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Abstract

Background and objective: Quantitative assessment of disease activity is important

for effective management of patients with autoimmune inflammatory diseases (AIDs)

including Takayasu arteritis (TA). Histidine supplementation alleviates inflammation

and has strong anti-oxidative effects as well. The present study aims to evaluate the

diagnostic potential of circulatory histidine for predicting disease activity in TA.

Methods:The serummetabolic profiles on 98TA-patients and77normal controls (NC)

samples were measured at high-resolution 800 MHz NMR spectrometer employing

standard 1D-1H-CPMG NMR experiments. The NMR spectral data were processed

and concentrations of histidine and other circulatorymetabolites were estimatedwith

respect to formate (as an internal reference) and compared using ANOVA based on

Tukey’s multiple comparison test and statistical significance was considered at P-

value < 0.05. The correlations of histidine with plasma CRP and ESR levels were eval-

uated using Spearman-rmethod. Data were expressed as median (interquartile-range

[IQR]).

Results: Histidine levels were significantly decreased in active TA patients (23.90;

IQR:16.10) compared to both inactive TA patients (35.50, IQR:24.30) and NC (42.80,

IQR:22.10), whereas there was no significant difference between inactive TA and NC.

For TA patients, the histidine levels correlated negatively with clinical markers of

inflammation, that is, ESR (r = -0.19, P < .078) and with the CRP (r = -0.26, P < .013).

Further, the receiver-operating-characteristic (ROC) curve analysis was performed to

test the diagnostic potential of histidine for differentiating active from inactive dis-

ease. The area under theROCcurve (AUROC) value equal to 0.65 [95%CI=0.54-0.76]

revealed its moderate discriminatory ability. Compared to other circulatory metabo-

lites, the discriminatory performance of histidine was also found to be in themoderate

range (highest AUROC-value of 0.76was found for glutamine-to-glucose ratio (QGR).

Conclusion: The study demonstrated the altered circulatory histidine levels in TA

patients that may serve as a surrogate marker for improving the diagnostic screening

of active and inactive TA patients.

Abbreviations: AUROC, area under ROC curve; CI, confidence interval; CPMG, Carr–Purcell–Meiboom–Gill; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; HTR, histidine to

tyrosine ratio; IQR, interquartile range; ITAS, Indian Takayasu Clinical Activity Score; ITAS, Indian Takayasu Clinical Activity Score; LGR, lactate to glucose ratio; mTOR, mechanistic target of

rapamycin; NC, normal control; NEFA, nonesterified fatty acids; NMR, nuclear magnetic resonance; PTR, phenylalanine to tyrosine ratio; QGR, glutamine to glucose ratio; ROC, receiver operating

characteristic curve; SLC15A4, Solute Carrier Family 15Member 4; TA, Takayasu arteritis
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1 INTRODUCTION

Takayasu arteritis (TA) is a large vessel vasculitis with a predilec-

tion for the aorta and its major branches primarily affecting young

Asian women.1,2 A major challenge in the management of the vasculi-

tis is differentiating damage from disease activity.3,4 The importance

of this lies firstly in determining the treatment course with the need

for intensification of immunosuppression in those with persistent dis-

ease activity and secondly in ensuring the success of interventional

procedures as the rate of complications rises to sevenfold in those

with active disease at the time of the procedure.1 The conventional

markers of inflammation like erythrocyte sedimentation rate (ESR) and

CRP (C-Reactive protein) are poor correlates of disease activity in

TA.2 The poor reliability of ESR and CRP to composite indices based

on history, physical examination, and inflammatory biomarkers such

as Indian Takayasu Activity Score (ITAS) and Disease Extent Index-

TakayasuArteritis (DEI⋅Tak).3,4 However, such scores ultimately rely on

the physician’s discretion thus necessitating the need for more objec-

tive markers. Imaging modalities are being explored but the utility

remains questionable owing to mixed results, further the associated

risks of radiation exposure and cost due to the need for serial tests.5

The lack of appropriate outcome measures hampers the treat to tar-

get approach in themanagement of the disease and thus calls for wider

exploration into establishing easy-to-use, cost-effective, and reliable

biomarkers.

Previous work from our group has focused on clinical metabolomics

to determine serum metabolic disturbances associated with TA and

that the serum metabolic profiling has the potential to differentiate

active from inactive TA patients.6,7 Further, considering active glu-

taminolysis and dampened glycolysis as the potential hallmarks of

active inflammation, the circulatory Glutamine/Glucose ratio (QGR)

was evaluated for screening TA patients with active disease.8 Though

many factors are involved in thepathogenesis of inflammatorydiseases

and of them; oxidative stress is the major contributor to the estab-

lishment of chronic inflammation.9 Histidine is an anti-inflammatory

amino acid and is a precursor of histamine. Both clinical and pre-

clinical data suggest that histidine has strong anti-oxidative and anti-

inflammatory effects.10–12 A recent randomized controlled trial study

performed on obese women revealed that histidine supplementation

improves insulin resistance reduces BMI, fat mass, and serum non-

esterified fatty acids (NEFA) through suppressing inflammation and

oxidative stress.13,14 Based on this, we hypothesized that the lower cir-

culatory histidine levels can serve as a surrogatemarker for the assess-

ment of disease activity in TAand canbeused formonitoring treatment

response and so deciding clinical treatment appropriately.

2 MATERIALS AND METHODS

2.1 Patient selection and sample collection

Serum samples were obtained from 98 patients diagnosed with TA

(based on the 1990 American College of Rheumatology (ACR) classi-

fication criteria15 attending the Department of Clinical Immunology

and Rheumatology at SGPGIMS, Lucknow. The study protocol was

approved by the Institutional Research Ethics Committee, SGPGIMS,

Lucknow, India and samples were collected with informed consent

from the patients and stored with permission. Demographic parame-

ters, clinical symptoms, and physical examination findings of patients

were recorded. Serological tests including complete blood count,

ESR, CRP, creatinine, serum transaminases were performed within

3 days of blood sampling. For comparison, the serum samples of

77 normal healthy control subjects were collected. All the patients

were evaluated for disease activity based on Indian Takayasu Clinical

Activity Score (ITAS2010) combined with circulatory ESR [ITAS-ESR].4

The cohort of TA patients was prospectively evaluated and divided

into active and inactive groups based on the described cutoff value

of ITAS-ESR ≥ 4.4 The serum samples were extracted as described

previously16 and stored in aliquots of 250 µL each at -80◦C until NMR

data acquisition.

2.2 Sample preparation for NMR experiments

Before starting NMR experiments, the stored serum samples (250 µL

in each case) were thawed and mixed with 250 µL of sodium phos-

phate buffer of strength 50 mM (0.9% saline, pH 7.4 and prepared in

100% D2O). The samples were centrifuged at 16 278 × g for 5 min

and then 450 µL of each sample volume was transferred to 5 mm

NMR tubes (Wilmad Glass, USA). The NMR tube filling of 4.0 cm (as

required for Bruker spectrometer) was achieved by inserting a co-

axial insert (Wilmad, with stem length 50 mm). The co-axial NMR

tube inserted separately contained 1.0 mM TSP (sodium salt of 3-

trimethylsilyl-(2,2,3,3-d4)-propionic acid) dissolved in deuteriumoxide

(D2O) that served as an external reference. Deuterium oxide (D2O)

and sodium salt of trimethylsilylpropionic acid-d4 (TSP) used for NMR

spectroscopy were purchased from Sigma–Aldrich (St. Louis, MO,

USA).

2.3 NMR measurements

The NMR spectra were acquired on a Bruker Avance-III NMR spec-

trometer operating at 800.12 MHz frequency and equipped with Cry-

oprobe (Bruker BioSpin GmbH, Rheinstetten, Germany) following the

procedure and parameters described previously.6,7 Briefly, the stan-

dard CPMG (Carr–Purcell–Meiboom–Gill) spin-echo pulse sequence

(cpmgpr1d, from Bruker library) with water presaturation to suppress

the water signal and a total spin-spin relaxation delay of five seconds

was used. In total, 128 transients with 64 K data points were recorded

over a spectral width of 20 ppm, resulting in an acquisition time per

scan of 15 min. For quantitative profiling of serum metabolites, we

used the commercial software CHENOMX (v8.2, Edmonton, Canada)

as described previously.8 First, the spectrum was opened in its PRO-

CESSORmodule andwas phasedmanually, baseline corrected, and cal-

ibrated with respect to format peak at 8.43 ppm. Formate has been
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TABLE 1 Clinical and demographic details of active and inactive TAKAYASU arteritis patients

Parameter

Active TA

(ITAS-A≥4)

Inactive TA

(ITAS-A≤ 3)

t-Test
(P-value) NC

Number (Female: Male) 45 (35:10) 53 (44:9) 77 (64:13)

Age (in Years)# 27 [22-35] 27 [23-37] .60 27.9 [23-32]$

Duration of Symptoms (in Years)# 5 [2-9] 3 [1-6]

ESR (mm at oneHour) 57.3± 29.1 41.4± 26.3 .0064↑*

CRPmg/dl)¥ 6.1± 12.6 1.16± 1.34 .0093↑*

Immunosuppression (yes)ˆ 33 37

ITAS¥ 8.5± 5.5 0.2± 0.7 <.0001↑****

ITAS-A using CRP¥ 9.3± 5.0 1.3±1.3† <.0001↑****

ITAS-A using ESR¥ 10.6± 5.4+ 1.6±1.0† <.0001↑****

Angiographic Classification I 12 9

II 4 5

III 3 2

IV 5 2

V 21 34

#median [IQR, 25th-75th percentile], ¥mean± SD.
†Detail for one sample not available (inactive group);+1- only ITAS used as ESR/CRPwas not available; ††for five patients ITAS-A (CRP) was used as ESRwas

not available,.

ˆimmunosuppression at the time of enrollment into the study,.

*for P-value< .05 | **P-value< .001 | ***P-value< .0001 | ****P-value< .00001.
$The normal control groupwas also age-matched to active and inactive TA groups (with P-values equal to .26 and .06, respectively).

used as an internal reference and concentration set to 10 micromolar,

that is, nearly close to the detection limit of 800MHzNMR spectrome-

ter. The resulted spectra were then analyzed using PROFILER-Module

of CHENOMX and concentrations of selected metabolites (including

histidine)wereestimated in all the98 serumsamplesofTApatients and

77 control serum samples.

2.4 Statistical analysis

Categorical variables were compared between the two groups based

on the two-tail test using SPSS Statistics software (version 11.2, IBM).

All continuous variableswere described either asmean± SDormedian

[interquartile range (IQR)]. The variables between the twogroupswere

compared using Student’s t-test. The multivariate statistical analysis

(i.e. comparison of estimated relative concentrations of circulatory

serum metabolites) were performed employing Random Forest (RF)

classification algorithm (a supervised machine learning tool).17 RF

classification analysis was performed using the Statistical analysis

module of MetaboAnalyst (https://www.metaboanalyst.ca).18,19 To

validate the diagnostic potential of marker metabolites, the receiver

operating characteristic curve (ROC) analysis was performed using

Biomarker module of web-based software tool MetaboAnalyst

(https://www.metaboanalyst.ca).18,19 The area under the ROC curve

(AUROC), 95% confidence intervals (CIs), and P-valueswere computed

for the assessment of sensitivity and specificity of a given metabolic

feature as a diagnostic test for differentiating active and inactive TA

patients. As described previously,20 the AUROC value less than 0.5

indicates that the test does not have any discriminatory ability (i.e. it

is like a random guess), while a value between 0.60 and 0.9 indicates

moderate discrimination and a value greater than 1.0 indicates excel-

lent discriminatory potential. Statistical significance was defined at

P < 0.05 (estimated based on t-test). The correlation analysis between

concentration levels of circulatorymetabolites and clinical parameters

were performed using professional software tool GraphPadPrism-7

and evaluated based on the Spearman correlation coefficient(r).

3 RESULTS

The study involved 98 TA patients (45 with active disease and 53

with inactive disease similarly as described previously).7 The patients

details and presented in Table 1. Figure 1A compares the circulatory

levels of histidine between active and inactive TA patients with respect

to normal control (NC) subjects. Clearly evident from the Figure that

active TA patients have significantly low levels of circulatory histidine

compared to both inactive TA patients andNC subjects; whereas there

was no significant difference between inactive TA patients and NC

subjects. The median histidine levels in active TA patients were 23.9

(IQR:16.10) as compared to 35.5 (IQR: 24.3) for inactive TA patients

and 42.8 (IQR: 22.10) in normal control subjects. Circulating histidine

levels showed a negative correlation with conventional inflammatory

parameters i.e. CRP (r = -0.26; P-value = .013) and ESR (r = -0.19;

P-value = .078) (Figure 1B,C). Further, the receiver operating

https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
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F IGURE 1 (A)Box plot showing a comparison of circulatory histidine levels in active and inactive TA patients with respect to normal healthy
control. (B)Receiver operating characteristic (ROC) curve analysis performed for evaluating the diagnostic potential of Histidine. The area under
the ROC curve (AUC, with 95% confidence interval (CI), and P-values) is shown in gray to highlight the diagnostic value of circulatory histidine for
differentiating active and inactive TA patients. (C, D)Graphs showing Spearman-correlation for Histidine with erythrocyte sedimentation rate
(ESR) and C-reactive protein (CRP) levels

characteristic (ROC) curve analysis was performed to evaluate its

diagnostic utility. The estimated area under the ROC curve (AUROC)

value of 0.65 with 95% CI = 0.54-0.76 (P-value < .05) suggested that

the circulatory histidine levels have moderate discrimination ability

(Figure 1D).

3.1 Relevance of Histidine as a predictive
biomarker

In order to establish the utility of histidine as a reliable clinical marker

of disease activity compared to other circulatory metabolic features,

we further performed random forest (RF) classification analysis that is

a machine learning tool suitable for identifying predictive biomarkers

(features) from higher-dimensional metabolomics data.21,22 The rela-

tive concentrations of specific metabolic features profiled in this study

are tabulated in Table 2. Figure 2A shows the RF cumulative error rates

measured for each class using ensemble of classification trees. Clearly

evident from the Figure is that the estimated serummetabolic profiles

of TA patients are distinctively different compared to normal control

subjects. Figure 2B shows the mean decrease in accuracy (MdAcc)

that measures the importance of each variable to the predicted RF

classification model. The general idea is to permute the values of each

variable and measure the decrease in the accuracy of the model as

described previously.21,22 Clearly evident that the circulatory HTR

levels are highly discriminatory followed by histidine in the RF classi-

fication model. Further, the estimated metabolic concentrations were

compared between active and inactive TA patient’s with respect to the

normal control (NC) group and the results are summarized in Figure 3.

Compared to inactive TA patients, the circulatory levels of themajority

of amino acids (including alanine, glutamine, glutamate, etc.), creatine,

choline, and citrate were found significantly decreased in active TA

patients and. These metabolic changes were found well consistent

with our previous reports7,8,23 suggesting their augmented utilization

to regulate various immune-inflammatory functions required for

immune-mediated inflammatory processes. We further confirmed

these metabolic features for their significant differences between the

study groups using univariate statistical analysis tools such as ANOVA

and Student’s t-test. The results of these analyses are provided in the

Supporting Information (See Figure S1 and Tables S1 and S2).

Compared to NC subjects, the circulatory HTR levels were sig-

nificantly decreased in TA patients (irrespective of disease activity)

compared to NC subjects (Figure 3) and this might be related to

differentially active pro-inflammatory pathways in TA.Well consistent

to this, the phenylalanine to tyrosine ratio (PTR, which is an indicative

of oxidative stress)24 was found to be elevated in TA patients as

compared to NC subjects suggesting elevated oxidative stress in

TA. However, the circulatory HTR and PTR levels were comparable

between active and inactive TA patients suggesting that their lack

of utility in the assessment of disease activity (Figure 3). Among
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TABLE 2 The concentrations of 30 distinctive serummetabolites estimated based on 1D 1HCPMGNMR spectra (reported asmean±
standard deviation (SD). Additionally, sevenmetabolic ratios (HTR: Histidine-to-tyrosine ratio, PTR: Phenylalanine-to-tyrosine ratio; ALR:
Alanine-to-lactate ratio; QGR: Glutamine-to-glucose ratio; EQR: Glutamate-to-glutamine ratio; LPR: Lactate to pyruvate ratio; BTR: Branched
chain amino acids-to-tyrosine ratio) were also evaluated and compared between the study groups

NC Inactive TA Active

# Metabolite Median (Q1-Q3): IQR Median (Q1-Q3): IQR Median (Q1-Q3): IQR

P-value showing if the
linear trend is significant?

1 3HB 6.30(4.30-11.60):7.30 14.90(9.20-24.60):15.40 12.30(4.90-19.70):14.80 .0007***

2 Acetate 27.50(20.00-33.40):13.40 21.30(18.10-33.20):15.10 22.60(15.20-34.00):18.80 .11

3 Acetone 9.60(5.70-13.40):7.70 12.30(8.30-19.40):11.10 9.40(4.90-17.40):12.50 .0217*

4 Alanine 229.60(156.30-280.60):124.30 185.10(112.70-292.00):179.30 145.00(101.40-194.30):92.90 <.0001****

5 Aspartate 20.90(16.70-26.80):10.10 20.60(12.90-33.90):21.00 18.30(10.40-23.20):12.80 .3097

6 Betaine 20.20(12.80-29.90):17.10 18.50(11.80-28.60):16.80 16.80(12.00-24.80):12.80 .2624

7 Choline 15.70(10.90-21.80):10.90 20.30(11.70-27.90):16.20 11.10(7.70-17.20):9.50 .02*

8 Citrate 27.80(18.70-41.50):22.80 30.20(18.80-53.00):34.20 17.70(11.80-33.60):21.80 .0207*

9 Creatine 12.70(7.80-16.60):8.80 15.10(9.30-26.20):16.90 9.60(5.60-14.70):9.10 .23

10 Creatinine 15.70(9.70-18.90):9.20 17.80(11.30-25.20):13.90 13.20(11.30-20.40):9.10 .51

11 Glucose 1.35(0.78-1.77):0.98 1.40(0.79-2.09):1.31 1.30(0.97-1.99):1.03 .27

12 Glutamate 68.40(43.50-109.80):66.30 45.20(32.40-65.30):32.90 41.70(26.50-68.80):42.30 <.0001****

13 Glutamine 170.30(102.80-242.60):139.80 186.30(103.30-256.70):153.40 124.30(91.40-166.10):74.70 .02*

14 Glycerol 35.65(22.08-60.40):38.33 67.50(37.50-109.60):72.10 59.00(34.70-70.30):35.60 .06

15 Glycine 153.70(114.30-199.80):85.50 139.60(96.70-188.80):92.10 107.20(84.40-151.50):67.10 .0023**

16 Isoleucine 26.50(20.50-33.20):12.70 25.90(18.10-36.60):18.50 20.90(15.40-27.30):11.90 <.075

17 Lactate 1.34(1.11-1.73):0.62 1.37(0.80-2.15):1.36 0.75(0.59-1.47):0.88 .0033**

18 Leucine 43.30(31.60-58.20):26.60 43.60(25.60-67.10):41.50 32.50(23.10-50.30):27.20 .0512

19 Methionine 9.30(5.60-11.80):6.20 10.80(7.10-16.30):9.20 7.80(5.10-11.10):6.00 .359

20 DMG 1.70(1.20-2.70):1.50 2.40(1.60-3.80):2.20 2.10(0.90-3.30):2.40 .217

21 Phenylalanine 11.70(7.30-15.10):7.80 17.90(8.70-29.90):21.20 11.70(5.70-23.60):17.90 .163

22 Proline 81.40(50.80-102.90):52.10 86.30(57.00-135.70):78.70 66.70(37.40-91.20):53.80 .1347

23 Pyruvate 10.80(5.60-17.90):12.30 15.50(7.20-31.80):24.60 13.30(4.40-20.30):15.90 .561

24 Succinate 3.30(2.70-4.70):2.00 3.70(2.40-4.80):2.40 3.40(1.70-4.80):3.10 .467

25 Threonine 73.20(47.10-92.70):45.60 67.80(42.50-94.50):52.00 45.60(26.80-69.60):42.80 .0019**

26 Tyrosine 16.50(10.70-21.80):11.10 19.10(11.40-24.40):13.00 13.80(9.50-19.00):9.50 .2654

27 Valine 86.50(62.90-110.80):47.90 82.30(54.60-110.40):55.80 59.50(43.80-77.60):33.80 .0059**

28 Myo-Inositol 14.30(10.40-18.00):7.60 13.50(8.20-17.95):9.75 11.90(9.00-15.00):6.00 .1975

29 GPC 17.90(13.80-22.50):8.70 22.60(17.70-28.90):11.20 20.00(15.60-27.70):12.10 .0656

30 Histidine 42.80(32.10-54.20):22.10 35.50(20.10-44.40):24.30 23.90(17.30-33.40):16.10 <.0001****

31 HTR 2.69(2.34-3.11):0.78 1.91(1.62-2.21):0.59 1.93(1.47-2.24):0.77 <.0001****

32 PTR 0.71(0.59-0.86):0.27 0.99(0.71-1.12):0.41 0.89(0.44-1.29):0.85 .006**

33 ALR 155.10(119.63-189.54):69.91 136.69(108.82-179.42):70.60 161.58(119.22-207.14):87.92 .7582

34 QGR 137.67(112.33-170.61):58.28 124.35(99.30-167.07):67.77 90.22(70.69-110.12):39.43 <.0001****

35 EQR 0.54(0.29-0.70):0.41 0.27(0.21-0.35):0.14 0.32(0.22-0.55):0.33 .03*

36 LPR 0.13(0.09-0.21):0.12 0.07(0.05-0.13):0.08 0.07(0.05-0.15):0.10 .0105*

37 BTR 10.36(8.70-11.36):2.67 8.69(7.52-9.42):1.90 8.65(8.09-9.81):1.72 .0002***

Abbreviations : SD, standard deviation; 3HB, 3-hydroxybutyrate; DMG,Dimethylglycine; GPC, Glycerophosphocholine; PTR, Phenylalanine-to-tyrosine ratio;

LPR, Lactate-to-Pyruvate ratio; ALR, Alanine-to-lactate ratio; EQR, Glutamate-to-glutamine ratio; QGR, Glutamine-to-glucose ratio; BTR, Branched chain

amino acid to tyrosine ratio (ie, [Leucine+Isoleucine+Valine]/Tyrosine). Note : The values reported are in micro-molar except for Lactate and glucose ($) for

which the values are reported in mM. All the values are estimated using formate as an internal reference (considering its concentration equal to 10 µM). The

symbol asterisk “*” represents themetabolic change is statistically significant as per theANOVA t-test (criterion for significance is P-value< .05). (Note: these

are adjusted P-values to control the false discovery rate below .05). The symbol asterisks “*”, “**”, “***”, and “****” represent the statistical significance at the

level of P-value less than .01, .001, .0001, and .00001, respectively.
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F IGURE 2 Random Forest (RF) classification analysis performed using Statistical analysis module ofMetaboAnalyst. (A)Cumulative error
rates measured for each class using RFmachine learning algorithm. The overall error rate is shown as the red line and other color lines represent
the error rates for each class as indicated. (B) Significant features were identified by ranking of mean decrease accuracy extracted with RF analysis
when the features are permuted. (C) The out-of-bag (OOB) error for themodel was found to be 31.4% suggesting its moderate prediction accuracy,
that is, 68.6%

all the three aromatic amino acids (AAAs, ie, Histidine, Phenylala-

nine, Tyrosine), only histidine was found to be significantly different

between active and inactive TA patients (Figure 3). Further, the various

NMR-based circulatory parameters (such as Histidine, Phenylalanine,

Tyrosine, PTR, and HTR) were evaluated for their correlation with

clinical parameters CRP, ESR and ITAS (See ESM, Figure S2). Of five

circulatory features, the circulatory metabolite histidine was found

showing the highest value of correlation with clinical parameters

used to assess the disease activity in TAKAYASU arteritis. The finding

further strengthens our proposed hypothesis that immune-mediated

active inflammation involves augmented utilization of histidine in the

active TA patients compared to that in inactive TA patients.

4 DISCUSSION

In this study exploring the utility of histidine levels in differentiating

active from inactive disease, we found that circulating histidine lev-

els were significantly depressed in TA patients with active disease and

showed an inverse correlation with commonly used biomarkers in clin-

ical practice like ESR and CRP.

Histidine is a semi-essential amino acid that exerts anti-

inflammatory action through its imidazole ring that scavenges

Reactive Oxygen Species (ROS).10,25 It serves as a precursor for

histamine that is an inflammatory peptide stored in the secretory gran-

ules of leucocytes and plays an important role in acute inflammation.

Histidine supplementation in obese women has shown a decline in

inflammatory markers like Tumor Necrosis Factor-alpha and Inter-

leukin (IL)-6 through suppression of nuclear factor kappa- B (NF-kB)

in adipocytes.26 Its shown to negatively regulate IL-8 production

through NF-kB in in-vitro studies in intestinal epithelial cells.27 In

patients with chronic kidney disease, histidine negatively correlated

with CRP and IL-6.28 Likewise, low histidine levels have been seen in

active Rheumatoid Arthritis (RA) exhibiting a negative correlationwith

28-joint disease activity score based on erythrocyte sedimentation

rate (DAS28-ESR).29 Histidine supplementation has shown benefit

in animal models of Inflammatory Bowel disease30 however an older

trial in RA did not show a significant benefit.31 Similarly, the metabolic

profile of patients with Systemic Lupus Erythematosus has also

revealed a decline in amino acids such as histidine, choline, and phos-

phocholine representing increased oxidative stress and altered protein

metabolism.23,32 Wedemonstrate similar findings inour studywith low

histidine levels in patients with active TA that is also an inflammatory

disease. This inverse correlation of low histidinewith inflammation can

be explained on the basis of the anti-inflammatory action of histidine,

or the converse, inflammation itself may result in low levels of circu-

lating amino acids.33 Like histidine, other amino acids also showed

a similar significant decline in the active group as compared to the

inactive group of patients (Table 2, Figure 3) that may imply excessive

mobilization toward the generation of pro-inflammatory mediators

and inflammatory cytokines.23 Inflammation can induce oxidative

stress and chronic oxidative stress is thought to have an important

role in the pathogenesis of autoimmune diseases.34 The elevated PTR

levels in TA patients are indicative of oxidative stress35 and this may

have an important role in the pathogenesis of TA. Inflammation is

also associated with suboptimal glucose metabolism and resultant

shunting of alternative sources of energy like amino acids for energy

generation.8,32,33,36 High concentration of branched-chain amino acids

has been reported to promote oxidative stress and inflammation37;

however, contrary to this, we found significantly lower levels of valine,

isoleucine, and leucine in the active group suggesting chronic disease-

related energy wasting.23,38 Since histidine levels solely did not have
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F IGURE 3 The box-cum-whisker plots were obtained for various metabolic concentrations (as per Table 2) and evaluated for statistically
significant changes employing univariate ANOVA-basedmultiple comparison testing (selected Post-Hoc Analysis is Fisher’s LSD). The symbol
asterisks “*”, “**”, “***”, and “****” represent the statistical significance at the level of P-value (adjusted for false discovery rate, FDR) less than .01,
.001, .0001, and .00001, respectively. In each box plot, the box denote interquartile range, horizontal line inside the box denote themedian, and
bottom and top boundaries of boxes are 25th and 75th percentiles, respectively. Lower and upper whiskers are 5th and 95th percentiles,
respectively. As three study groups (ie, normal control, inactive disease, and active disease) have a linear trend of health, we further evaluated the
significance of this trend using the linear trend estimationmethod. The box plot labels in blue represent statistically significant linear metabolic
trends between columnmean and right-to-left column order (i.e. NC to inactive to active disease). The explicit values are shown in Table 2

the sole reliability in differentiating active from inactive disease, it

is imperative to explore composite scores or ratios36 to improve its

diagnostic utility for clinical practice. The AUROC values of eight cir-

culatory metabolites were found to be higher than the AUROC value

of Histidine (ie, 0.650 with P-value = .003); these were as following:

Glutamine-to-glucose ratio (QGR; AUROC = 0.76; P-value = 5.70E-5),

Choline (AUROC:0.710;P-value=2.7508E-4), Citrate (AUROC:0.694,

P-value = 7.0799E-4); Lactate (AUROC: 0.690; P-value = 5.9401E-

4), Creatine AUROC: 0.684; P-value = 7.1206E-4), Glutamine

(AUROC: 0.676; P-value = 8.9467E-4), Methionine (AUROC: 0.670;
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P-value = .001954), Alanine (AUROC: 0.651; P-value = .0022172).

The results of the ROC analysis are summarized in the Supporting

Information (Figure S3 and Table S3).

Important to be included here is that histidine is a precursor of

histamine. Histamine and the immune cells that produce it (such

as mast cells and basophils) are involved in various autoimmune

diseases.10,39 The histamine exerts its actions through four known

receptors (H1R, H2R, H3R, and H4R) and of four, the histamine H4

receptor (H4R) has been shown to drive inflammatory responses

in various clinical/preclinical models of autoimmune diseases.39–41

Recently, a study has also established the coordination between

histidine transporter SLC15A4 and mTOR-dependent inflammatory

responses.42 These various facts further strengthen the finding of this

study that there is augmented utilization of histidine during immune-

mediated active inflammatory condition and targeting of histamine

H4 receptor (through designing novel antagonists) may be useful in

treating autoimmune diseases including TA as proposed recently.39,41

5 CONCLUDING REMARKS

It is the first study, to the best of our knowledge, exploring circulatory

histidine levels in patients with TA. Compared to inactive TA patients,

the histidine levels were significantly decreased in the sera of active

TA patients. Further, the histidine levels in TA patients were found sig-

nificantly correlated with clinical scores of disease activity suggest-

ing that these might indicate disease activity in TA. Another important

finding of the study is that the circulatory HTR levels are significantly

decreased in TA patients (irrespective of disease activity) compared to

NC subjects, whereas there is no significant difference in HTR levels

between active and inactive TA patients. Therefore, it may serve as a

useful biomarker for therapeutic monitoring in TA and opens avenues

to limit histidine utilization as a therapeutic option. However, our study

has several shortcomings. The most important being that it is a cross-

sectional study and thus may fail to reflect the natural course of the

disease. ITAS ESR may not be an ideal tool to categorize patients into

active disease thus misclassification is a possibility. Nevertheless, this

work represents an advance in biomedical science as it is exploring a

new marker and suggests moving towards a composite clinical-score

as there is no single marker that reliably identifies disease activity in

TA. For this, we plan to validate these in a longitudinalmanner, with the

possible use of imaging and histopathology to assess disease activity in

addition to clinical scoring.
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