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Abstract: Shortfalls and mismatches between the supply and demand of ecosystem services (ES)
can be detrimental to human wellbeing. Studies focused on these problems have increased in recent
decades, but few have applied land use optimization to reduce such spatial mismatches. This study
developed a methodology to identify ES mismatches and then use these mismatches as objectives
for land use optimization. The methodology was applied to the Guangdong-Hong Kong-Macao
“Greater Bay Area” (GBA), a megacity of over 70 million people and one of the world’s largest
urban agglomerations. Considering the demand for a healthy and secure living environment among
city-dwellers, we focused on three ES: heat mitigation, flood mitigation, and recreational services.
The results showed large spatial heterogeneity in supply and demand for these three ES. However,
compared to current conditions in the GBA, our model showed that optimized land use allocation
could better match the supply and demand for heat mitigation (number of beneficiaries increased
by 15%), flood mitigation (amount of population exposed to flood damage decreased by 37%), and
recreation (number of beneficiaries increased by 14%). By integrating land use allocation and spatial
mismatch analysis, this methodology provides a feasible way to align ES supply and demand to
advance urban and regional sustainability.

Keywords: ecosystem services; land use allocation; urban sustainability; Guangdong-Hong Kong-
Macao; China

1. Introduction

Today, over 50% of the world’s population lives in urban areas—a figure that will
increase to 68% by 2050. Rapid urban expansion and human activities have significant
impacts on the natural environment, exacerbating the air pollution, the heat island effect,
and flood risks, among other problems [1]. Managing urban land use to meet the demand
of human wellbeing is a pressing challenge for sustainable development.

Ecosystems provide a range of direct and indirect services to reduce risks and enhance
human wellbeing, now widely known as “ecosystem services” [2]. ES are the benefits
people obtain from ecosystems [3,4], and they form links between environmental systems
and human society [5,6]. An ES framework is a strong tool for improving decision-making
efficacy in the allocation of limited natural resources [7,8].

Understanding the complex spatial relationships between ecosystem services supply
and demand (ESSD) can help inform environmental management and generate useful infor-
mation for integrating ES frameworks into decision-making processes [9,10]. Furthermore,
integrating ES knowledge—i.e., information about ES suppliers and sink locations—in land
use planning is instrumental to making polices that reducing ESSD mismatches [11,12].
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For instance, tools such as i-tree landscape (https://landscape.itreetools.org/, accessed
on 21 February 2021) allow the prioritization of tree planting based on several supply
and demand indicators. Additionally, the quantification of ES supply and demand could
help estimate the impacts of land use policy or planning, limiting the negative impacts of
proposed plans on ES supply and maximizing positive impacts by meeting ES demand [13].

Mapping ESSD mismatches can reveal areas of ES supply shortfall and provide land
managers with relevant insights for spatial planning [14,15]. ESSD mismatches have been
used to identify potential areas that may be targeted for ecological restoration [16]. For
example, based on the supply of and demand for flood regulation, areas that have a high
potential to mitigate downstream flood risk through land use modifications have been
identified [17]. Some authors have maintained that assessing multiple ESSD mismatches
can help to better design urban green infrastructure where it is needed [8,18], and some have
attempted to propose the achievement of urban self-sufficiency by optimizing ESSD at the
local scale [19]. Although there have been numerous studies on integrating ES mismatches
into planning, the optimization of land use to reduce ESSD mismatches remains a gap in
the existing research.

Increasing ES supply through land management to reduce ESSD mismatches is a
common policy goal of assessment and mapping studies [15]. Protecting natural forests
and grasslands [20], maintaining diverse landscapes [21], increasing urban green space [22],
and transferring tree species [23] have often been practiced. Some authors have developed
relevant assessment and optimization tools. Numerous optimization algorithms have
been applied to optimize land use allocation, including ant colony algorithms [24], genetic
algorithms [25], nondominated sorting genetic algorithm-II [26], and artificial immune
algorithms [27]. For example, CoMOLA (Constrained Multi-objective Optimization of Land
use Allocation) is a landscape optimization tool that finds optimal options for multiple
objectives [28], and SAORES (a spatially explicit assessment and optimization tool for
regional ecosystem services) is designed to integrate assessment and optimization of ES for
ecological restoration and management of the Chinese Loess Plateau [29]. Nonetheless, few
studies have integrated optimization into landscape management and planning to reduce
or minimize ESSD mismatches.

The aim of this paper is to propose a methodology that integrates ES and land use
allocation to minimize ESSD mismatches through a multi-objective optimization model.
More specifically, this paper develops an approach that, based on an ESSD assessment,
identifies spatial mismatches, translates them into objectives for optimization, and esti-
mates the improvements after optimizing land use. This approach is then applied to the
Guangdong-Hong Kong-Macao “Greater Bay Area” (GBA), a “megacity” of over 70 million
people in southern China.

2. Materials and Methods
2.1. Study Area and Data Sources

The GBA is consists of 11 cities (Guangzhou, Shenzhen, Foshan, Dongguan, Zhuhai,
Zhongshan, Zhaoqing, Jiangmen, Huizhou, Hong Kong, and Macao) (Figure 1). The main
land use/land cover types in the GBA are forest, cropland, and urban land (Figure 1). The
GBA has a southern subtropical climate with heavy rainfall during the rainy season (from
April to September) and an average annual temperature of 21.4–22.4 ◦C; it experiences an
average annual precipitation of 1600–2300 mm. Additionally, there are 1900–2200 sunshine
hours per year. The GBA covers 56,000 km2, had a combined population of approximately
71 million at the end of 2018, and is one of the largest and most populous urban agglomer-
ations in the world [30]. However, because of the combined effects of the complex regional
terrain and the East Asian monsoon climate, flooding and high temperatures occur fre-
quently during the summer [31]. Therefore, meeting the needs of residents for relevant ES
(e.g., flood mitigation, heat mitigation, and urban green space recreation) is an important
challenge for land management in this region.

https://landscape.itreetools.org/
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Figure 1. Land use and land cover (LULC) types in the “Greater Bay Area” (GBA).

Land use and land cover (LULC) data in 2018, with a spatial resolution of 30 m,
was provided by the Resources and Environmental Scientific Data Center (RESDC) of
the Chinese Academy of Sciences (CAS) (http://www.resdc.cn/ accessed on 11 June
2019). Population distribution data with a 100 m resolution in 2018 was obtained from
WorldPop (https://www.worldpop.org/ accessed on 26 June 2019). Landsat 8 OLI_TIRS
satellite remote sensing images were downloaded from the U.S. Geological Survey (http://
earthexplorer.usgs.gov/ accessed on 23 August 2019) to map the land surface temperature
(LST) in the GBA. Due to severe cloud obstruction in 2018, this study used the most
complete and cleanest remote sensing images in the summer daytimes (from June to
September) of 2019. The LST data with spatial resolution of 100 m was estimated through a
practical split-window algorithm from the Thermal Infrared Sensor (TIRS) onboard Landsat
8 [32].

2.2. Selecting ES and Assessing Supply and Demand
2.2.1. The Selection of ES

Mismatches are not a problem for some ES that can move between regions, but others
require a local balance between demand and supply [33]. Considering the situation of the
study area, the stakeholders (e.g., government, enterprises, residents) were first defined [34];
based on the stakeholders and their demands for ES, the ES status (surplus or deficiency)
and goals for specific stakeholders were identified and confirmed. This study then chose
three locally self-sufficient ES that are of particular importance to the GBA’s metropolitan
population due to their centrality to human health, security, and wellbeing. The selected
ES in this study are (1) heat mitigation, (2) flood mitigation, and (3) recreational space. The
following paragraphs provide a brief introduction to each ES.

1. The urban heat island effect (UHI) undermines the thermal comfort and health of
city-dwellers [35]. Furthermore, it can increase the use of air conditioning, which
increases energy use and worsens pollution [36], and causes heat stress-associated
mortality and illness [37].

2. Because of the expansion of impervious surfaces, urban regions are extremely vul-
nerable to flood hazards caused by heavy precipitation [38]. Climatic change and
urbanization are expected to exacerbate the impacts of changing precipitation patterns
and to increase the demand for water-related ES in the future [39].

http://www.resdc.cn/
https://www.worldpop.org/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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3. Access to green spaces for recreation can enhance the wellbeing of city-dwellers,
especially in dense urban areas [40]. Recreation space can also decrease mortality
and morbidity [41], provide stress-alleviating experiences, contribute to emotional
health [42], and strengthen community relationships [43].

2.2.2. Assessment of ES Supply and Demand

ES supply can be assessed using biophysical models (e.g., the Soil Conservation Ser-
vice curve number method), participatory methods (e.g., questionnaires, expert elicitation),
monetary valuation (e.g., the market prices and cost avoidance method), ecological foot-
prints, and other metrics [9,33]. ES demand can be assessed using social criteria (e.g.,
environmental quality standards, policy goals, targets for urban green space provision),
participatory methods, models, and other metrics [44,45].

(1) Heat mitigation

Supply: Heat mitigation supply (Sce) is mainly provided by vegetation and water
bodies [46]. The heat mitigation supply of vegetation is provided through several ways,
including shading, heat reflectance, and evapotranspiration. Shading and heat reflectance
can reduce the heat storage, while evapotranspiration can increase the latent heat exchange
to mitigate the heat island effect [47,48]. Water bodies mainly reduce the temperature
through the evapotranspiration process. Green and blue spaces not only provide local
heat reduction, but can also effectively cause neighborhood cooling due to increased air
movement and heat exchange [49]. In our analysis, grassland was ignored, since it covered
only a small proportion of the study area and therefore had little capacity for daytime heat
mitigation [50]. To calculate the local direct heat mitigation (◦C), heat mitigation distance
(m), and indirect benefits (◦C) to neighboring areas, we randomly chose 400 forest patches
and 400 water body patches on the LST map and generated buffers that were equally sliced
into 30 annuluses with 30 m intervals. Finally, we calculated the average LST within each
annulus, and then obtained the three abovementioned heat mitigation parameters for forest
and water space.

Demand: Heat mitigation demand (Dce) was defined as the UHI intensity [51]. The
UHI intensity was calculated by using an urban–rural comparison [52]. If the LST of a given
pixel was lower than that of the rural background area which was defined as cropland [52],
Dce was zero; otherwise, Dce was calculated as follows:

Dce = Ti −
1
n ∑n

j=1 Tbj, (1)

where Ti is pixel i’s LST (°C), n is the total number of pixels within the rural background
area, and Tbj is pixel j’s LST (°C) within the rural area.

(2) Flood mitigation

Supply: Flood mitigation supply (S f m) is an ecosystem’s capacity to mitigate floods
by intercepting, absorbing, or detaining storm water from heavy rainfall [17]. The differ-
ence between precipitation and runoff was defined as the supply. In this study, the Soil
Conservation Service curve number method [53] was used to estimate rainfall runoff and
flood mitigation supply. Sfm was calculated as follows:

S f m = (P−Q)× A, (2)

where S f m is the flood mitigation supply (m3); P is precipitation with duration of one hour
and a return period of 50 years based on rainfall monitoring data of each city in the GBA
(m); Q is the runoff (m) estimate based on the SCS-CN (Soil Conservation Service Curve
Number) model as shown in Equation (3); and A is the pixel area (m2). Furthermore, Q
was determined by

Q =

{
(P−Ia)

2

P+0.8S P ≥ 0.2S
0 P < 0.2S

, (3)
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where Ia(mm) is the initial abstraction of the rainfall (Ia = 0.2S) and S is potential maximum
retention or infiltration (m), which was calculated as

S =
25, 400

CN
− 254, (4)

where CN is a dimensionless parameter ranging from 0 to 100. The CN values were derived
from previous studies, mainly based on land cover categories and soil types [54,55].

Demand: Flood mitigation demand (D f m) was defined as the amount of population
influenced by floods, and it is related to flood exposure and vulnerability [56,57]. The D f m
was calculated as

D f m = Exposure×Vulnerability, (5)

where Exposure refers to the population at risk of flooding and Vulnerability indicates the
percentage (%) of the exposed population given a certain flood depth, as determined by
depth-loss curves [57]. We calculated and summed the D f m of 377 catchments.

(3) Recreation

Supply: Recreation supply (Sr) has two aspects: (1) the distance at which a given green
space is located from people and (2) the size of the green space [58]. We considered only
the green spaces within walking distance of the population distribution areas. Based on
previous studies, we defined green spaces as areas larger than 1 ha within walking distance
(300 m straight-line distance, approximately 500 m path distance, approximately 10–15 min
by foot) for recreation, and areas larger than 10 ha within medium walking distance (700 m
straight-line distance, approximately 1000 m path distance, around 20 min by foot) for
recreation [43].

Demand: Recreation demand (Dr) is based on the green space around population
distributions. Pedestrians tend to use green spaces within a 300 to 1000 m walking distance
of their home [59,60]. To match the recreation supply, there should be at least 1 ha of green
space in the 300 m buffer for the population distribution area, and more than 10 ha of green
space in the 700 m buffer for the population distribution area. To calculate these values,
population distributions and density maps are needed.

2.3. Assessing ES Mismatches

The spatial relationship between ES supply and demand may be balanced (the supply
is equal to or greater than demand) or deficient (the supply is lower than the demand).
ESSD (mis)matches were identified via statistical tools or by overlapping different the-
matic maps [61]. This approach requires supply and demand to be assessed at the same
scale to obtain a budget or ratio that indicates an ES undersupply, neutral balance, or
oversupply [45].

The mismatch analysis of ESSD was derived from the differences between the ES
supply and demand (based on the cell size) to optimize land use allocation [62]. The
shortfalls and mismatches of the three ES were calculated using different indicators and
methods. For heat mitigation, the mismatch was defined as the heat mitigation demand
(◦C). The shortfall between flood mitigation supply and demand was the runoff depth
(m) in each spatial unit, which was calculated using Equation (3). A scoring method was
used to assess the mismatches of outdoor recreation supply and demand. The criterion
for mismatches of outdoor recreation supply and demand was defined as whether there
was green space within a certain distance (700 m for areas larger than 10 ha, 300 m for
areas between 1 and 10 ha) from populated areas [63] (Table 1). For unpopulated areas, the
mismatch of outdoor recreation supply and demand was zero.
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Table 1. Criteria for (mis)match of outdoor recreation supply and demand.

Green Space Larger than 10 ha in
700 m Distance

Green Space Area between 1 and 10 ha
in 300 m Distance Score

√ √
1√

× 3
×

√
5

× × 7

2.4. Setting the Optimization Objectives and Identifying Constraints
2.4.1. Description of Optimization Objectives and Constraints

If a targeted ES supply does not match the corresponding demand (the ES supply
is lower than the demand), reducing the ESSD mismatch is defined as an optimization
objective. Considering the different factors and objectives involved in the definition
of spatial suitability, several objectives (e.g., maximizing the number of beneficiaries of
ES, achieving maximum compactness of land use to avoid land fragmentation) may be
developed when directly taking into account all the relative factors [28,64]. Multi-objective
optimization problems can be solved either by integrating all the objectives into one single
function by assigning a weight to each objective, or by generating multiple solutions
simultaneously based on Pareto-based methods [65]. In this study, we defined three
objectives for land use allocation: minimizing ESSD mismatches, maximizing the number
of ES beneficiaries, and maximizing land use compactness; we then adopted equal weights
to integrate them into one function. Increasing the ES supply to reduce ESSD mismatches
was the main objective in the area where ES supply was lower than the demand in this
study. Moreover, since the ES supply is significantly more effective in densely populated
areas [66], maximizing the number of ES beneficiaries was another objective. In addition,
since the concentration of similar land use types improves efficiencies in land resource
and energy utilization [67], we also included land use compactness (which can improve
efficiency in land utilizations) as an objective.

The constraints are defined based on ecological, economic, and social restrictions, as
well as other indicators. Transition rules that define possible land use transformations
often take constraints, as well as the permissible total areas for different land use classes,
into account [68]. We proposed two constraints to optimization: the area of land use
and the rules for land use transformations. We reduced ESSD mismatches by increasing
the amount of green and blue space to increase the ES supply. Based on the targets for
blue and green spaces in the Pearl River Delta National Forest Urban Agglomeration
Construction Plan (2016–2025), the Integrated Planning of the Ecological Security System
in the Pearl River Delta Region, and the Guangdong Province General Land Use Plan
(among other official planning documents), constraints were defined to limit the scale of
new green and blue spaces. Forestland, water bodies, and grassland were projected to
increase by approximately 300 km2, 60 km2, and 40 km2, respectively. The rule for land use
transformations was that existing built-up land and water bodies could not be converted
to other land uses in the process of optimization.

2.4.2. Mathematical Formulations for Land Use Allocation

The defined objectives can be expressed by the following formulas. The different
ESSD mismatches were normalized to ensure their comparability.

f1 = Min
Row

∑
i=1

Clo

∑
j=1

ESSDce(i, j), (6)

f2 = Min
Row

∑
i=1

Clo

∑
j=1

ESSD f m(i, j), (7)
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f3 = Min
Row

∑
i=1

Clo

∑
j=1

ESSDr(i, j), (8)

f5 = Max
K

∑
k=1

Compk, (9)

where ESSDce(i, j) is the normalized supply and demand match for heat mitigation supply
and demand in cell (i, j); ESSD f m(i, j) is the normalized supply and demand match for
flood mitigation in cell (i, j); ESSDr(i, j) is the normalized supply and demand match for
recreation in cell (i, j); and Compk is the compactness of the kth land use.

We aimed to minimize ESSD mismatches through the allocation of new planned green
and blue spaces. In an earlier study, increasing the ES supply was found to be significantly
more effective in regions with high population densities [66]. Therefore, the goals for ES
in this study can be achieved by converting the area with the greatest ESSD mismatches
and highest population density to green and blue space in order to supply ES. Land use
suitability analysis determines the extent to which a given piece of land is suitable for a
specific use [69]. We chose ESSD matching and normalized population density to evaluate
green and blue spaces. It was considered optimal when green and blue spaces were
allocated to the areas with the greatest ESSD mismatches and highest population density.
Based on an equally weighted sum of the mismatches of the target ES, we integrated
multiple objectives to optimize blue and green spaces. Based on assessments of ES supply,
the suitability of cell (i, j) for forest, water body, and grassland can be expressed as follows:

Suit f orest(i, j) = POP(i, j)×
[

ESSDce(i, j) + ESSD f m(i, j) + ESSDr(i, j)
]
, (10)

Suitwater(i, j) = POP(i, j)×
[

ESSDce(i, j) + ESSD f m(i, j)
]
, (11)

Suitgrass(i, j) = POP(i, j)×
[

ESSD f m(i, j) + ESSDr(i, j)
]
, (12)

2.5. Optimizing Land Uses

A modified ant colony optimization (ACO) model was employed in our study; this
approach simultaneously combines the suitability and compactness of land use based on
a weighted sum of these two functions to search for optimal spatial configurations [70].
We used the ACO landscape optimization tool Geographical Simulation and Optimization
System (http://www.geosimulation.cn accessed on 6 September 2019). ACO algorithms
support user-defined target functions and weights of multiple objectives and allow for
basic land use constraints.

The flow chart of our ACO algorithm for land use optimization is shown in Figure 2.
Land use can be optimized by using the pheromone feedback of ants. We imported the
parameters for suitability of land use, number of ants according to the target area of
land use, number of iterations, pheromone importance factor (α), visibility importance
factor (β), pheromone persistence (ρ) to enable pheromone evaporation, and pheromone
reward factor (q). These parameters (α, β, ρ, q) were determined as described in previous
studies [70]. The basic process flow of the optimization module includes the following
steps: (1) construct the initial land use allocation, which either is based on imported, actual
land use data or is randomly generated; (2) produce new solutions by evaluating the value
of the objective function; and (3) stop the execution when the algorithm converges or
reaches the maximum level. After running the optimization algorithm, we obtained the
optimized allocations of forests, water bodies, and grassland.

http://www.geosimulation.cn
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3. Results
3.1. Stakeholder Analysis and ES Assessment

The GBA is an urban agglomeration with over 70 million people, most of whom live
in cities. Therefore, the stakeholders in the study area are primarily urban dwellers. The
goal of this ESSD assessment was to reduce the shortfalls and mismatches between ES
supply and demand through the optimal allocation of land use. We assessed ESSD and the
optimized land use allocation to meet the stated goals.

Based on the green space and water body samples in the GBA, the mean observed
direct urban heat mitigation was 3.78 ◦C for forests and 3.22 ◦C for water bodies. The
indirect benefit was 2.44 ◦C within a 150 m buffer for forests and 1.92 ◦C within a 180 m
buffer for water bodies. The green and blue spaces provided a cumulative heat mitigation
service to 34.24 million people in the GBA. Nonetheless, there was still 13,900 km2 of land
in the central part of the GBA affected by UHIs, with an average effect of 2.82 ◦C.

The flood mitigation service was assessed to be 3.19 × 109 m3 for a 50-year pluvial
flood. However, the estimated rainstorm-generated surface runoff was 2× 109 m3, affecting
approximately 147,700 people in 377 watersheds.

Green space-derived recreation service was provided to 47.78 million people in the
GBA, and 10 million people were within the service radius of community green spaces
(1–10 ha) and large green spaces (>10 ha). However, 32% of people in the GBA were not
within the service radius of a green space.

3.2. Levels of (Mis)Matches between ES Supply and Demand

Although the mismatches for the three targeted ES were mainly distributed in the
“inner city” areas of the GBA that are primarily covered with impervious surfaces, they were
not spatially coincident (Figure 3). The mismatches for heat mitigation were concentrated
in the middle of the GBA. Because of a heavy rainfall and high impervious surface ratio, the
degree of mismatch for flood mitigation was higher in Dongguan and Zhuhai. The spatial
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distribution of recreation was different from that of heat mitigation and flood mitigation in
that it was not scattered in areas with a lack of green space.
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3.3. Multi-Objective Land Resource Allocation Optimization

We ran an ACO model multiple times to ideally obtain for each cell a probability of
land use transition. The number of iterations was set to 1000, but a close inspection revealed
that after 200 iterations, most land use cells were at locations that were balanced, and the
land use pattern started to stabilize after 200 iterations. The distribution of newly added
green and blue spaces totaling 400 km2 is presented in Figure 4. Although the new green
and blue spaces accounted for only 0.71% of the GBA’s total area, their optimal allocation
improved ESSD matching significantly. The number of beneficiaries of heat mitigation
and recreation services increased by 5.09 million and by 6.5 million, respectively, and the
number of people suffering from flooding decreased by 36.73% (Table 2).
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Table 2. The changes of ES supply and demand under optimized land use allocation.

ES Type Original Land
Use

Optimized
Land Use

Change
(%)

Heat mitigation Area (km2) 48,116 48,821 1.47
Beneficiaries (millions) 34.23 39.32 14.87

Flood mitigation
Runoff (109 m3) 31.97 32.16 0.59
Population suffering
flooding (people) 147,723 93,464 −36.73

Recreation
Area (km2) 48,142 49,617 3.06
Beneficiaries (millions) 47.78 54.28 13.61
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4. Discussion

Shortfalls and mismatches between the supply and demand of ES are common phe-
nomena that undermine cities’ ability to cope with severe impacts such as floods and
UHIs, and these impacts will only become more common as climate change continues
apace [61]. One critical goal for land management is to reduce ESSD mismatches [8]. How-
ever, minimizing these mismatches by optimizing land use allocation remains difficult for
a variety of technical and practical reasons [71]. Many case studies have shown that the
optimization of land use allocation can achieve maximum ES supply through optimization
algorithms [29,68]. However, improving wellbeing has multiple dimensions (e.g., basic ma-
terial needs for health and safe living conditions) [3], and it is infeasible to allocate land use
without considering residents’ demands. Therefore, our study developed a methodology
for integrating the supply and demand of ES and designed an optimization module for
land use allocation to minimize ESSD mismatches.

Traditional urban planning focuses on the share of maintained green spaces or per-
meable areas, but ignores the different ecological functions and ES provided by different
types of ecological components [72]. In recent years, many urban planning policies have
attempted to go beyond traditional indicators and have advocated for the inclusion of
ES in decision-making [73]. Policymakers usually opt to increase the amount of green
and blue spaces to maintain the balance of ecosystems and enhance the ES supply [15,22].
These plans often achieve desirable outcomes, but do not necessarily meet the overall
policy goal of minimizing mismatches and shortfalls between the supply and demand of
ES through land use planning [74]. Our methodology defined the minimization of ESSD
mismatches and the maximization of the number of beneficiaries as objectives for land use
optimization. As a result, land use optimization covering 400 km2 (approximately 0.71% of
the GBA’s total area) provided 5.09 million (14.87% growth) additional beneficiaries with
urban heat mitigation and by 6.5 million (13.61% growth) additional beneficiaries with
recreation access, while at the same time reducing the number of people suffering from
floods by 36.73%.

The proposed approach can be integrated into frameworks of urban land planning
to identify potential intervention points for improving sustainability. Our approach can
spatially quantify how much given ES need to be increased and identify where demand
needs to be adjusted to achieve a regional equilibrium of ESSD. Our methodology is an
innovative and potentially highly useful tool for urban planning, since it depends on
urban residents’ perspectives on what is needed; it therefore increases the magnitude of
the contributions to their security, health, and wellbeing from new green and blue spaces.
Moreover, this study provides a way to address ES supply-demand problems by linking ES
to local conditions, which can contribute to making ES operative in the context of regional
land use planning. In this case study, we selected three ES based on spatial scale and the
likely demands of local city-dwellers. Since the spatial area of service-providing units
varies from the microscale (e.g., recreation) to the macroscale, matching ESSD can occur at
many scales [75,76]. In this study, three local-scale ES (heat mitigation, flood mitigation, and
recreation) were chosen to optimize land use allocation to achieve a local balance between
demand and supply [33]. Moreover, these three ES are of particular importance to the GBA.
The GBA has a subtropical oceanic climate and frequently experiences extreme weather
events, especially storms and UHIs, during the hot summer season [77]. In addition, green
space for recreation is widely recognized as being critical for the physical and mental
health of dense urban populations [78]. Since the GBA is a megacity with extremely high
resident density, opportunities for green space-based recreation can potentially reduce
the incidence of diseases, such as obesity and cardiovascular disease [79], and increase
cognitive development in children [80]. Therefore, while heat mitigation, flood mitigation,
and recreation are not the only important ES for this region, they are undeniably central to
the health and security of residents.

Landscape configuration can greatly affect ES supply; therefore, it was considered in
this study. Landscape richness is highest when ecosystem cells are spread over as many
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patches as possible, while compactness is maximized when forming a single ecosystem
patch [28]. Landscape richness and heterogeneity were expected to have positive effects on
pollination and biodiversity, especially for species that use more than one cover type [81].
However, more experiments showed predominantly negative effects of landscape frag-
mentation on ES supply [82]. Fragmentation also decreases ES through interacting with
other drivers such as climate change and human disturbance [83]. The degree of landscape
compactness and connectivity strongly contributed to ES supply [82]. When given a fixed
area of green space, the compact patches can provide a stronger cooling effect on local
and surrounding areas than a fragmented distribution [84]. Additionally, increasing forest
compactness positively impacts water yield and net primary productivity [85]. Addressing
ESSD mismatches through land use optimization is an important approach to sustainable
urbanization. Despite the innovations presented in this study, our methodology is nonethe-
less a first-generation effort, and as such has several limitations that require attention in
future research. Since the purpose of the study is to propose a methodology to apply land
use optimization to reduce ESSD mismatches, the details of assessing mismatches and
objectives were simplified. For example, we assumed population density was constant and
did not consider changes in population density that may occur with land use change; and
we only used summer daytime LST to quantify UHI, rather than taking seasonal UHI and
nighttime LST into account. Due to data limitations, we aggregated four target functions
into one objective using equal weights to allocate land use, instead of assigning different
weights according to the demand of different sociodemographic groups, distinguished
by factors such as age, income, and education, or according to the value of different ES.
For example, older people are likely to be more sensitive to high temperatures and there-
fore have a higher demand for heat mitigation than younger people [86], while children
have a higher demand for recreational spaces [80]. Additionally, measuring the value of
ecosystem services was widely applied for evaluating government policy and land use
planning. Through bringing the value of ES into a single monetary metric, the value of
different ES can be assigned as weights to integrate three objectives as one function. Since,
the locations for maximizing different types of ES are not spatially coincident, integrating
mismatches of multiple ESSDs into one objective makes sense. However, assigning weights
for different ES to meet multiple demands was difficult, and needs additional work to
be resolved. Given these considerations, some potentially important directions for future
research include obtaining data on sociodemographic characteristics to construct models
that assess varying ES demands among different groups, and assessing the monetary value
of different ES.

It is also worth noting that more than 90% of the new 400 km2 of blue and green
spaces in our study came at the expense of cultivated land, which indicates the existence of
tradeoff relationships between agricultural production and the three ecosystem services
in this study. Therefore, the loss of income for local households as a result of farmland
conversion is a social and economic cost that is not considered in our analysis. If these
households can find alternative livelihood activities or obtain payments for ES that are
equal to or higher than their lost rural incomes, the practical rationale for the optimization
of land use in our study would be even stronger. Thus, evaluating whether agricultural
lands can be converted into ecological land to reduce ESSD mismatches, and assessing
the consequent losses of income for residents, can help policymakers design policies that
properly compensate the residents.

Additionally, some uncertainties of this method need to be considered. (1) Some
ecological parameters were taken from empirical studies performed in similar spatial and
climatic settings, but nevertheless the parameters should be treated with care. For example,
parameter Ia in Equation (3) was proposed to use 0.2 in the GBA; however, some studies
used 0.05 instead of 0.2 for urban environments. (2) This study focused on green spaces
only for recreation service, which excluded water bodies where many people would spend
time for recreation. Some studies showed the importance of green spaces in inner-city areas
for recreation as compared to water bodies [87]. Moreover, the standard of demand for
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recreation, which has often been proposed by planning and research, was 300 to 1000 m
walking distance for pedestrians for green spaces [88,89]. To calculate the matching of
supply and demand of recreation, this study only focused on green spaces for recreation.
(3) The cooling service of grasslands was not considered in this study. Because urban green
space was usually composed of grasslands, forests, and shrubs, there were few patches of
grassland in main urban areas in the GBA with high intensity of heat island, especially the
large patches of grass. The grassland is mainly distributed in areas surrounding forests
in the suburbs. Additionally, grass is less effective than tree canopy or water bodies for
LST cooling [50,90]. Therefore, no significant cooling effect was found for grasslands in
the GBA.

5. Conclusions

ESSD mismatch is a common phenomenon at specific scales. This paper provides a
methodology that integrates ES and land use allocation to reconcile mismatches between
ES supply and demand through multi-objective optimization. This approach was applied
in the GBA, and it was found that the supply did not meet the demand for three important
ES (heat mitigation, flood mitigation, and green space recreation), especially in the “inner
city” areas. The mismatches for these three ES were then used as the optimization objective.
After allocating 400 km2 (accounting for 0.71% of the GBA’s total area) of green and blue
spaces, ESSD matching was greatly improved: the number of beneficiaries of the heat
mitigation and recreation services increased by 5.09 million and 6.5 million, respectively,
and the number of people suffering from flooding decreased by 36.73%. Our methodology
extends the work of previous studies and provides a practical approach for analyzing the
statuses and matching the distribution of multiple ES to further urban sustainability.
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