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Abstract

Linkage maps enable the study of important biological questions. The construction of high-density linkage maps appears
more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput
genotyping of large population. However, the marker number explosion and genotyping errors from NGS data challenge
the computational efficiency and linkage map quality of linkage study methods. Here we report the HighMap method for
constructing high-density linkage maps from NGS data. HighMap employs an iterative ordering and error correction
strategy based on a k-nearest neighbor algorithm and a Monte Carlo multipoint maximum likelihood algorithm. Simulation
study shows HighMap can create a linkage map with three times as many markers as ordering-only methods while offering
more accurate marker orders and stable genetic distances. Using HighMap, we constructed a common carp linkage map
with 10,004 markers. The singleton rate was less than one-ninth of that generated by JoinMap4.1. Its total map distance was
5,908 cM, consistent with reports on low-density maps. HighMap is an efficient method for constructing high-density, high-
quality linkage maps from high-throughput population NGS data. It will facilitate genome assembling, comparative
genomic analysis, and QTL studies. HighMap is available at http://highmap.biomarker.com.cn/.
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Introduction

Linkage maps, especially high-density ones, play an important

role in the study of genetics and genomics. Application of high-

density linkage maps has greatly facilitated discovery of functional

genes [1], genome assembly [2–6], and comparative analysis of

genome structure [7–9]. However, most current maps harbor only

about hundreds of markers, largely plagued by marker discovery

technologies and genotyping costs. The advent of next-generation

sequencing (NGS) makes it possible to rapidly discover huge

numbers of markers. The genotyping approaches based on NGS,

such as SLAF-seq (specific-locus amplified fragment sequencing)

[10], RAD (restriction site associated DNA) genotyping [11], and

genotyping-by-sequencing [12] are even capable of discovering

and genotyping hundreds of thousands of genetic markers

throughout the genome at relatively low cost [13]. These

revolutionary advances in genotyping technologies provide excit-

ing opportunities to economically construct increasingly dense

maps [10,14,15]. However, NGS data still inevitably suffer from

genotyping errors [16–18], especially when sequencing depths are

low [19–21] and genotypes are highly heterozygous. The inherent

features of NGS data impose two major challenges on the

construction of high-density linkage map: First, genotyping errors

affect the map quality [22]. Second, the marker density explosion

leads to the exponential increase in computational intensity [22].

Great efforts have been made to study algorithms for

constructing high-density and high-quality linkage map [22–24].

RECORD has been developed to produce accurate marker orders

in a relatively short time by employing the total number of

observable recombination events between adjacent markers as a

target function [24]. SMOOTH has been reported to eliminate

genotyping errors from genetic linkage data during the mapping

process and improve map quality [22]. However, neither

RECORD nor SMOOTH is capable of handling populations

with high heterozygous loci. OneMap [25] and FsLinkageMap

[26] have been developed to construct linkage maps of high

heterozygous species. However, OneMap is computationally

intensive and FsLinkageMap is incapable of constructing high-

density linkage map. JoinMap4.1 employs a Monte Carlo

multipoint maximum likelihood algorithm and greatly expedites

computational speed in marker ordering [27]; nonetheless, it still
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suffers from the limit of the marker number in linkage grouping

[28], and serious expansion of map distance. The problems caused

by genotyping errors and density explosion still remain great

challenges for constructing high-density linkage map efficiently

and accurately.

Several practical strategies have been used to tackle the

difficulties in constructing high-density linkage map in species

such as sunflower [29], mouse [7], porcine [30], Brassica napus

[31], maize [32], spotted gar [28] and potato [33]. Sunflower

linkage map integrated four individual linkage maps [29] to

improve marker densities. The integration strategy is laborious

and quality suspicious. The linkage map of mouse and pig were

constructed by directly using the physical order of marker in the

genomes to circumvent the intensive computation of marker

ordering [7,30]. This strategy only works for the construction of

species which have genome reference sequence. A bin strategy has

been used to construct the linkage map of potato [33], Brassica

napus, maize [32] and spotted gar [28]. A ‘‘bin’’ is a group of

markers with a unique segregation pattern and is separated from

adjacent bins by a single recombination event. The bin strategy

reduces computational costs as well as impacts of genotyping

errors, but at the cost of incomplete utilization of genotyping data

and recombination information, reducing the application value of

high-density linkage map. All the above linkage maps enabled the

biology studies in these species, but the methods of map

construction still suffered from computational time, map quality

and the utilization of genotyping data.

Here, by using an iterative ordering and error correction

strategy, we present an efficient method that simplifies and

enhances the construction of high-density, high-quality linkage

map from high-throughput population NGS data (HighMap). Our

studies reveal that HighMap has excellent performance of high-

density linkage map construction. HighMap provides an impor-

tant tool for understanding genetics and genomics.

Material and Methods

All experimental procedures were conducted in conformity with

institutional guidelines for the care and use of laboratory animals

in Centre for Applied Aquatic Genomics of the Chinese Academy

of Fishery Sciences. The protocol was approved by the Committee

on the Ethics of Animal Experiments of the Centre for Applied

Aquatic Genomics at Chinese Academy of Fishery Sciences

(2011AA1004020012).

HighMap overview
Here we report a new strategy, the iterative ordering and error

correction, to construct high-density genetic maps. We referred to

the error correction strategy of SMOOTH [22], and used a k-

nearest neighbor algorithm to correct genotyping errors and

impute genotyping missing [34]. We employed the enhanced

algorithm of Gibbs sampling, spatial sampling and simulated

annealing (GSS) [27,35] to order markers. GSS marker ordering

algorithm is computationally efficient [27], but it generates inflated

map distances, and has unstable map quality, especially for the

data high in genotyping errors. To ensure stability of map quality,

we enhanced GSS by using the summation of adjacent recombi-

nation fractions (SARF) as objective function and adopted Blocked

Gibbs sampler after trying different Gibbs sampling methods and

different objective functions in simulated annealing. HighMap

consists of four modules, designed for linkage grouping, marker

ordering, error genotyping correction and map evaluation,

respectively (Figure 1). The map evaluation module provides heat

mapsand haplotype maps for intuitive displays of map quality [36].

Linkage grouping
The grouping module uses the single-linkage clustering algo-

rithm to cluster the markers into linkage groups, using a pair-wise

modified independence LOD score as distance metric. Assuming a

loci pair with segregation type, a1b1|c1d1 and a2b2|c2d2, a

contingency table of genotypes is produced:

Genotypes a1c1 a1d1 b1c1 b1d1 R

a2c2 Oa1c1a2c2
Oa1d1a2c2

Ob1c1a2c2
Ob1d1a2c2

Ra2c2

a2d2 Oa1c1a2d2
Oa1d1a2d2

Ob1c1a2d2
Ob1d1a2d2

Ra2d2

b2c2 Oa1c1b2c2
Oa1d1b2c2

Ob1c1b2c2
Ob1d1b2c2

Rb2c2

b2d2 Oa1c1b2d2
Oa1d1b2d2

Ob1c1b2d2
Ob1d1b2d2

Rb2d2

C Ca1c1
Ca1d1

Cb1c1
Cb1d1

T

Here R, C, T , and O represent row-total, column-total, grand-

total, and observed number of each genotype, respectively. The

expected number E in each cell in above contingency table is

calculated by E~R � C=T . The independence test G statistic,

with degrees of freedom d being equal to the number of rows

minus 1 multiplied by the number of columns minus 1, is given by

G~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P
½O � ln (O=E)�

p
. The modified LOD score is obtained

from an approximate transformation:

mLOD~
½(4{e

{G2

2(d{1))e
{G2

2(d{1){3�(d{1)zG2

2 ln 10

With increasing LOD thresholds, different group nodes form,

and these can be represented as a dendrogram, which branches

might be huge and deep. Since the algorithm exhaustively searches

all possible solutions that the linkage groups number is equal to the

chromosome number, it is computationally extensive, especially

for marker data of low depth. To speed up the calculation, we

simplified the tree structure by adopting two new strategies:

deleting small ‘‘group fragments’’, and merging small descendant

nodes into large ancestral nodes.

Marker ordering and genotyping error correction
The mapping algorithm applies an iterative process of marker

ordering and error genotype correction to ensure the accuracy of

map order and map distances in the presence of missing

observations and genotyping errors (Figure 1). Prior to iterative

mapping, recombinant frequencies and LOD scores were calcu-

lated by two-point analysis. Based on recombinant fractions and

LOD values, linkage phases were inferred by using the anchoring

algorithm [37].

Consider a linkage group consisting of n markers, denoted as

G~fMiji~1,2,:::,ng. The recombination frequency matrix is as

follows: R~frMi ,Mj
ji,j~1,2,:::,n; i=jg. The marker ordering

module introduces a combination of statistic techniques, spatial

sampling, Gibbs sampling and simulated annealing, to obtain the

map order with the summation of recombination frequencies and

estimate their mutual genetic distances [27,35].

In the first stage of the ordering procedure, markers are selected

using spatial sampling as following. One marker is taken at

random (marker S1) in a priority order of full cross, F2 cross and

test cross. Markers with a recombination frequency smaller than a

given sampling radius r are excluded from the marker set. From

the remaining markers, one marker in the abovementioned

priority order is selected again (marker S2). All markers with

Linkage Mapping Using NGS Data
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recombination frequencies smaller than the given value r with S2

are deleted from the remaining marker set. The sampling process

is continued until no markers are left. Finally, a subset of markers

(S1,S2,:::,Sn1
) is obtained. In this marker set, all pair-wise

recombination frequencies rSi ,Sj
are greater than the given value r.

Subsequently, simulated annealing is employed to find the best

map order. We adopted SARF as an objective function for it could

enormously reduce the computations yet show a lower rate of

convergence than the maximum likelihood. Calculation of SARF

for a given sequence of the above sampled loci is performed by

summation of SARF in two parent maps, i.e.,

SARF~
Xi~n1P1

i~1

rMi{1,Mi
z

Xj~n1P2

j~1

rMj{1,Mj

Where Mi is the i th element of the paternal maps, Mj is the j th

element of the parental maps, and n1P1
and n1P2

are the number of

markers in P1 and P2 maps respectively. Markers with full cross

and F2 cross segregation pattern occur in both maps, whereas

markers with test cross can be observed for that parent only.

Figure 1. Modules of HighMap algorithm. A: The single-linkage clustering algorithm was used to partition the marker loci into linkage groups
based on a pairwise modified independence LOD score for the recombination frequency. B and B’: The ordering module combines Gibbs sampling,
spatial sampling, and simulated annealing algorithm to order markers and estimate map distances. C: The error correction module identified
singletons according to parental contribution of genotypes and eliminated them from the data using k-nearest neighbor algorithm. To order markers
correctly, the processes of ordering and error correction were carried out iteratively. D: Heat maps and haplotype maps were constructed to evaluate
map quality.
doi:10.1371/journal.pone.0098855.g001
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simulated annealing starts from an initial map order from which

the sampled markers are permutated randomly. A new neighbor

order is obtained by placing a random locus into a random

position, and will be accepted if

e
{DSARF

T wU ;

where DSARF~SARFnew{SARFold , T is the acceptance

control parameter(Tw0) and U is a random value in the range

½0,1�. The annealing scheme of T is the same as that illustrated by

Jansen and colleagues[35]. The annealing system stops if, in a

number of successive steps, the newly generated map order is

rejected. Once the optimal map order of the sample markers is

obtained, the new order can be used to estimate multipoint

recombination frequencies of both parents using Blocked Gibbs

sampling, for basic Gibbs sampler often did not work when high-

density maps were constructed using small populations or data rich

in erroneous markers. The updated recombination frequencies

help to integrate the two parental maps, determine the order of

test cross markers and optimize the map order in the next cycle of

simulated annealing. After three to four cycles, an optimal map

of sampled markers is obtained. In the next map-building round,

the sampling radius decreases, and a subset of currently unmapped

markers is selected and added to the previous sample. The

mapping algorithm repeats the previously described stages for the

new sample. Then the entire system stops when all markers are in

place.

In high-density genetic maps, a genotyping error usually

manifests itself as a singleton. A singleton is a single locus in one

offspring which is different in parental origin from both its directly

neighboring loci [22]. Singletons are mainly caused by erroneous

genotypes, but they may also result from other biological

phenomena, such as double recombination events, gene conver-

sions, mutations [22]. In the third module, missing genotypes were

identified according to parental contribution of genotypes.

Identified singletons were eliminated from data and identified

missing genotypes were imputed using k-nearest neighbor

algorithm [22]. Here k is a parameter that can be specified as

appropriate. The number of singletons in each marker reflects

marker quality. Markers with singleton ratios exceeding a given

threshold are labeled as ‘‘suspicious markers’’. To avoid that

correct markers are deleted by mistake, ‘‘suspicious markers’’ were

neither corrected nor imputed. In practice, three to four rounds of

ordering and error correction are required to produce a

reasonably accurate map order and map distance.

Simulation study
Simulation data sets were randomly generated based on a full-

sib family of an outbreeding species using a Perl script. First,

markers were randomly placed along a single paternal or maternal

chromosome at random intervals. Then, offspring’s genotypes

were generated using the simulation data of maternal and paternal

chromosomes. Assuming that no crossover interferences occurred,

the number of crossover events solely depended on the distance as

specified by the simulated positions of the loci on the parent

chromosomes. Missing and erroneous data were independently

and randomly distributed along chromosomes.

Experimental data
HighMap performance was further confirmed using the

sequencing data of a real full-sib family of common carp which

consisted of 211 offsprings [10] (The sequencing data is available

at http://highmap.biomarker.com.cn/). JoinMap4.1 was incapa-

ble of grouping large data of markers. To compare ordering

performance of HighMap with that of JoinMap4.1, we used

HighMap rather than JoinMap4.1 to cluster the marker data when

we constructed the linkage map using JoinMap4.1.

Results

Enhancing utilization of NGS data
Depth and quality of sequencing reads fluctuate randomly

across genomes due to sampling randomness. To ensure genotype

quality, reads with low depth of sequencing should be discarded in

the process of genotype calling [10]. If linkage map software can

bear more genotype missing and error, it will be possible to make

use of more sequencing data and to create higher-density linkage

maps at lower costs. Therefore, an important consideration in this

study is NGS data utilization, which reflects the performance of a

linkage study method in NGS era. To assess data utilization of

HighMap, simulation data were generated from a full-sib family

consisting of 200 offsprings. To simulate real NGS data accurately,

missing observations and genotyping errors were introduced

incrementally and simultaneously as the marker number increased

from 100 to 1,000 (Figure S1). The data set was produced by

iteratively appending 100 markers, each time with an increment of

5% missing observation and 5% erroneous genotyping.

Comparative analysis revealed that HighMap permitted the

utilization of more markers than JoinMap4.1 (Figure 2A, 2B and

2C). HighMap could make use of 700 markers and create linkage

maps with a Spearman rank order correlation coefficient greater

than 0.9. In contrast, 300 markers led to the correlation coefficient

smaller than 0.8 when the linkage map was constructed using

JoinMap4.1. Based on a cutoff value of 0.8 [24], we estimated that

HighMap could construct a linkage map with three times the

number of markers as JoinMap4.1 could.

HighMap contains an error correction algorithm, which can

impute missing observations and eliminate erroneous genotyping

from mapping data in the mapping process. Data showed that the

algorithm is efficient. Take the dataset of 700 markers as an

example. We introduced 10.25% of erroneous data and 12.86% of

missing observations (Table 1). After error correction treatment,

final erroneous and missing rate reduced to 5.40% and 0.65%,

respectively. 94.88% of genotyping errors were accurately

corrected, and 89.13% of missing observations were accurately

imputed. The performance of HighMap in genotyping error

correction and missing observation imputation accounts for its

high data utilization.

A singleton is a single locus in one offspring which is different in

parental origin from both its direct neighboring loci [22]. It

comprehensively reflects linkage map quality and is useful for

quality evaluation of linkage maps since true order of marker is

unavailable for a linkage map obtained from real data. When

linkage maps were constructed using 700 marker data, the

singleton rate of HighMap, 0.77%, was much smaller than that

generated byJoinMap4.1, which was 8.54% (Figure 2D, 2E and

2F). This result demonstrates that the correction procedure of

HighMap is effective and efficient, which ensures that HighMap

with stands high rate of genotyping errors and make more use of

marker data.

Marker order accuracy and map distance stability
To assess the performance of HighMap in marker order

accuracy and map distance stability, simulation data set was

generated from the full-sib family consisting of 200 offsprings with

200 markers, which contained different missing observations or

different genotyping errors. Results showed that the Spearman

Linkage Mapping Using NGS Data
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correlation coefficient between the true and calculated marker

order based on HighMap decreased less obviously than that of

JoinMap4.1 as the marker error rate increased. The differences of

the correlation coefficient between HighMap and JoinMap4.1

were more pronounced when error rate exceeded 20% (Figure 3).

This result demonstrated that HighMap could offer linkage maps

of higher quality than JoinMap4.1 when there were a large

proportion of erroneous markers. The singleton rate of HighMap

grew slowly as error rates increased, whereas the singleton rate

ascended linearly with JoinMap4.1. HighMap led to only 3.3% of

the singleton rate when the marker data contained 20% error,

whereas JoinMap4.1 led to 14.4% of the singleton rate, suggesting

that HighMap detected and eliminated most genotyping errors

from the data. Both the correlation and singleton analysis revealed

that JoinMap4.0 was sensitive not only to erroneous data but also

to missing data (Figure 3 and Figure S2). It failed to construct

linkage map due to its inefficiency in estimating linkage phases

when the error rate exceeded about 14% (Figure 3). Collectively,

HighMap remarkedly outperformed both JoinMap4.0 and Join-

Map4.1 with respect to marker order accuracy.

Map distance expansion is mainly caused by genotyping errors

and the map distance reflects the quality of a linkage map. In the

presence of genotyping errors, it may be necessary to make a

balance between controlling the expansion of map distance and

ensuring validity of the marker order. We gave the priority to

address issue of marker order accuracy for it is more important

than the map distance[22]. While ensuring accurate marker order,

HighMap greatly curbs map distance expansion. First, map

distances that HighMap offered was robust to increasing density of

markers. It led to a genetic distance of 2,030 cM when marker

numbers reached 700, whereas JoinMap4.1 led to the genetic

distance of 48,056 cM (Figure 2G, 2H and 2I). In addition, the

map distance estimated by HighMap was insensitive to the

increase of genotyping errors. It produced only 430 cM of genetic

distance when the data with 10% marker errors was used; whereas

JoinMap4.1 gave a genetic distance up to 1,925 cM (Figure 3).

These results not only demonstrate that the error correction is an

efficient strategy for solving map distance expansion but also

account for the reason of better data utilization of HighMap

relative to JoinMap.

Computational efficiency of map construction
Computational efficiency is a concern in linkage mapping. Both

grouping and ordering are important in the construction of high-

density linkage map. JoinMap still suffers from the limit of marker

number in the linkage grouping [28], and this might hamper its

application in linkage mapping based on NGS data. HighMap

allows to handle hundreds of thousands of markers in relatively

short time, for it was developed to construct linkage maps based on

NGS data under the Linux operation system, and can also run on

a server or cluster. We assessed the efficiency of marker ordering,

by comparing it with currently available mapping tools including

JionMap4.0 and JionMap4.1, both of which used the default

parameters. To this end, we simulated a data set based on a full-sib

family consisting of 200 offsprings. The data sets contained

markers numbering from 50 to 1,000. The simulation data

contained neither missing nor erroneous values. Results showed

that computational time consumption increased as marker

densities went up (Figure S3). For JoinMap4.0, the time

consumption was prohibitively large for the construction of a

linkage map with more than 200 markers. HighMap could create

a linkage group with 1,000 markers within a single day. We also

Figure 2. NGS data utilization enhancement by HighMap. The X-axis represents marker numbers. The Y-axis represents Spearman rank
correlation coefficient between estimated map marker order and true marker location for A, B and C, singleton rates for D, E and F, estimated genetic
map distances for G, H and I, respectively.
doi:10.1371/journal.pone.0098855.g002
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evaluated the efficiency of marker ordering of OneMap [25] and

FsLinkageMap [26]. FsLinkageMap [26] couldn’t construct a

linkage group with 100 makers; OneMap (using Record, rcd,or ug

algorithms) [25] cost more than one day for creating a linkage

group with 200 markers (Data not shown). Therefore, FsLinka-

geMap and OneMap might not be suitable for constructing high-

density linkage maps based on NGS data. All experiments were

completed on a computer with a Xeon processor (2.4 GHz and

16 Gb memory).

Application in real population NGS data from common
carp

To test HighMap performances on real data, we generated a

high-density linkage map of common carp based on a full-sib

family NGS data. The integrated map was comprised of 10,004

markers with an average of 11 fold sequencing depths. Among

them, 19% were the data with sequencing depths of less than 5

fold. The segregation patterns for these markers are shown in

Table S1. Similar to the simulation results, HighMap offered a

linkage map of higher quality than JoinMap4.1. Singleton rate of

the maps created by HighMap was less than one-ninth of those of

the maps constructed by JoinMap4.1 (Table S2). Heat maps

(Figure S4) and haplotype maps (Figure S5) verified the quality of

the linkage maps that HighMap produced. The linkage maps

created by HighMap spanned 5,908 cM in 50 linkage groups,

closer to that reported previously [38], smaller than that Join-

Map4.1 gave, which was 55,550 cM (Table S3). We also analyzed

the Spearman correlation coefficient between the marker order of

common carp and the genome sequences of zebrafish [6], a close

relative of the common carp. The data revealed that, for about

70% of linkage groups of common carp, the correlation coefficient

based on HighMap was larger than those based on JoinMap4.1

(Figure S6), suggesting that HighMap is better than JoinMap4.1-

with respect to map accuracy.

Discussion

In this study, we intended to develop a method that can

efficiently utilize NGS data and ease the construction of high-

density and high-quality linkage map. The challenges of such an

effort are associated with the marker density explosion and

potential genotyping errors, which involve sequencing depth and

sequence heterozygosity. The higher the heterozygosity is, the

more the genotyping is prone to error. As was shown in the

simulation study, the error rate reached up to 34.1% for markers

with ab6cd segregation pattern when markers were sequenced at

one fold depth, for markers with ef6eg segregation pattern it

arrived at 21.3%, and for markers with hk6hk or nn6np or lm6ll

segregation pattern, the error rate stood at 17.4% (Table 2). To

address the challenges in the construction of linkage map from

high-throughput population NGS data, we exploited an iterative

ordering and error correction strategy as well as optimized GSS

algorithm. Consequently, HighMap was efficient for constructing

high-density linkage maps, even using low-depth sequencing data

where genotyping errors and missing observations were common.

HighMap offers many advantages over JoinMap4.1. First, the

marker order and the map distance are relatively accurate for data

with large proportion of missing and erroneous markers. Second,

It is robust to genotyping errors, allowing for the use of genotyping

data with relatively low sequencing depth and therefore makes it

possible to construct high-density linkage map at low cost. The

above advantages demonstrate that the iterative marker ordering

and error correction strategy is effective and efficient. In addition,

HighMap provides an intuitive and convenient way to evaluate
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map quality in forms of heat maps and haplotype maps. It also has

the feature of easy use and does not require the specialized skills.

Linkage maps are widely used in marker-assisted selection,

quantitative trait loci mapping, and comparative genome analysis.

They are also necessary to anchor scaffolds on chromosomes

during genome assembly. Due to the limitation of marker density

and population size of linkage maps, there left many scaffolds

unanchored or unordered in genome assembly recently published.

For example, the cacao genome had only 67% and 50% of

assembled sequences anchored and ordered, respectively [39]. The

apple (88%, 66%) [40] and grape genomes (69%, 61%) [41]

exhibited slightly higher utility of scaffolds. Nonetheless, there was

still more than 30% of the scaffold that could not be ordered onto

chromosomes. Recently, Hyten et al showed that they can orient

additional 23 scaffolds (totaling 7.1 Mb) [42], which were

previously unordered, into chromosomes by using a higher-density

linkage map with larger size of the population, suggesting

construction of higher resolution genetic maps is critical for

Figure 3. Changes in linkage map quality as genotyping error increased. The X-axis represents genotyping error. The Y-axis represents
Spearman rank correlation coefficient between estimated map marker order and true marker location for A, B and C, singleton rates for D, E and F,
estimated genetic map distances for G, H and I, respectively.‘‘Integrated’’, ‘‘Female’’, and ‘‘Male’’ indicates integrated, female, or male linkage maps,
respectively. JoinMap4.0 failed to construct linkage map due to its inefficiency in estimating linkage phases when the error rate exceeded about 14%.
doi:10.1371/journal.pone.0098855.g003

Table 2. Genotyping error and missing rates of different segregation patterns in NGS.

sequencing depths ab6cd ef6eg hk6hk/nn6np/lm6ll

error rates (%) missing rates (%) error rates (%) missing rates (%) error rates (%) missing rates (%)

1 34.1 43.2 24.7 58.5 17.4 44.8

2 31.7 31.2 23.7 47.6 15.6 31.2

3 25.2 17.8 21.2 36.9 13.6 17.8

4 21.3 11.0 17.6 33.6 10.3 9.2

5 17.5 6.8 12.6 29.4 8.1 6.6

6 14.0 3.4 8.9 28.1 6.4 3.7

7 9.9 2.5 8.4 26.9 5.2 2.6

8 7.6 1.4 5.7 25.9 4.2 2.3

9 5.1 1.0 3.3 25.8 2.6 1.3

10 4.3 0.9 3.4 26.0 2.0 0.6

doi:10.1371/journal.pone.0098855.t002
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improving genome assembly. In the case of cacao, the assembled

genome was 326 Mb, and scaffold N90 was 75.5 kb [39]. To

ensure 90% of the sequence assembly ordered, every 75.5 kb

sequence requires at least two markers, and the linkage map

should offer at least 8,636 markers in total. The linkage map used

in the study had only 1,259 markers [39], about 7,000 markers

fewer than what was needed. Therefore there remained up to

2,207 scaffolds unordered in the cacao study. By providing high-

density, HighMap will be of great benefit to genome assembly and

validation of the scaffold placement on the chromosomes.

In summary, we offer a computationally efficient method for

linkage mapping using population NGS data. The development of

HighMap should propel the application of NGS in linkage

mapping. It is a lasting task to make full use of NGS data at lower

cost and to construct high-density linkage maps. Great efforts are

guaranteed to further improve the potentials of NGS data

utilization in the linkage studies.

Supporting Information

Figure S1 Simulation data sets containing both the missing and

erroneous markers. Missing and erroneous rates increased

simultaneously as markers increased from 100 to 1,000.

(TIF)

Figure S2 Changes in linkage map quality as missing observa-

tion increased. The X-axis indicates missing observation. The Y-

axis indicates Spearman rank correlation coefficient between

estimated map marker order and true marker location for A, B

and C, singleton rates for D, E and F, estimated genetic map

distances for G, H and I, respectively. ‘‘Integrated’’, ‘‘Female’’,

and ‘‘Male’’ indicate integrated, female, or male linkage maps,

respectively.

(TIF)

Figure S3 Computational speed of HighMap. Running time was

reported as number of 100 seconds. JoinMap4.0 is computation-

ally demanding when marker data contained more than 200

markers.

(TIF)

Figure S4 Heat maps of pair-wise recombination of the

common carp. Yellow color represents tight linkage; red represents

weak linkage; blue represents no linkage.

(TIF)

Figure S5 Haplotype maps of the family of common carp

consisting of 211 offsprings. Each two columns represent the

genotype of an individual. Rows correspond to genetic markers.

Green and blue boxes indicate one chromatid from parents; gray

boxes indicate missing data.

(JPG)

Figure S6 The difference between the correlation coefficient of

HighMap and JoinMap4.1. rHighMap indicates the Spearman

correlation coefficient between marker order of linkage map

estimated by HighMap and genome sequences of zebra fish.

rJoinMap4.1 indicates the Spearman correlation coefficient between

the marker order of linkage map estimated by JoinMap4.1and the

genome sequences of zebra fish.

(JPG)

Table S1 Segregation patterns of common carp linkage map.

(DOC)

Table S2 Singleton rate of common carp linkage map estimated

by HighMap and JoinMap4.1.

(DOC)

Table S3 Genetic distance of common carp linkage map

estimated by HighMap and JoinMap4.1.

(DOC)
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