], and pathological data [41, 42]

support a possible increase in cortical thickness in early stages of AD. Reactive neuronal hyper-

trophy and inflammatory response are likely to cause increased cortical thickness in the early

and asymptomatic phase of familial AD, while the predominance of neuronal loss occurs in

the symptomatic phase of the disease. Similarly, Paulsen et al. [45] found that preclinical Hun-

tington’s disease participants had a significantly higher proportion of cortical gray matter com-

pared with healthy control subjects. These findings may also occur in HIV-infected

population, as the greater cortical thickness found in HIV-infected patients with working

memory deficit and in early stages of HAND, in the current study, may be related with similar

underlying pathological processes, when compared to the early stages of familial AD.

Functional MR imaging studies in HIV-infected patients are able to detect alterations even

in the early stages of HAND, which may even precede structural brain lesions detectable by
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imaging methods [46]. Chang et al. [47] observed significantly greater blood oxygenation

level–dependent (BOLD) activation, predominantly in the frontal, inferior lateral prefrontal

cortex, and supplementary motor area, during working memory tasks in HIV-infected patients

compared with controls. This extension of brain activation is probably related to the saturation

of neural activity in normally activated regions and the need to recruit adjacent neural sub-

strate. The frontostriatal system is often most severely affected in patients with HAND, as

demonstrated in neuropathological and neuroimaging studies [48, 49], and this damage may

necessitate even greater modulation, with recruitment of additional neural processes and

greater frontal activation during working memory tasks. Increased activation in selected brain

regions also has been reported in patients with other brain disorders, including adults with

mild traumatic brain injuries, those with schizophrenia, and those at risk of Alzheimer disease,

as well as in children with attention deficit disorder [50]. Thus, MR imaging studies of people

with other brain disorders are needed to clarify the concept that neuronal injury leads to

increased use of the brain’s reserve capacity.

A magnetoencephalography study of encoding operations and the memory maintenance

processes of working memory revealed no difference during the encoding period, but a signifi-

cantly stronger decrease in alpha activity in the left supramarginal gyrus, areas of the left infe-

rior frontal gyrus (i.e., Broca’s area), and the left cerebellum in HIV-infected patients

compared with controls [51]. Combined electroencephalography/fMRI studies have connected

alpha decreases in these brain regions to increased activation [52], indicating that hyperactiva-

tion occurs during memory maintenance in HIV-infected patients. Taken together, the

magnetoencephalography and BOLD findings support our hypothesis that greater frontal-lobe

cortical thickness in HIV-infected patients with working memory deficits may be related to

neuronal damage by inflammation, as well as activation of brain reserve [53], even if this is

unable to achieve normal performance.

The mechanisms involved in HIV brain injury are not fully understood. To assess the par-

ticipation of the inflammatory process in working memory–related structures, Ernst et al. [54]

studied MR spectroscopic and fMRI data from patients with HIV and mild neurocognitive

impairment; they demonstrated that increased concentrations of the glial markers Cho, Mi,

and Cr in the frontal white matter and basal ganglia were associated with increased BOLD acti-

vation during working memory tasks. These findings suggest that working memory deficits in

HIV-infected patients are modulated by inflammation in the white matter and basal ganglia.

Although we have not studied the basal ganglia and brain spectroscopy, these results are in

agreement with our findings, since the brain inflammation caused by the infection may con-

tribute to a greater cortical thickness.

The pathophysiological mechanism of greater cortical thickness in patients with working

memory deficit compared with those without such deficit may reflect inflammatory response

and/or increased synaptic contacts related to the damage caused by HIV infection, which

could contribute to the observed variation in cortical thickness according to cognitive dysfunc-

tion stage in HIV-infected patients. Subtle cerebral reorganization reflecting the inherent plas-

ticity of the brain may occur concomitantly with the tissue reduction described in the late

stages of AIDS dementia. The greater cortical thickness could be due to inflammation, greater

arborization per neuron, increased regional vasculature, or increased glial volume. The meth-

ods employed do not distinguish between these possibilities.

Although we did not use a permutation testing and choose a cluster-forming threshold of

1.3 (p< .05), we assessed the cortical thickness of the participants, which is less susceptible to

false positive rates for surface-based group analysis, compared to volume and area assessments

[55]. The two large clusters found in our cortical thickness analysis are more likely to be signif-

icant, and true positive. As seen by Greve et al. [55] larger significant clusters of cortical
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thickness differences can still be significant at the .05 level. The presented study has some limi-

tations. Although our sample was as large as those in most previous studies, it was still rela-

tively small, and the results should be replicated in independent samples. In addition, we could

not assess differences between treated and untreated patients, as all patients were receiving

HAART. Given the cross-sectional design of the study, we could not examine treatment effects

on longitudinal infection-related changes in cortical thickness. However, all HIV-infected

patients participating in this study were neurologically asymptomatic, with no significant dif-

ference in the duration of known HIV infection, CD4 count, age, education, or sex, and we

were able to find significant brain changes in HIV-infected patients with working memory

deficit.

Another limitation is that the study design does not include a group of HIV-negative con-

trols. HIV-infected patients formed the two groups studied and their division occurred due to

the presence or absence of working memory deficit. The lack of a HIV-negative control group

does not allow us to understand whether the cortical thickness of the group with working

memory deficit is increased compared to healthy controls or whether the group without work-

ing memory deficit could have areas of reduced cortical thickness. Therefore, the interpreta-

tion of this study should only be restricted to comparisons between HIV-infected patients, and

it is not possible to extrapolate the results to comparisons between HIV-positive patients and

healthy controls.

In conclusion, HIV-infected patients with working memory deficit have regions of greater

cortical thickness in the left frontal cortex relative to HIV-infected patients with no such defi-

cit. These findings may reflect the effects of HIV-related damage on working memory and

may provide insight into the neurobiology of HIV-related brain injury.
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23. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance

images. Proc Natl Acad Sci USA. 2000; 97:11050–5. https://doi.org/10.1073/pnas.200033797 PMID:

10984517

24. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling

system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

Neuroimage. 2006; 31:968–80. https://doi.org/10.1016/j.neuroimage.2006.01.021 PMID: 16530430

25. Hagler DJ Jr, Saygin AP, Sereno MI. Smoothing and cluster thresholding for cortical surface-based

group analysis of fMRI data. Neuroimage. 2006; 33:1093–103. https://doi.org/10.1016/j.neuroimage.

2006.07.036 PMID: 17011792

26. Adle-Biassette H, Chrétien F, Wingertsmann L, Héry C, Ereau T, Scaravilli F, et al. Neuronal apoptosis

does not correlate with dementia in HIV infection but is related to microglial activation and axonal dam-

age. Neuropathol Appl Neurobiol. 1999; 25:123–33. https://doi.org/10.1046/j.1365-2990.1999.00167.x

PMID: 10216000

27. Scaravilli F, Bazille C, Gray F. Neuropathologic contributions to understanding AIDS and the central

nervous system. Brain Pathol. 2007; 17:197–208. https://doi.org/10.1111/j.1750-3639.2007.00047.x

PMID: 17388950

28. Gongvatana A, Woods SP, Taylor MJ, Vigil O, Grant I, HNRC Group. Semantic clustering inefficiency in

HIV-associated dementia. J Neuropsychiatry Clin Neurosci. 2007; 19:36–42. https://doi.org/10.1176/

jnp.2007.19.1.36 PMID: 17308225

PLOS ONE Preliminary comparative study of cortical thickness in HIV-infected patients and working memory

PLOS ONE | https://doi.org/10.1371/journal.pone.0261208 December 10, 2021 12 / 14

https://doi.org/10.1017/S1355617704102130
http://www.ncbi.nlm.nih.gov/pubmed/15147590
https://doi.org/10.1017/s0317167100007009
http://www.ncbi.nlm.nih.gov/pubmed/19534327
https://doi.org/10.1007/s11682-011-9113-8
https://doi.org/10.1007/s11682-011-9113-8
http://www.ncbi.nlm.nih.gov/pubmed/21264551
https://doi.org/10.1007/s00415-010-5883-y
https://doi.org/10.1007/s00415-010-5883-y
http://www.ncbi.nlm.nih.gov/pubmed/21207051
https://doi.org/10.1073/pnas.0502548102
http://www.ncbi.nlm.nih.gov/pubmed/16227428
https://doi.org/10.1093/cercor/bhr285
https://doi.org/10.1093/cercor/bhr285
http://www.ncbi.nlm.nih.gov/pubmed/22016479
https://doi.org/10.1007/s00234-011-0854-2
https://doi.org/10.1007/s00234-011-0854-2
http://www.ncbi.nlm.nih.gov/pubmed/21424708
https://doi.org/10.1007/s13365-020-00865-w
https://doi.org/10.1007/s13365-020-00865-w
http://www.ncbi.nlm.nih.gov/pubmed/32572834
https://doi.org/10.1097/QAI.0b013e318249db17
https://doi.org/10.1097/QAI.0b013e318249db17
http://www.ncbi.nlm.nih.gov/pubmed/22269799
https://doi.org/10.1136/jnnp.2008.160705
http://www.ncbi.nlm.nih.gov/pubmed/19279031
https://doi.org/10.1080/13803390903032529
https://doi.org/10.1080/13803390903032529
http://www.ncbi.nlm.nih.gov/pubmed/19657913
https://doi.org/10.1073/pnas.200033797
http://www.ncbi.nlm.nih.gov/pubmed/10984517
https://doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
https://doi.org/10.1016/j.neuroimage.2006.07.036
https://doi.org/10.1016/j.neuroimage.2006.07.036
http://www.ncbi.nlm.nih.gov/pubmed/17011792
https://doi.org/10.1046/j.1365-2990.1999.00167.x
http://www.ncbi.nlm.nih.gov/pubmed/10216000
https://doi.org/10.1111/j.1750-3639.2007.00047.x
http://www.ncbi.nlm.nih.gov/pubmed/17388950
https://doi.org/10.1176/jnp.2007.19.1.36
https://doi.org/10.1176/jnp.2007.19.1.36
http://www.ncbi.nlm.nih.gov/pubmed/17308225
https://doi.org/10.1371/journal.pone.0261208


29. Walker KA, Brown GG. HIV-associated executive dysfunction in the era of modern antiretroviral ther-

apy: a systematic review and meta-analysis. J Clin Exp Neuropsychol. 2018; 40:357–76. https://doi.org/

10.1080/13803395.2017.1349879 PMID: 28689493

30. Chang L, Lohaugen GC, Andres T, Jiang CS, Douet V, Tanizaki N, et al. Adaptive working memory

training improved brain function in human immunodeficiency virus-seropositive patients. Ann Neurol.

2017; 81:17–34. https://doi.org/10.1002/ana.24805 PMID: 27761943

31. Khan ZU, Muly EC. Molecular mechanisms of working memory. Behav Brain Res. 2011; 219:329–41.

https://doi.org/10.1016/j.bbr.2010.12.039 PMID: 21232555

32. Smith AB, Smirniotopoulos JG, Rushing EJ. From the archives of the AFIP: central nervous system

infections associated with human immunodeficiency virus infection-radiologic-pathologic correlation.

RadioGraphics. 2008; 28:2033–58. https://doi.org/10.1148/rg.287085135 PMID: 19001657

33. Corrêa DG, Zimmermann N, Netto TM, Tukamoto G, Ventura N, Leite SCB, et al. Regional Cerebral

Gray Matter Volume in HIV-Positive Patients with Executive Function Deficits. J Neuroimaging. 2016;

26:450–7. https://doi.org/10.1111/jon.12327 PMID: 26780881

34. Pareto D, Sastre-Garriga J, Auger C, Vives-Gilabert Y, Delgado J, Tintoré M, et al. Juxtacortical lesions
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