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Abstract: One of the most important tasks of physicians working in intensive care units (ICUs) 
is to arrange intravenous fluid therapy. The primary indications of the need for intravenous fluid 
therapy in ICUs are in cases of resuscitation, maintenance, or replacement, but we also load 
intravenous fluid for purposes such as fluid creep (including drug dilution and keeping venous 
lines patent) as well as nutrition. However, in doing so, some facts are ignored or overlooked, 
resulting in an acid-base disturbance. Regardless of the type and content of the fluid entering the 
body through an intravenous route, it may impair the acid-base balance depending on the rate, 
volume, and duration of the administration. The mechanism involved in acid-base disturbances 
induced by intravenous fluid therapy is easier to understand with the help of the physical- 
chemical approach proposed by Canadian physiologist, Peter Stewart. It is possible to establish 
a quantitative link between fluid therapy and acid–base disturbance using the Stewart principles. 
However, it is not possible to accomplish this with the traditional approach; moreover, it may not 
be noticed sometimes due to the normalization of pH or standard base excess induced by 
compensatory mechanisms. The clinical significance of fluid-induced acid-base disturbances 
has not been completely clarified yet. Nevertheless, as fluid therapy may be the cause of 
unexplained acid-base disorders that may lead to confusion and elicit unnecessary investigation, 
more attention must be paid to understand this issue. Therefore, the aim of this paper is to address 
the effects of different types of fluid therapies on acid-base balance using the simplified 
perspective of Stewart principles. Overall, the paper intends to help recognize fluid-induced 
acid-base disturbance through bedside evaluation and choose an appropriate fluid by considering 
the acid-base status of a patient. 
Keywords: Stewart approach, fluid therapy, acid-base disturbance, strong ion difference, 
total weak acid concentration

Introduction
Intravenous fluid therapy is a standard part of intensive care management, and has 
been shown to impact the acid-base status of a patient. Historically, the origin of 
fluid-associated acid-base disorders is based on the recognition of complex meta-
bolic acid-base disorders that occur after performing different infusion regimens, 
particularly with the development of intensive care medicine. The most typical 
example of an acid-base disorder is saline-related hyperchloremic acidosis. In 
addition, for the mechanistic explanation of complex acid-base disturbances 
induced by different fluid types, the Stewart approach is superior to the traditional 
approach.1
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According to their similarity to plasma, fluid regimes 
can be broadly categorized as balanced and unbalanced in 
terms of the ionic composition of the fluid. Current data 
have shown that resuscitation with unbalanced fluids is 
associated with the risk of acidosis, whereas the acid- 
base balance is better preserved with the use of balanced 
fluids. However, the vast majority of such data were 
obtained from shock and perioperative cases in which 
high-volume fluids were rapidly given and analyzed with 
the traditional approach. In contrast to the roughly defined 
relationship established with the traditional approach, by 
using the simplified Stewart method for bedside evalua-
tion, we can predict and quantify the effects of individual 
commercially available fluids on acid-base balance. 
Therefore, fine adjustment can be made on fluid manage-
ment to optimize the acid-base status of critically ill 
patients who are under the risk of developing fluid-induced 
acid-base disorders.

Stewart Perspective
According to the Stewart model, there are three indepen-
dent factors that determine the acid-base balance. Of the 
three factors, the arterial carbon dioxide tension (PaCO2) 
determines the respiratory component of the acid-base 
balance, while the two described below determine the 
metabolic component:

1) Strong ion difference (SID): The difference between 
the total concentration of strong cations and strong 
anions, represented as ([sodium]+[potassium]+[cal-
cium]+[magnesium]+[others, including lithium+alu-
minium, etc.]) − ([chloride]+[lactate]+[others, 
including ketone +acetate+sulfate, etc.]), which is 
simply [sodium] – [chloride] (Figure 1A and B).

2) Total weak acid concentration (ATOT): This is mainly 
the concentration of albumin and inorganic phosphate.

As the influence of fluid therapy on acid-base balance 
involves the metabolic component,1 the respiratory com-
ponent is beyond the scope of this review.

In normal states, SID corresponding to the difference 
between sodium and chloride concentration is approximately 
40 mEq/L within limits of 38 and 42 mEq/L.2,3 As illustrated 
with the gamblegrams in Figure 1, when SID is narrowed in 
the case of either sodium decrease or chloride increase, it 
results in acidosis (Figure 1C and D).4 However, SID can be 
widened in the case of hypernatremia (eg, infusion of sodium 
bicarbonate) or by hypochloremia (eg, loss of chloride due to 

vomiting or loop diuretics.) (Figure 1E–F). Elevated levels of 
other anions also lead to acidosis (ie, lactic acidosis and 
ketoacidosis) due to a decrease in SID (Figure 1I).4 

Additionally, ATOT is the third variable that can cause inde-
pendent variations in the pH level. The approximate amount 
of ATOT is calculated using the following equation:

2.5 x albumin (g/dL) + 0.6 x phosphate (mg/dL)

Here, the coefficients in front of albumin and phos-
phate are the mEq/L equivalents of the electrical charge 
that each generates for each one gram of albumin per 
deciliter and one milligram of phosphate per deciliter 
when dissolved in plasma. If phosphate is given in 
mmol/L, then it will be multiplied by 1.5.5–7 The mid- 
reference valuesare10 mEq/L and 2 mEq/L for albumin 
and inorganic phosphate, respectively.5,7 An increase in 
ATOT is associated with acidosis, whereas its decrease 
results in alkalosis. This increase can be caused by high 
levels of phosphates, which occurs during renal failure. On 
the other hand, typically, a reduction in ATOT is due to low 
concentrations of albumin (Figure 1G–H).4,8,9

ATOT is principally composed of albumin. In the majority 
of long-term critically ill patients, hypoalbuminemia is 
observed due to reasons such as volume overload, endothe-
lial leak due to inflammation, and nutritional deficiency.4,10 

Although hypoalbuminemic alkalosis seems to prevent 
acidosis, it is actually not true. Moreover, as a compensatory 
response, low ATOT and high pH stimulate Cl retention, 
which subsequently decreases SID.11 Most critically ill 
patients only have a very mild alkalosis (if at all) and a low 
SID to compensate for the low ATOT. Lower SID means that 
they can tolerate an acid load less well.

The contribution of inorganic phosphate is relatively low 
and mostly neglected, except in the case of hyperphosphate-
mic acidosis, which may be significant in renal failure.5,11 

Apart from these independent parameters, another concept 
has been proposed by the Stewart model—strong ion gap 
(SIG). In order to define SIG, it is necessary to know about 
its relationships with the anion gap and SID. Since, in the past, 
the concentrations of albumin, phosphate, lactate, ketone, 
sulfate, citrate, acetate, and others could not be measured in 
the laboratory, the number of these unmeasurable anions was 
determined by subtracting measurable anions from measur-
able cations, assigning a value known as the anion gap (AG).12 

On the other hand, SIG is the total concentration of the 
remaining unmeasured anions other than albumin, phosphate, 
and lactate that constitute the main components of AG.5,8,13,14 
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Figure 1 Simplified illustration of normal acid-base status and metabolic acid-base disturbances with gamblegrams based on the Stewart approach. (A–B) Normal states: As 
a result of the electroneutrality law, the concentration of total cations is equal to that of total anions. While strong ions dissolve in water completely, weak ions only dissolve 
partially. There are two major strong ions in the ECF—[Na] as the cation and [Cl] as the anion. Strong cations besides [Na], such as [K], [Ca], [Mg], [Li], [Al], and others, are 
represented as OC. Moreover, OA represents other strong anions besides Cl and lactate. OA contains strong anions, including ketone, sulfate, acetate, and others. The 
difference between all strong cations and all strong anions is known as [SID]. Since Na and Cl are the principal ions of the ECF,[SID] can be simplified as the difference 
between Na and Cl. In order to preserve electroneutrality, [A TOT] and [HCO3] fill the space formed by the SID. SIDa is simply calculated as Na–(Cl+Lactate), and SIDe is 
the sum of A− + HCO3. A

− is the dissociated part of ATOT that indicates [Alb−]+ [Pi−]. Additionally, SIG is the difference between SIDa and SIDe. Notably, while SIDa is a 
calculated parameter, SIDe is a measured one. OA also represents SIG. (C) The reduced SID due to water surplus or sodium loss. (D) Hyperchloremic acidosis: SID is 
narrowed due to the presence of excess chloride. (E) Hypernatremic alkalosis: SID is widened due to sodium surplus or water loss. (F) Hypochloremic alkalosis: SID is 
increased due to chloride loss. (G) Increased [ATOT] due to hyperphosphatemia or hyperalbuminemia squeezes [HCO3] and, subsequently, acidosis. (H) Hypoalbuminemia 
or hypophosphatemia widened [HCO3] with a decrease in [A TOT], resulting in alkalosis. (I) Lactic acidosis: Lactate is considered a strong anion that decreases SID upon 
accumulation; SIG acidosis; eg, ketoacidosis. 
Abbreviations: mEq/L, milli equivalent per liter; OC, other cations; OA, other anions; ECF, extracellular fluid; [SID], strong ion difference; [SIDa], apparent SID; [SIDe], 
effective SID; [SIG], strong ion gap; AG, anion gap; [ATOT], total weak acid concentration; [Na], sodium; [K], potassium; [Li], lithium; [Ca], calcium; [Al], aluminium; [HCO3], 
bicarbonate; [Cl], chloride; [Alb], albumin; [Pi], inorganic phosphate.
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In other words, SIG is equal to anion gap – (lactate + ATOT). 
As can be seen, the term “unmeasured” is quite a misnomer. 
Although measurable in modern times, since they (eg, ketone) 
are not included in the anion gap calculation, they are still 
referred to as unmeasured. Therefore, both AG and SIG 
quantify unmeasured anion concentration. However, unlike 
AG, SIG is not affected by a change in albumin concentration, 
and thus, it does not require correction for the albumin.14

Moreover, SIG can be explained in terms of its relation-
ship with SID. SIG is equal to the difference between the 
apparent SID (SIDa) and the effective SID (SIDe). SIDa is 
the electrical gap between strong cations and strong anions, 
which is formulated as ([Na+]+[K+]+[Ca++]+[Mg++]) – ([Cl] 
+[Lactate]+[Urate]) but simply as ([Na]) – ([Cl]+[Lactate]). 
SIDe is the anionic charge filling this gap, which is deter-
mined as[A−]+[HCO3

−]. [A−] represents the dissociated form 
of ATOT(Figure 1B). Conceptually, SIDa is equal to SIDe, as 
required by the electroneutrality law. In the case of increased 
unmeasured anions or SIG, SIDa increases but not SIDe.14 

Based on the equation SIG=SIDa – SIDe, a marked deviation 
from zero should suggest an increase of unknown ions in the 
body.

No standard range for SIG has been mentioned in the 
literature. It is expected to be below 2 mEq/L,15 but in 
most studies, it was determined to be approximately 5 
mEq/L for intensive care unit (ICU) patients.16–18

Physiopathology of Fluid-Related 
Acid-Base Disturbances
Fluid-induced acid-base disturbances can be mechanisti-
cally explained as follows. The SID of each fluid is dif-
ferent from the plasma. If an excessive amount of fluid is 
rapidly delivered through an intravenous route, the plasma 
SID moves toward the SID of the fluid after infusion; 
hence, based on the alteration of SID, the acid-base bal-
ance may be disturbed.1,19-21

The rate and dosage of the fluid are crucial for causing 
post-infusion change to the SID. It is best documented in 
the case of the administration of crystalloids up to 70 mL/ 
kg/h for two hours for intraoperative fluid replacement.22 

Within the infusion period, the strong ions in the infusate 
(eg, Na+, K+, Mg++, Ca++, Cl−, lactate, and acetate) fill the 
extracellular fluid compartment, changing the ion balance 
of the plasma.21,23 As the plasma undergoes hemodilution, 
the SID will change linearly.19 In this context, for instance, 
in the saline-induced hyperchloremic acidosis, the 
mechanism is not the dilutional reduction of bicarbonate 

but the narrowing of the plasma SID after dilution with 
zero SID,1 and change in bicarbonate concentration is only 
a consequence.

Concurrent volume increase with fluid therapy leads to 
dilution of ATOT and the alkalotic effect.20 If this dilutional 
effect is accompanied by increased SID, alkalosis further 
increases but due to reduced SID, alleviating acidosis. 
Fluids with weak acid content such as albumin, phosphate, 
or gelatine have acidosis potential due to the ATOT 

activity.1,25 Experimental studies have shown that SID 
should be 24 mEq/L for a solution to not affect the acid- 
base balance in healthy conditions.19,24,25 In view of this 
finding, it can be asserted that the fluid SID should be 
equal to the bicarbonate concentration in the patient to 
prevent a change in pH when the plasma is mixed with 
fluids. As a result, if it is lower than the bicarbonate value 
of the patient, the tendency to develop acidosis may be 
generated, and vice versa for alkalosis.19,26,27

According to the electroneutrality law, the in-vitro SID 
of all fluids (SID in a bag) is zero. However, when the 
fluids called balanced crystalloids are mixed with the 
plasma, the anions, such as lactate, gluconate, acetate, or 
malate, are eliminated by converting them to bicarbonate. 
Due to this gap, the in-vivo SID becomes higher than zero. 
Thus, in order to predict the iatrogenic effects of fluids on 
acid-base balance, we need to know their ionic composi-
tion and the in vivo SID values. A detailed list of some 
commercially available balanced and unbalanced fluids 
has been provided in Table 1.

Quantification of Fluid Effect on 
Acid-Base Balance
Prior to the Stewart model, researchers following the tra-
ditional approach developed standard bicarbonate, base 
excess, and standard base excess (SBE) to isolate the 
metabolic component from the compensatory effects of 
the respiratory component.29–34 Of these, the most widely 
accepted and recommended tool for clinical use is the 
SBE.35–37 SBE is defined as the amount of acid or base 
to return in vitro one-liter extracellular fluid to normal pH 
(7.40) under standard conditions (at 37°C at a PaCO2 of 40 
mmHg). It ranges from −3 to +3 mEq/L.

Non-normal negative values indicate acidosis, while posi-
tive values indicate alkalosis. It is considered that a patient with 
an SBE of –8 mEq/L has an excess of 8 mEq of acid per liter of 
extracellular fluid. Therefore, it is assumed that 8 mEq sodium 
bicarbonate per liter of extracellular fluid will be needed to 
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neutralize acidosis. Extracellular fluid accounts for approxi-
mately 30% of the body fluid; therefore, we can estimate the 
total required dose of sodium bicarbonate. We can apply the 
same estimation for the conceptual dose of hydrochloric acid 
for alkalosis with an SBE of +8 mEq/L.

SBE helps quantify the amount of metabolic acid-base 
disorder but does not differentiate the causative patholo-
gies. In response to this question, in the research studies, 
the Stewart principles were simplified, and the components 
of acid-base disorder could be individually displayed with 
their corresponding quantitative contributions.5,38-40

Accordingly, the components of SBE and their quanti-
tative effects are claimed to be as follows:

1) Chronic respiratory changes contribute as (PaCO2 

−40)x0.4 mEq/L, but acute respiratory changes 
have no effect on SBE.34

2) The change in the difference between sodium and 
chloride concentration contributes as (Na−Cl)−38 
mEq/L.

3) The change in ATOT, mainly of albumin concentra-
tion, contributes as (4−albumin in g/dL) ⅹ 2.5 mEq/ 
L.

4) The change in lactate contributes as (1−lactate) mEq/ 
L.

5) The SIG effect as itself in mEq/L.

Note that the mid-reference values taken for lactate and 
albumin are 1 mEq/L and 4 g/dL, respectively. To better 
understand the methodology, we can examine a hypothe-
tical case where pH=7.38, PaCO2=25 mmHg, sodium=150 
mEq/L, chloride =102 mEq/L, albumin=2 g/dL, lactate=6 
mEq/L, and SBE=0 mEq/L.

In this case, there seems no metabolic acid-base distur-
bance according to SBE; however, if we analyze according to 
the Stewart principles, we obtain the following results:

1) (25−40)x0.4= −6 mEq/L; acidosis response to 
chronic respiratory alkalosis.

2) (48–38)= +10 mEq/L; hypernatremic alkalosis
3) (4−2)x2.5 = +5 mEq/L; hypoalbuminemic alkalosis
4) (1−6) = −5 mEq/L; lactic acidosis.

Assuming that the sum of the above ionic charge is 
equal to SBE, it can be inferred that the alkalosis of +4 
mEq/L is offset by the SIG of −4 mEq/L. If the respiratory 
change was acute, alkalosis of +10 mEq/L would be offset 
by the SIG of −10 mEq/L to reach an SBE of 0 mEq/L.

The effect of the post-infusion change in ATOT, SID, 
and SIG on acid-base balance can be estimated using this 
methodology.

Fluid Type
Broadly, fluids can be divided into two categories accord-
ing to their ionic composition: balanced and unbalanced 
fluids. The term “balanced fluids” refers to intravenous 
solutions whose electrolyte composition is closer to the 
composition of plasma, as compared to previously avail-
able solutions, such as normal saline. Thus, balanced solu-
tions should minimally affect the acid-base equilibrium. 
However, more recently, researchers have started to 
employ the term “balanced solution” to also indicate intra-
venous solutions with low chloride content.41,42 Fluids 
with electrolyte content outside the physiological limits 
compared to normal plasma are considered as unbalanced 
fluids. The SID of all unbalanced fluids is zero, whereas 
that of balanced fluids is greater than zero.

Unbalanced Fluids
The most widely used unbalanced fluid is normal saline 
(0.9% NaCl) for either resuscitation or drug dilution. 
Normal saline has zero SID and contains a supraphysiologic 
amount of sodium—154 mEq/L—and chloride—154 mEq/L 
—as compared to plasma. After an IV infusion of normal 
saline in a large volume, the increase in chloride will be 
higher than that in sodium. Inevitably, hyperchloremic acido-
sis will develop with a decrease in SID. However, in the case 
of neutral pH, due to superimposed alkalotic conditions, 
acidosis may not be recognized. This hidden condition can 
be revealed by calculating SID; if SID decreases tending 
toward below 40 mEq/L, acidosis develops. However, acido-
sis may be without hyperchloremia. All saline (not just 0.9%) 
and dextrose solutions have a SID of zero and will result in 
acidosis. For example, 0.45% saline has exactly the same 
effect as 0.9% saline does. The only difference is that Na falls 
more than Cl for 0.45% saline, whereas Cl increases more 
than Na for 0.9% saline. However, the effect on SID is the 
same.43 Hypertonic saline and mannitol produce the same 
effect on the acid-base balance due to zero SID but with the 
further dilution of hypertonicity, it further reduces the SID.44

Hydroxyethyl starch and dextran solutions are unba-
lanced colloids acting on acid-base balance through the in- 
vivo SID of the carrier fluid. As expected, all colloids in 
this category will show acidotic effect due to zero SID of 
the carrier fluid.25
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Balanced Fluids
Although there are many commercially available balanced 
crystalloid fluids, the ones most commonly used are 
Ringer’s lactate and Plasmalyte, only varying in terms of 
the type and number of anions called bicarbonate precursors. 
The in-vitro SID of Ringer’s lactate bag is 0, and it contains 
29 mEq/L of lactate. However, after infusion, lactate dis-
appears upon conversion to bicarbonate. In vivo, the SID of 
the fluid rises from 0 to 29 mEq/L. Likewise, Plasmalyte 
contains 50 mEq/L of anions composed of 23 mEq acetate 
per liter and 27 mEq gluconate per liter serving as buffers, 
generating an in-vivo SID of 50 mEq/L. Actually, lactate, 
gluconate, acetate, and malate do not convert to bicarbo-
nates. They go right into the Krebs cycle and are ultimately 
metabolized. Moreover, bicarbonate increases (from CO2) 
due to an increase in SID.

The higher the in-vivo SID value of the fluid, the more 
it creates the tendency toward alkalosis. Therefore, they 
can be a good option to neutralize or prevent fluid-related 
acidosis.

However, there are some limitations to using balanced 
fluids. Firstly, in the presence of liver dysfunction, oliguric 
renal dysfunction, hyperkalemia, and brain damage, they 
should be used cautiously. Secondly, the fact that these 
fluids cannot be used for drug dilution is also a limitation. 
However, it is worth mentioning that in two randomized 
trials that compared Ringer’s lactate and normal saline 
during renal transplantation, less hyperkalemia was 
observed in the former group.45,46 This effect is thought 

to be caused by a potassium shift out of the cell caused by 
acidosis, which developed more in the saline group. As 
with most balanced fluids, a small amount of potassium, 
such as 5 mEq/L, can be found in Ringer’s lactate, which 
is not thought to be as risky as hyperkalemia induced by 
acidosis. In the case of hepatic insufficiency, Ringer’s 
lactate may cause lactic acidosis, since lactate clearance 
is reduced.

There are two prototypes of balanced colloid fluids— 
human albumin solutions and gelatine preparations. Since 
these colloids are suspended in a balanced crystalloid 
solution, they are expected to produce a neutral or alkalo-
tic effect, depending on the SID of the carrier fluid. 
However, they also have an acidic effect due to their 
respective ATOT activity. As a result of this dual effect, 
they carry much less acidosis potential than unbalanced 
colloids. The effect of change in albumin concentration on 
acid-base balance can be quantified, whereas it is not clear 
for gelatin.

Total Parenteral Nutrition Solutions
There are two well-known groups of commercially avail-
able products of total parenteral nutrition (TPN) solutions. 
These are ready-to-use and pre-filled solutions with three 
unmixed chambers containing amino acids with electro-
lytes, lipids, and dextrose (Table 2).

Triple bag TPN solutions vary with their lipid content 
and can be categorized into two groups—one group with 
purified soybean oil and the other with a mixture of refined 

Table 2 Some TPN Solutions with Their Composition and SID Values

Strong Cations mEq/L Strong Anions mEq/L ATOT 

mEq/L
SID mEq/L

Na+ K+ Ca++ Mg++ Cl− Lactate OA Alb Pi OWA SID in 
vitro

SID in 
vivo

TPN triple bag solutionsa

Fresenius Kabi formulation for central 

veinb

31 23 3.8 7.8 45 0 38 acetate 

7.8 sulfate

0 9.7 0 0 12.8

Fresenius Kabi formulation for central or 

peripheral veinb

22 17 2.8 5.6 32 0 27 acetate 

5.6 sulfate

0 7.5 0 0 9.8

Baxter formulation for central veinc 32 24 4 4.4 48 0 57 acetate 0 10 0 0 16.4

Baxter formulation for central or 

peripheral veinc

21 16 4 4.4 33 0 30 acetate 0 8.5 0 0 15.4

Notes: All concentrations are given in mEq/L except for other weak acids in g/L. aFresenius Kabi formulations are with lipid content of purified soybean oil. Baxter 
formulations are with lipid content of olive oil (80%) and soybean oil (20%) mixture. Information from the package leaflet. b®Kabiven for central vein. All pack sizes have the 
same SID. ®Perikabiven for central or peripheral vein. All pack sizes have the same SID. c®Olicnomel N7 for central vein. All pack sizes have the same SID. ®Olicnomel N4 for 
central or peripheral vein. All pack sizes have the same SID. 
Abbreviations: OWA, other weak acids; Pi, inorganic phosphate; OA, other anions; SID, strong ion difference; NS, normal saline; HES, hydroxyethyl starch.
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olive oil (80%) and refined soybean oil (20%). The elec-
trolyte content of both is predominantly chloride-based, 
with SID ranging from 9.8 to 16.4 mEq/L. TPN solutions 
also have an ATOT impact on phosphate content. They may 
accumulate particularly in patients with renal insufficiency 
and lead to hyperphosphatemic acidosis.

The group with purified soybean oil carries the risk of 
acidosis in another way: sulfate, another strong ion in its 
content, can accumulate in the case of renal failure and 
cause acidosis by reducing SID such as lactate. The 
amount of possible acidosis due to sulfate can be estimated 
by calculating SIG.

Additionally, since thiamine is the cofactor of the 
enzyme pyruvate dehydrogenase, which helps convert lac-
tate to pyruvic acid in patients with long-term thiamine- 
free TPN, lactic acidosis may occur due to impaired lactate 
metabolism.47

Hyperchloremia and 
Hyperchloremic Acidosis
Chloride and sodium are the two main strong ions of 
extracellular fluid. However, the clinical effects of chlor-
ide, especially in relation to ICU, have been subjected to 
research in recent years, much later than that of sodium. 
While fluid-related chloride disorder is mostly presented 
as hyperchloremia or hyperchloremic acidosis,48 hypo-
chloremia and/or hypochloremic alkalosis is mostly asso-
ciated with diuretic therapy rather than fluid.49,50 

Hyperchloremia caused by underlying diseases or fluid 
therapy is common in ICUs, within 25–45%.51–53 Saline- 
induced hyperchloremia does not seem to have a negative 
impact on the clinical outcomes of patients with normal 
acid-base balance and renal function prior to surgery.23 

However, it is still unclear for critically ill patients mostly 
having reduced host reserve, multiorgan failure, and acid- 
base disturbance.23

It is common to confuse hyperchloremia with hyper-
chloremic acidosis. Although there is no clear limit for 
diagnosing hyperchloremia, the most commonly accepted 
one is [Cl] >110 mEq/L.42,54-56 When hyperchloremia is 
associated with acidosis, then it is called hyperchloremic 
acidosis. Considering the Stewart paradigm, the difference 
between sodium and chloride should be narrowed, instead 
of increasing chloride concentration to determine whether 
hyperchloremia is the source of acidosis.57 Suppose there 
are two patients, one with sodium and chloride concentra-
tions of 135 and 112 mEq/L, respectively, and the other 

with 155 and 115 mEq/L, respectively. The first patient has 
hyperchloremic acidosis due to the acidic SID (23 mEq/L), 
while despite a higher chloride concentration, the second 
patient only has hyperchloremia due to normal SID (40 
mEq/L). We can interpret the latter scenario to be a balan-
cing effect of hypernatremic alkalosis against hyperchlore-
mic acidosis.

Consistent with this paradigm, although Ringer’s lac-
tate and Ringer’s fundin are chloride-liberal fluids in terms 
of chloride content (112 and 127 mEq/L, respectively), 
theoretically, both are expected to cause hyperchloremia 
without acidosis, as the SID for both is 29 mEq/L.

The most well-known fluid associated with hyperchlore-
mic acidosis is normal saline. However, it should be empha-
sized that fluid-associated acidosis can be without 
hyperchloremia or with hypochloremia.57,58 Consider a 
healthy individual with 140 mEq/L of sodium and 100 
mEq/L of chloride. Theoretically assuming that this person’s 
plasma is diluted with an equal amount of water, sodium 
concentration will drop to 70 mEq/L and chloride to 50 mEq/ 
L. A decrease in the SID from 40 to 20 mEq/L results in 
acidosis. In this case, it might be interpreted that hypochlore-
mic alkalosis is being suppressed by hyponatremic acidosis.

One of the most impressive examples of fluid-induced 
hyperchloremic acidosis in practice is observed during the 
treatment of diabetic ketoacidosis. According to the cur-
rent guidelines, normal saline and 1/2 normal saline are 
recommended for the treatment of diabetic ketoacidosis.59 

Since both fluids have zero SID, although ketoacidosis 
improves after the patient is hydrated with a large volume 
of these fluids, metabolic acidosis persists due to fluid- 
induced hyperchloremic acidosis. Balanced crystalloids 
can be thought to be used as a replacement of these fluids 
to overcome this complication. This putative benefit is 
supported by two studies that compared fluid resuscitation 
with Plasmalyte and normal saline in diabetic ketoacidosis. 
Hyperchloremia was observed in the saline-treated group, 
whereas in the Plasmalyte group, faster recovery of meta-
bolic acidosis was observed and hyperchloremic acidosis 
was prevented.60,61

However, the same effect could not be demonstrated in 
the statistical significance for Ringer’s lactate in compar-
ison with normal saline.62

Literary Data
There are an ample number of studies in the literature report-
ing data associated with fluid therapy for acid-base distur-
bances. Besides two large meta-analyses,63,64 preclinical65–68 
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and clinical22,45,46,60-62,69–76 studies, comparing different 
fluids on the basis of two main categories of balanced and 
unbalanced fluids, confirmed that while more acidosis was 
observed for the latter category, the acid-base balance was 
better maintained in the former category.

However, there are several gaps in this field of litera-
ture. First, there is almost no major randomized controlled 
trial (RCT) dealing primarily with the effects of fluids on 
acid-base balance. The current evidence of fluid-related 
acid-base disturbances is based on experimental studies, 
small-scale, mostly single-center RCTs, reviews, and 
meta-analyses. Moreover, in these studies, the effects of 
fluid therapy on acid-base balance are presented as a part 
of the secondary outcome rather than being the primary 
point of investigation.22,45,46,60–76

Second, although there are several studies that use the 
Stewart model, the majority of the data from the remaining 
were reported according to the interpretation of pH, SBE, 
chloride, and bicarbonate values, which fall within the 
scope of the traditional approach.

Third, there is no study investigating the influence of 
TPN solutions on acid-base balance through the Stewart 
perspective. Moreover, available data on TPN solutions 
are limited to a few studies.77–80 It is revealed that TPN 
solutions may the cause of metabolic acidosis that is 
thought to be a result of excess hydrogen burden resulting 
from the metabolism of amino acids and nitrogen sources 
in its content according to the traditional approach.77–80

Fourth, the risk of hyperkalemia is a common concern, 
which leads to avoiding balanced fluids and choosing 
normal saline. In contrast, studies have shown that both 
lactate Ringer and Plasmalyte develop less hyperkalemia 
than normal saline.45,46,81 However, these studies are lim-
ited only to patients undergoing renal transplantation. In 
order to clarify this concern, a more wide variety of well- 
designed studies is needed.

Finally, most of the available data are based on the 
effects of the fluids given in extreme doses for initial 
resuscitation in both surgical and non-surgical critical set-
tings. However, the volume change due to non-resuscita-
tion fluids is much more than in the case of 
resuscitation.82,83 Studies investigating the effects of 
cumulative fluid intake in long-term critically ill patients 
should also be conducted.

Conclusion
Theoretically, the Stewart approach helps not only in 
understanding the mechanisms of fluid-associated acid- 

base disorders but also in tailoring appropriate fluid ther-
apy according to patient acid-base status. The clinical 
significance of fluid-induced acid-base disturbance has 
not been completely clarified yet. Nevertheless, since 
fluid therapy may be the source of unexplained acid-base 
disorder, probably causing confusion and eliciting unne-
cessary investigation, more attention should be paid to this 
issue. Analytical calculations using the Stewart method 
may be useful, as some disturbances may be hidden in 
conditions with normal pH or SBE. Moreover, the rela-
tionship between fluid therapy and acid-base balance 
needs to be demonstrated in a more rational way. 
Therefore, more powerful and high quality studies are 
needed, which take into account the above-mentioned 
gaps in the literature.
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