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Abstract: In this study hydrogels synthesized from agarose and carbomer 974P macromers 

were selected for their potential application in spinal cord injury (SCI) repair strategies 

following their ability to carry cells and drugs. Indeed, in drug delivery applications, one of 

the most important issues to be addressed concerns hydrogel ability to provide a finely 

controlled delivery of loaded drugs, together with a coherent degradation kinetic. 

Nevertheless, solute effects on drug delivery system are often neglected in the large body 

of literature, focusing only on the characterization of unloaded matrices. For this reason, in 

this work, hydrogels were loaded with a chromophoric salt able to mimic, in terms of steric 

hindrance, many steroids commonly used in SCI repair, and its effects were investigated 

both from a structural and a rheological point of view, considering the pH-sensitivity of the 

material. Additionally, degradation chemistry was assessed by means of infrared bond 

response (FT-IR) and mass loss. 
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1. Introduction 

Tissue engineering, briefly the smart combination of life sciences and engineering to replace 

damaged or missing parts of living tissues, is widely accepted as being the future in regenerative 

medicine and health care [1–3]. Recent literature suggests a combined strategy of cells and 

appropriated drugs delivered directly in situ as a promising tool to counteract many diseases [4–6]. All 

these approaches agreed about the use of biomaterials as a device in drug and cell delivery 

applications, thus answering the typical medical shortcoming of an uncontrolled outwards migration of 

the delivered product from the target tissue [7,8]. Among the huge field of biomaterials, emerging 

strategies in regenerative medicine show a very strong interest in hydrogel, being an excellent 

candidate for combined cell and drug delivery [9–11].  

Indeed, hydrogels are formed by high absorbent three-dimensional hydrophobic polymeric 

networks, which are able to mimic natural living tissues in terms of elasticity and mechanical 

properties [4,12].  

Conventionally, hydrogels may be classified as either synthetic or natural in origin [4]. On one 

hand, synthetic polymers can be tuned in terms of composition, rate of degradation, mechanical and 

chemical properties [13,14]. On the other hand, naturally derived polymers provide structures 

resembling living tissues in terms of specific cellular response, which sometimes overcome the 

advantages of synthetic polymers [15,16]. Moreover, natural polymers show similarity with the 

extracellular matrix (ECM), with the advantage of avoiding the stimulation of chronic inflammation, 

immunological reactions or toxicity, a characteristic drawback of synthetic polymers. However 

attention must be paid not only to ensure complete biocompatibility of both intermediate and final 

degradation macromers, but also to provide a degradation kinetic compatible with host tissue 

integration, in order to allow proper and viable tissue regenerative processes [17,18]. Nevertheless, the 

presence of drug loaded within the polymeric network is mostly neglected in literature [9,19], with the 

heavy risk to underestimate its role on material synthesis, characterization and degradation.  

The present work deals with controlled drug delivery from a new highly biocompatible and  

pH-dependent hydrogel [20–23], which was specifically developed for regenerative medicine 

applications in spinal cord injury (SCI) repair [24,25]. The hydrogel here investigated is also briefly 

named with the ACx acronym, from the two macromers used for their synthesis: agarose and carbomer 

974P, reacting in a statistical block polycondensation [21,24]. In general, the polymeric blend can be 

easily tuned using adequate proportions of cross-linking agents in order to obtain a material library, 

ACx indeed, able to accomplish different drug delivery needs [20,21]. In particular, here the AC1 

hydrogel was investigated as drug carriers for local delivery purposes of Sodium Fluorescein (SF), a 

good and commonly used drug-mimetic molecule [20,26,27]. In fact, SF shows steric hindrance and 

molecular structure similar to many corticosteroids and anti-inflammatory drugs (for example methyl 

prednisone and β-estradiol), which are regularly used in pharmacotherapy to ameliorate SCI secondary 

effects and central nervous system (CNS) damage [9,19,28]. 

Its role was examined by means of swelling kinetics, degradation, drug delivery kinetic and 

rheological properties together with FT-IR analysis. In addition, being the polymeric network anionic 

and with a high pH-dependence due to the presence of phosphate buffered saline solution (PBS) as 
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solvent in its synthesis, this key parameter was also considered and studied, providing new deeper 

insights to previous investigations [21,22]. 

2. Results and Discussions 

2.1. Drug Delivery 

At first, hydrogel ability to release drugs in accordance with medical needs was investigated and the 

results are presented in Figure 1, as cumulative mass fraction released in the outer solution (Mt/M∞). 

Figure 1. SF release profile from AC1 (Mt) expressed as unitary fraction with respect to 

total loaded mass (M∞). 

 

Figure 1 shows rapid initial release of SF due to the initial high concentration gradient leading to a 

burst effect [29]. This burst could be more likely caused by: (i) molecules that were at or near the 

solvent-hydrogel interface and thus could rapidly escape into the supernatant solution; and (ii) 

molecules that found a fast path through large pores of the hydrogel, with respect of those that had to 

diffuse through smaller ones, thus partially suffering a constrained molecular motion. After this initial 

burst, release became slower and reached an almost steady state condition after about 48 h (plateau). 

Moreover, it has to be noted that all loaded SF was released: while this confirms the presence of high 

clearance, it also gives indirect, but very important, information about the absence of chemical stable 

interactions between SF and the hydrogel matrix. Furthermore, SF complete release time, about 48 h, 

is fully compatible with medical needs on steroids like methylprednisolone [9,30,31]. For the  

above-mentioned considerations it can be assumed that all loaded SF is solved within hydrogel internal 

medium and is free to diffuse out, driven by concentration gradients. This can easily be explained 

considering the ratio between mean gel network mesh size (45 nm [20]) and SF mean hydrodynamic 

radius (0.5 nm [27]): diffusant molecules are not physically entrapped inside the entangled hydrogel 

network and are thus allowed to diffuse with a high free motion [10,20]. 
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2.2. Material Characterization 

2.2.1. Swelling Behavior 

Hydrogel here investigated was synthesized starting from a high molecular weight branched 

polyacrylic acid (carbomer 974P) and agarose, a common polysaccharide. The condensation reaction, 

occurring in PBS solution, was microwave-assisted to obtain a chemically cross-linked hydrogel, as 

verified with FT-IR analysis and presented in the following section [21]. Generally, chemical 

interactions would statistically bring polymer chains together and, indeed, the formation of a stable 

structure occurs through junction zones between chains. The presence of hydroxyl groups and 

carboxyl ones suggests that main interactions occur via esterification and hydrogen bonding (chemical 

hydrogel), as confirmed by FT-IR analysis. Moreover, PBS salts freely solvated in water cause salt 

carboxylates formation. Due to these reactions, AC hydrogels are quite anionic and this electrostatic 

nature, confirmed by mass equilibrium swelling at different pH, influences the ability and the kinetics 

involved in drug delivery [20]. The ability to absorb and retain a large amount of water is the key 

feature for 3D polymeric networks, such as hydrogel systems: swelling is thus the first point to 

investigate. Figure 2 shows the swelling kinetics of unloaded (Figure 2a) and loaded (Figure 2b) AC1 

hydrogel at 37 °C and 5% CO2, at different pH values. All samples exhibited fast swelling kinetics and 

they reached swelling equilibrium within the first hour. On one side the dependence on pH is well 

visible in Figure 2a: the ability to retain water increases together with solvent pH. A possible 

explanation could be that, because of the presence of carbomer (having a pKa value around 6.0 in a  

pH 7.2 phosphate buffer), the carboxylic groups of carbomer are highly dissociated. Therefore the 

carboxylate moiety on the polymer ionizes, resulting in repulsion between the negative charges, which 

favors the swelling of the polymer [32]. Adding positive charges (acid pH values of swelling solvent), 

negative charged backbones are partially shielded and attractive electrostatic forces rule the overall 

swelling process, favoring network shrinking. On the other hand, adding negative charges (basic pH 

values) prevailing forces are the repulsive ones, with a consequent higher stretching degree of the 

structure. Furthermore, mean mesh size of the polymeric network can be tuned by controlling swelling 

solvent pH, according to the specific requirements of the employed cells, and with respect to the 

specific regenerative medicine application [22]. Moreover it is easily observable that swelling 

phenomenon is also strictly dependent on the solute loaded within the polymeric network. Indeed the 

same pH dependence is present in loaded samples, but the respective mass swelling equilibrium values 

are lower compared with samples in Figure 2a.  

This effect is probably due to repulsion forces between negatively charged polymer backbones and 

the molecule loaded. This compression reduces natural repulsive forces between polymer chains, with 

consequent reduction of the amount of water that can be absorbed during swelling mechanism. 

In fact, as shown in Figure 2b solute concentration causes the swelling ratio to decrease, which 

agrees with the above-mentioned hypothesis of charged species shielding polymer chain’s charges. 

The presence of the drug, loaded within the network, represents an encumbrance to the swelling 

phenomenon and consequently the percentage of solvent absorbed decreases.   
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Figure 2. Swelling kinetics of AC1 (a) and AC1_SF loaded hydrogel (b) in different pH 

solvent values (pH = 0.5 (red); pH = 7.4 (black); and pH = 14 (blue)).  

 

 

2.2.2. Fourier Transform Infrared Spectroscopy (FT-IR) 

FT-IR spectra of AC1 and AC1_SF gel are plotted in Figure 3. Both hydrogels spectra show a broad 

peak around 3450 cm
−1

, which is due to the stretching vibration of O-H bonds, while peaks around 

2940 cm
−1

 are due to the C-H stretch. According with our previous studies, the formation of ester 

bonds
 
is visible in peaks corresponding to symmetric (around 1600 cm

−1
) and asymmetric (around 

1400 cm
−1

) CO2 stretches. Moreover, the presence of triethylamine (TEA) inside the network, related 

to C-N vibration, is confirmed by the peaks around 1080 cm
−1

. Spectra also show, in the range  

900–1000 cm
−1

, peaks related to C-O-C stretch vibration that represents the glycosidic bond between 

monosaccharide units (typical of agarose structure) and ester groups. 

In general the building blocks, or subunits, of macromolecules form a stable structure made up 

mostly of C-C bonds, usually referred as the “carbon skeleton”. C-C and C-H bonds are said to be non 

polar and, thus, tend to be less reactive and sometimes result inert at our degradation conditions. 

Building blocks of macromolecules act as discrete subunit because their internal structure consists of 

C-C bonds. Furthermore, C-O and/or C-N bonds make the links between the subunits representing 
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degradable bonds constituted by oxygen or nitrogen atoms. Here, the obtained FT-IR results allow 

stating that the most important groups in the studied gels are: -OH, C-H, CO2 (i.e., carboxylates), 

vinyl, C-N, and C-O-C. AC1_SF FT-IR spectrum showed the presence of sodium fluorescein loaded 

within the polymeric network by peaks (in red) in correspondence of 1460 and 1380, related to C-C 

aromatic skeletal stretch and C-H stretches in the aromatic ring, respectively. Furthermore the peak 

around 1310 cm
−1 

is characteristic of fluorescein dianion, showing the presence of the phenoxide-like 

stretch [33].  

Figure 3. Fourier transform infrared (FT-IR) spectra for both AC1 and AC1_SF gel 

samples. In red are highlighted peaks showing the presence of SF within the  

three-dimensional polymeric network. 

 

2.2.3. Rheology 

Figure 4a shows the Dynamic Frequency Sweep test (DFS) spectra performed at 37 °C for both 

loaded (AC1_SF) and unloaded (AC1) gel samples. In both cases, storage modulus (G )́ is 

approximately one order of magnitude higher than the loss modulus (G´́), showing an elastic behavior 

rather than a viscous one. Moreover, both G  ́ and G´́ of each gel are essentially independent from 

frequency over the entire investigated range, thus indicating dominant viscoelastic relaxations of 

networks at lower frequencies. This means that network relaxation time, τ, is rather long  

(τ ≈ 2000 s) [21]. Such rheological behavior matches the characteristic signature of a solid-like gel, 

confirming this nature for both loaded and unloaded gels. The values obtained for G  ́ (~700 Pa for 

AC1 and ~580 Pa for AC1_SF) shows the same order of magnitude as the modulus reported in 

literature for other biopolymers and hydrogels. Previous investigations about thixotropic properties of 

loaded hydrogel samples suggest that hysteresis loop areas are lower: SF molecules indeed make the 

gels less stable and cause lower mechanical properties. Sol-gel transition is faster and this effect could 

be a relevant improvement for gel injectability [34]. Indeed, in Figure 4b, the results of the dynamic 
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strain sweep test were shown: for both hydrogel samples, the elastic modulus (G )́ dominates at low 

values of strain and above the cross-over strain (γc), the contribution of tan (δ) overwhelms the elastic 

one. It is also evident that cross-over strain decreases loading solute within the three-dimensional 

matrix, ranging from 0.30 for AC1 to 0.1 for AC1_SF. The last comparison between the two samples 

can be done in terms of yield stress (Figure 4c), which decreases from AC1 to AC1_SF.  

In summary, the higher material instability makes our hydrogel less stable and able to flow under 

lower stress values and this is in complete agreement with previous thixotropic studies performed [20]. 

Figure 4. (a) Mechanical spectra of AC1 and AC1_SF gels at room temperature with small 

oscillatory shear in the linear viscoelastic regime: G  ́ (■ AC1, ◆ AC1_SF ) and  

G´́ (□ AC1, ◇ AC1_SF ) are frequency independent, indicating dominant viscoelastic 

relaxations at lower frequencies; (b) Dynamic strain sweep experiments of AC1 (G´ (■) 

and tan(δ) (□)) and AC1_SF (G  ́(◆) and tan(δ) (◇)) at constant frequency; (c) Measure of 

yield stress of AC1 (■) and AC1_SF (◆) by oscillatory experiments.  

 

2.3. Hydrogel Degradation 

The polymeric matrix could be approximated as a C-C skeleton, due to the presence of carbomer 

974P, esterified with agarose and carboxylated by salts present in PBS [21,22]. During the hydrolysis 

reaction esters become carboxylic acid with the consequent cross-linking loss, following the  

proposed reaction: 



RCO2R'  H2O  RCO2H  R'OH  

Spectra for AC1 and AC1_SF gel before and during hydrolytic degradation are presented in Figure 5. 
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Figure 5. (a) FT-IR spectra of AC1_SF before and after 2 and 4 weeks of degradation in 

PBS; (b) FT-IR spectra of AC1 before and after 2 and 4 weeks of degradation in PBS. 

 

 

In both dry sample presented (week 0), the following aspects can be observed: –OH peak stretch 

(around 3440 cm
−1

), asymmetric C-H stretch (2930 cm
−1

), asymmetric CO2 stretch (1580 cm
−1

), 

symmetric CO2 stretch (1390 cm
−1

), asymmetric C-O-C (1080 cm
−1

), C-N bend (1042 cm
−1

), vinyl 

group (990 cm
−1

) and symmetric C-O-C stretch (892 cm
−1

) plus sodium fluorescein contribution as 

described above. 

After day 1, the complete release of SF from the polymeric matrix (Figure 1) allows us to consider 

the matrix as unloaded and this is supported by IR spectra (Figure 5a), where SF presence is not 

detectable confirming the absence of stable bonds between the solute and the matrix.  

Moreover, the –OH peak stretch is frequent in this kind of materials because of the large amount of 

hydroxyl groups and with hydrolytic events its contribution increases and the area thus becomes larger 

and rounded. Indeed, prolonging the time of exposure to PBS, the –OH peak in the polymer becomes 

similar to the –OH peak present in a classic FT-IR water spectrum. 

The role of apolar bonds could be well explained looking at the C-H stretch peak (2943 cm
−1

): 
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absence of changes during the time means absence of degradation via hydrolysis. Nevertheless, its 

shape apparently changes during degradation, but the peak maximum remains at the same wave 

number value, hence confirming that it is not affected by degradation [35]. This peak shape is different 

because the proximity with the –OH region seems to cover it, this peak actually is not visible in a wet 

sample. Furthermore, a region between 2250 and 2000 cm
−1 

is easily observable and both present 

peaks and their area increase during degradation. This wave number region is typically present in 

water spectrum and increasing during the time shows a reduced macromer concentration decreased due 

to the material degradation. Next to this last region there are two peaks corresponding to CO2 

(carboxylates) stretches. Peak maximum, as degradation proceeds, moves toward lower wave numbers, 

more strongly in hydrogels with short chains, which confirms their faster degradation due to lower 

hydrophobicity. The peaks corresponding to the SF presence at day 0 and visible in red in Figure 5a 

are not yet detectable after 2 days. This time corresponds to the plateau time for SF release and is 

represented in Figure 1, highlighting the possibility to deliver completely drugs with steric hindrance 

similar to SF. 

Quantitative consideration on hydrogel degradation was performed as a function of weight loss 

during incubation time in PBS at 37 °C, as shown in Figure 6. The presence of SF makes our material 

less stable and the degradation occurs faster. At day 28, the mass degraded of AC1 and AC1_SF 

hydrogels was 45% and 53%, respectively. On one side, in the first hours the presence of the drug 

loaded within the network represents an encumbrance to the swelling phenomenon as explained above. 

On the other, after 48 h SF was completely released (Figure 1) and the resulting unloaded material is 

less stable respect to AC1: the presence of repulsion forces between negatively charged polymer 

backbones and the molecule loaded creates consequent higher average distances between two 

following cross-links. So, the degradation phenomenon starts earlier with consequent higher 

percentage of mass degraded. 

Figure 6. Degradation of AC1 (■) and AC1_SF (◆) hydrogels in PBS at 37 °C with 

respect to weight loss. 
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3. Experimental Studies 

3.1. Materials  

Carbomer 974P, with a molecular weight of about 1 MDa, was provided by Fagron (Rotterdam, 

The Netherlands), tryethylamine was purchased by Fluka (Buchs, Switzerland). The solvent used was 

PBS (Phosphate Buffer Saline), purchased by Sigma-Aldrich (Taufkirchen, Germany). As said, the 

other polymer involved in the reaction is agarose, purchased by Invitrogen (Carlsbad, CA, USA) and 

having a molecular weight of about 300 kDa. Lastly, SF was provided by Sigma-Aldrich (Taufkirchen, 

Germany). All materials were used as received. 

3.2. Hydrogel Synthesis 

Carbomer 974P (0.5% w/v) was mixed together with PBS and the resulting solution was neutralized 

with triethylamine (TEA). Agarose (0.5% w/v) was subsequently added and the system was 

electromagnetically heated up to 80 °C to induce condensation reactions to begin. The mixture was 

subsequently merged with a water-based solution (at a 50/50 volumetric ratio), placed in steel 

cylinders (0.5 mL each and with the same dimensions of a standard well in a 48-plate d = 1.1 cm) and 

left to rest at 37 °C until reaching complete gelation and thermal equilibrium [21,23,24]. Briefly, in the 

unirradiated solution polymer chains are not overlapped and thus segmental mobility is high. At low 

irradiation doses, intramolecular links and chain scissions are privileged. The decrease segmental 

mobility allows intermolecular cross-links to be formed and thus gives origin to local 3D networks, 

also known as “microgels”. Increasing irradiation, intermolecular cross-linking and chain scission are 

massively privileged, thus giving origin to macroscopic gels. Nevertheless, cross-linked gels are not 

truly homogeneous because clusters of molecular entanglements, hydrophobically domains or 

ionically-associated ones can create local heterogeneities. Chemical interactions would statistically 

bring polymer chains together and, indeed, the formation of a stable structure occurs through junction 

zones between chains [24]. 

3.3. Drug Loading 

As said, SF was chosen mainly because of its steric hindrance (MW = 376 Da), similar to many 

small drugs (e.g., steroids), and for its strong absorbance that makes it easily detectable by UV 

spectroscopy [20]. Being SF neither temperature sensitive nor interacting with the matrix, loading 

before gelation was applied: a SF water solution was added to the polymeric formulate while still at sol 

stage and then the final mixture was left to jellify, as described above. At the end of gelation process 

SF molecules remain solvated into water, entrapped in the “cavities” of the hydrogel. In order to avoid 

gel dilution with respect to proportions given, it has to be underlined that SF water solution was used 

instead of the standard water described in the previous paragraph, keeping the same ratio with respect 

to the PBS based polymeric solution, that is, 50/50 v/v. SF concentration studied was 0.2 mg/mL, 

extremely suitable for drug delivery tests [20]. 
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3.4. Release Experiments 

Before running release experiments, in order to avoid any interference on mass-transfer processes 

due to swelling phenomena, hydrogel samples were let to swell until equilibrium in isoconcentrated SF 

aqueous solution overnight [20]. Afterwards, every well was filled with an extreme excess of PBS 

(keeping pH = 7.4 constant) and stored at 37 °C in a 5% CO2 atmosphere. Minimal aliquots were 

collected at defined time points, while solution was refreshed, in order to avoid attainment of  

mass-transfer equilibrium between the gel and the surrounding PBS solution and, thus, letting high the 

concentration gradient driving force [20]. SF concentration was measured by UV spectroscopy 

applying Lambert-Beer method (λ = 470–490 nm). 

3.5. Physical Characterization 

3.5.1 Swelling Behavior 

The hydrogel samples were first immersed in PBS for about 24 h, then freeze-dried, weighted (Wd) 

and poured in excess solvent at pH =  0.5, 7.4 and 14 to achieve complete swelling at 37 °C in 5% CO2 

atmosphere; such conditions were applied since they are typical of in vitro experiments [21,36]. The 

swelling kinetics was measured gravimetrically. The samples were removed from the solvent at 

regular times. Then, hydrogel surfaces were wiped with moistened filter paper in order to remove the 

excess of solvent and then weighed (Wt) [36,37]. Swelling ratio is defined as follows: 

 

 
100

0

d

d

W t
swelling ratio

W
   (1)  

where Wd(t) is the weight of the wet hydrogel as a function of time and Wd(0) of the dry one. 

3.5.2. FTIR Spectra  

Hydrogel samples, after being left dipped for 24 h in excess of solvent, were freeze-dried and 

laminated with potassium bromide. Infrared spectra were then recorded using a TENSOR Series FTIR 

Spectrometer (Bruker, Bremen, Germany). FT-IR spectra were recorded using a Thermo Nexus 6700 

spectrometer coupled to a Thermo Nicolet Continuum microscope equipped with a × 15 Reflachromat 

Cassegrain objective. 

3.5.3. Rheological Measurements  

Rheological analysis on gel samples were performed at 37 °C using a Rheometric Scientific ARES 

(TA Instruments, New Castle, DE, USA) equipped with parallel plates of 30 mm of diameter and a  

4 mm gap between [21]. A human-body like temperature of 37 °C was selected because investigated 

materials contain substantial amounts of water and higher temperatures could significantly affect their 

properties, especially long-term ones. Oscillatory responses (G’, elastic modulus, and G”, loss/viscous 

modulus) were determined at low strain values (0.02%) over the frequency range 0.1–500 rad/s. 

Dynamic Strain Sweep tests were also performed at frequency of 20 rad/s over the strain range from 

0.01% to 100%. Thixotropic behavior was also investigated and shear strain and viscosity as a function 
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of shear rate were evaluated, too [20]. Linearity of all viscoelastic properties was assessed for  

all samples. 

3.6. Degradation 

3.6.1. FT-IR Analysis 

Hydrogel samples were first freeze dried for about 24 h, then immersed in excess of PBS to swell 

and then degrade, always being kept at 37 °C in a 5% CO2 atmosphere. Samples were removed from 

PBS (after 1, 2, 3, 7, 14, 21 and 28 days) and compared with dry samples, i.e., those that were  

freeze-dried but not immersed in PBS. All these samples were analyzed using FT-IR instrument 

collecting the transmittance signal [21,35]. 

3.6.2. Mass Loss Kinetic 

Degradations were performed in PBS at 37 °C under agitation. The buffer was changed daily, and 

at 1, 4, 7, 14 and 28 day of incubation the buffer was removed, the polymer samples were lyophilized 

and degradation was quantified using the following equation [37]: 

 

 
deg 100

0

d

d

W t
mass radation

W
   (2)  

where Wd(0) is the initially dry hydrogel mass and Wd(t) is the dry hydrogel mass at time t. 

3.7. Statistical Analysis 

Where applicable, experimental data were analyzed using Analysis of Variance (ANOVA). 

Statistical significance was set to p value < 0.05. Results are presented as mean  SD [17]. 

4. Conclusions 

The influence of solute presence within hydrogel polymeric network was studied in order to 

develop a better understanding of diffusive phenomena and thus to obtain a better controlled drug 

delivery system, matching the needs of applications into central nervous system. Solutes role is usually 

neglected during development and engineering of drug delivery devices, mainly because of the 

extremely low concentrations used and the small steric hindrance of diffusants. Here, agar–carbomer 

based hydrogels were loaded with sodium fluorescein, a common drug mimetic, performing studies on 

material characterization, drug delivery kinetics and degradation. The complete release from such 

devices suggested the absence of stable chemical bonds between the matrix and solute. Moreover, 

solute role was clearly visible considering swelling kinetics, rheology and degradation profile: the 

solute presence indeed made our hydrogel less stable, able to flow under lower stress values and more 

easily degradable. 
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