
RESEARCH ARTICLE

A loop-counting method for covariate-

corrected low-rank biclustering of gene-

expression and genome-wide association

study data

Aaditya V. Rangan1,2*, Caroline C. McGrouther1, John Kelsoe3, Nicholas Schork4,

Eli Stahl5, Qian Zhu6, Arjun Krishnan7, Vicky Yao6, Olga Troyanskaya2,6, Seda Bilaloglu8,

Preeti Raghavan8, Sarah Bergen9, Anders Jureus9,10, Mikael Landen9, Bipolar Disorders

Working Group of the Psychiatric Genomics Consortium¶

1 Mathematics, New York University, New York, New York, United States of America, 2 Center for

Computational Biology, Flatiron Institute, New York, New York, United States of America, 3 Psychiatry,

University of California, San Diego, California, United States of America, 4 Human Biology, J. Craig Venters

Institute, La Jolla, California, United States of America, 5 Genetics and Genomic Sciences, Mount Sinai

Medical School, New York, New York, United States of America, 6 Computer Science, Princeton University,

Princeton, New Jersey, United States of America, 7 Computational Mathematics Science and Engineering,

Michigan State University, East Lansing, Michigan, United States of America, 8 Department of Rehabilitation

Medicine, New York University Medical School, New York, New York, United States of America,

9 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,

10 Physiology and Biophysics, University of Gothenburg, Gothenburg, Sweden

¶ Membership of the Bipolar Disorders Working Group of the Psychiatric Genomics Consortium is provided in

the Acknowledgments and https://www.med.unc.edu/pgc/

* rangan@cims.nyu.edu

Abstract

A common goal in data-analysis is to sift through a large data-matrix and detect any signifi-

cant submatrices (i.e., biclusters) that have a low numerical rank. We present a simple algo-

rithm for tackling this biclustering problem. Our algorithm accumulates information about 2-

by-2 submatrices (i.e., ‘loops’) within the data-matrix, and focuses on rows and columns

of the data-matrix that participate in an abundance of low-rank loops. We demonstrate,

through analysis and numerical-experiments, that this loop-counting method performs well

in a variety of scenarios, outperforming simple spectral methods in many situations of inter-

est. Another important feature of our method is that it can easily be modified to account for

aspects of experimental design which commonly arise in practice. For example, our algo-

rithm can be modified to correct for controls, categorical- and continuous-covariates, as

well as sparsity within the data. We demonstrate these practical features with two examples;

the first drawn from gene-expression analysis and the second drawn from a much larger

genome-wide-association-study (GWAS).

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Rangan AV, McGrouther CC, Kelsoe J,

Schork N, Stahl E, Zhu Q, et al. (2018) A loop-

counting method for covariate-corrected low-rank

biclustering of gene-expression and genome-wide

association study data. PLoS Comput Biol 14(5):

e1006105. https://doi.org/10.1371/journal.

pcbi.1006105

Editor: Jennifer Listgarten, Microsoft Research,

UNITED STATES

Received: June 13, 2017

Accepted: March 23, 2018

Published: May 14, 2018

Copyright: © 2018 Rangan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Some of the data we

use to validate our method is 3rd party data from

the Gene Ontology Database. This 3rd party data is

free online (see https://www.ncbi.nlm.nih.gov/geo/

with Gene accession numbers GSE48091 and

GSE17536). Others will be able to access these

data in the same manner as the authors. The

authors did not have any special access privileges

that others would not have. Other data we use to

validate our method comes from the Bipolar

Disorders Working Group of the Psychiatric

https://www.med.unc.edu/pgc/
https://doi.org/10.1371/journal.pcbi.1006105
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006105&domain=pdf&date_stamp=2018-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006105&domain=pdf&date_stamp=2018-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006105&domain=pdf&date_stamp=2018-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006105&domain=pdf&date_stamp=2018-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006105&domain=pdf&date_stamp=2018-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006105&domain=pdf&date_stamp=2018-06-12
https://doi.org/10.1371/journal.pcbi.1006105
https://doi.org/10.1371/journal.pcbi.1006105
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/geo/


Author summary

An important problem in genomics is how to detect the genetic signatures associated

with disease. When a disease is caused by a single well-defined biological mechanism, the

genetic signature often involves a handful of genes present across the majority of the dis-

eased patients. On the other hand, when a disease is complicated or poorly understood

there may be many possible biological mechanisms at play. Any genetic signatures associ-

ated with such a disease may involve multiple genes, and each signature might only mani-

fest across a subset of the diseased patients. Finding the signatures responsible for this

heterogeneity requires searching through subsets of genes and subsets of patients—a

problem referred to as ‘biclustering’. In this paper we present a new biclustering method

which can scale up efficiently to handle large genomic data sets, such as GWAS-data. Our

method is quite accurate, outperforming current ‘spectral’ biclustering methods for many

problems of interest. Perhaps most importantly, our method can be corrected for many

features of experimental design, such as controls, covariates and sparsity—all of which are

especially important when analyzing real data sets.

Introduction

Many applications in data-analysis involve some form of ‘biclustering’—also referred to as co-

clustering, two-mode clustering, two-way clustering, block clustering, and coupled two-way

clustering, to name a few (see, e.g., [1–5]). Broadly speaking, the goal of biclustering is to

search through a large data-array and reveal components that have special structure. Typically,

these structured components involve only a subset of the rows and columns in the data-array,

and finding them can be rather difficult (i.e., biclustering is NP-complete [6]). Because this

problem is so general, it should come as no surprise that there are many different kinds of

biclustering algorithms developed for a variety of applications, ranging from political science

to neuroscience [7, 8]. Despite the abundance of biclustering methods in the literature, many

existing biclustering methods are too computationally intensive to be successfully applied to

the large data-sets that arise in genomics.

In this paper we’ll present a simple method for biclustering which is well-suited for gene-

expression and genome-wide-association-study (GWAS) data. We refer to our method as

‘loop-counting’, because it accumulates information about 2 × 2 submatrices within the data-

array; we refer to these 2 × 2 submatrices as ‘loops’. We establish a connection between our

loop-counting method and spectral methods, using both analysis and simulation-studies to

describe the regimes where our method performs well. We demonstrate the efficacy of our

loop-counting method by applying it to a gene-expression data-set and a GWAS data-set,

using gene-enrichment analysis as a form of validation.

One of our main goals is to ensure that our loop-counting method is practical and capable

of accommodating the issues that arise when analyzing real experimental data. We emphasize

that our method can be corrected for many features of experimental design, such as controls,

covariates and sparsity—all of which are especially important when analyzing GWAS data sets

(which commonly aggregate batches of patients taken from across the world). With this goal

in mind, we’ll briefly delineate some features of our approach, contrasting them against some

of the better-known methods for biclustering this kind of data.

During our discussion below we’ll often refer to the appendices in the Supporting Informa-

tion (see S1 and S2 Text), which will be denoted with an ‘A’ before the section number.

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 2 / 29

Genomics Consortium. This data is available for

researchers who complete the data-application

process (see https://www.med.unc.edu/pgc/

shared-methods). Researchers do not need to be

members of the PGC-BD to apply for access to this

data.

Funding: This study was supported by the National

Institute of Health (https://www.nih.gov/) (Award

24-74501-X0096-R9834 to AR and PR) and the

Simon’s Center for Data Analysis (https://www.

simonsfoundation.org/ to AR). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: 1. John I

Nurnberger Jr, who is one of the members of the

Bipolar Disorders Working Group of the Psychiatric

Genomics Consortium, is also an investigator for

Assurex and a consultant for Janssen. 2. The

remaining authors have no conflicts of interest to

declare.

https://doi.org/10.1371/journal.pcbi.1006105
https://www.med.unc.edu/pgc/shared-methods
https://www.med.unc.edu/pgc/shared-methods
https://www.nih.gov/
https://www.simonsfoundation.org/
https://www.simonsfoundation.org/


Some other approaches to biclustering

Within the field of bioinformatics there are a variety of approaches to biclustering, many of

which differ in the types of structures they try and find, their assumptions regarding the ‘noise’

that might obscure these structured elements, and their goals in classifying the data (for review,

see [3–5, 8–12]). To frame the discussion for now, we’ll imagine an M × N data-array D com-

prising N genetic-measurements (which we’ll refer to as ‘genes’) taken across M patients.

Within this context, an m × n ‘bicluster’ would correspond to a rectangular submatrix associ-

ated with m patients and n genes that—together—share a special structure.

Types of structure to search for: Several methods attempt to find biclusters containing mostly

‘large’ or ‘small’ values; i.e., comprising a subset of genes which are differentially-expressed

relative to the rest of the patients in D [2, 13–21]. While there are many situations where

these kinds of differentially-expressed structures do indeed exist, we prefer to generalize

this notion somewhat. Our loop-counting method can find not only biclusters consisting

of differentially-expressed genes, but also biclusters consisting of highly correlated genes.

Mathematically speaking, our method is well suited to detect biclusters that are ‘numeri-

cally-low-rank’ (i.e., that have a spectrum of singular values that decays relatively quickly).

These low-rank biclusters include (but are not limited to) the differentially-expressed struc-

tures mentioned above; also including structures that exhibit co-expression without differ-

ential-expression (see Fig 1). We believe that, by searching for these more general low-rank

structures, we can expose many kinds of co-regulation in gene-expression data, as well as

certain epistatic interactions in GWAS data. Other methods which also attempt to locate

low-rank biclusters include [22–26].

Assumptions regarding the noise: Some methods assume that the data-array D is itself com-

posed of various biclusters along with additive noise [16, 27–30]. While the additive noise

model is reasonable in many contexts (e.g., experimentally induced noise in gene-expression

experiments), we believe that it may be too restrictive in others. For example, additive-noise

is not directly compatible with the genotyped-data of GWAS, which is typically discrete in

nature. For this reason we assume instead that the data-array D may have some correlated

structures implanted within it, with the remainder drawn from a less correlated distribution.

Thus, we allow for certain portions of D to be more tightly correlated than others, without

necessarily containing entries that are large in magnitude. These assumptions are not too

different from assuming additive noise within the empirical covariance of the data [31, 32],

and are similar to the assumptions used to define the ‘planted-clique’ and ‘planted-biclique’

problems in theoretical computer science, playing a role in the methodology of [15, 33–35].

Goals when classifying the data: Some methods attempt to categorize the entire data-array D,

placing each row and column into one or more biclusters (perhaps disjoint, or perhaps

overlapping) [20, 21, 36]. Other methods assume that much of the data might be noisy,

messy or unstructured, and only try to find a few biclusters that might be statistically signif-

icant [13, 18, 27, 30]. Our loop-counting method adopts an even less ambitous perspective:

there is often no reason to suspect a-priori that the data-set contains even a single well-

defined bicluster. Moreover, as we argue in sections A7:3 and A14:3 of S1 and S2 Text,

there are plenty of structures within real data-sets that cannot be fully captured with a single

rectangular submatrix. Therefore, our algorithm attempts to produce a useful ranking of

the rows and columns that will expose structures of interest, revealing the largest/strongest

bicluster if possible. After delineating and extracting this dominant structure, we can find

additional structure by rerunning our algorithm. Another method which adopts a similar

perspective is the ‘LAS’-method of [18, 28, 29].

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 3 / 29

https://doi.org/10.1371/journal.pcbi.1006105


Along with the aforementioned considerations, we have tried to design our methodology

so that we don’t lean too heavily on any single assumption. For example, our loop-counting

method often functions sensibly even in situations where the hidden biclusters are mostly

large or small; when the noise is additive, correlated, or heterogeneous; or when there are mul-

tiple overlapping structures to be found.

Fig 1. A highly idealized cartoon of different kinds of biclusters. In each panel we show a heat-map of an M × N
matrix ‘D’, which contains a large embedded bicluster (highlighted in pink) with a special structure. In this cartoon,

light and dark pixels correspond to high and low values for the corresponding matrix-entry. Many approaches to

biclustering search for structures containing mostly ‘large’ or ‘small’ values—as shown in Panels A and B. Such a

bicluster can be thought of as delineating a subset of columns which are ‘differentially-expressed’ with respect to the

remaining rows of D. Our algorithm generalizes this notion, searching for biclusters that are ‘low-rank’. Examples of

low-rank biclusters include those shown in Panels A and B, as well as ‘rank-1’ biclusters which can exhibit co-

expression without necessarily exhibiting differential-expression (see Panel-C and Fig 5 later on). Also encompassed

are ‘rank-2’ and higher biclusters which exhibit higher-order correlations that are not necessarily obvious to the eye

(see Panel-D and Fig 7 later on). Note that, while the biclusters shown in this cartoon are very large and essentially

noiseless, our algorithm can readily discover biclusters that are much smaller and noisier (see section A5 of S1 Text).

https://doi.org/10.1371/journal.pcbi.1006105.g001

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 4 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g001
https://doi.org/10.1371/journal.pcbi.1006105


Accounting for experimental design

While our method certainly isn’t the fastest, most accurate or most sensitive method possible,

we believe that it is robust enough to deal with many of the vagaries of real data, and that it can

be applied to many real problems in bioinformatics. To this end, we have designed our method

to account for the following features of experimental design which commonly arise when ana-

lyzing genomic data:

Cases-versus-Controls: Some patients may suffer from a certain disease (i.e., ‘cases’) while

others do not. By correcting for controls we can search for correlated structures that are

limited to the case-population. These case-specific structures may be useful for clinical diag-

nosis or for revealing disease mechanisms.

Categorical- and continuous-covariates: Often patients come from different studies, or are

measured with different machines. Each patient may also be associated with a vector of con-

tinuous-covariates (e.g., a vector of mds-components correlated with genetic ancestry [37,

38]). It is often critical to correct for the influence of these covariates when looking for sig-

nificant patterns.

Sparsity: In certain circumstances (e.g., when dealing with genotyped data) the data-matrix

can be sparse. Moreover, different columns of the data-matrix can have different spar-

sity-coefficients (e.g., different minor-allele-frequencies). It is typically important to

take this sparsity into account when determining which patterns are significant and

which are not.

Practical features

In addition to accounting for experimental-design, our loop-counting method also has the fol-

lowing practical features:

Few to no parameters: Aside from a parameter ‘Ireq’ which specifies what it means to correct

for categorical-covariates (see section A9 of S1 Text), our method has essentially no free

parameters which need to be specified by the user.

Scales to GWAS-data: Our method scales up well, and can be used to analyze large GWAS

data-sets containing ≳ 104 patients and ≳ 105 SNPs with a total computation time ranging

from a few hours to a few days (depending on the range of minor-allele-frequencies and the

number of covariates involved).

Provides a p-value: In addition to searching for biclusters, our methodology provides p-values

for whatever structures are found via a permutation test compatible with the experimental-

design (e.g., respecting the covariate structure).

Statistical guarantees: While not immediately relevant to real data, our method has provable

performance guarantees when applied to the (idealized) ‘planted-bicluster’ problem. While

our method is certainly not ‘optimal’ for this idealized problem, we do outperform simple

spectral biclustering schemes for many regimes of interest.

In the following sections we’ll describe our algorithm, sketch out the analytical intuition

associated with its performance, and present some examples applied to real gene-expression

and GWAS data. As mentioned above, references to S1 and S2 Text will be have an ‘A’-prefix

before the section number.

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 5 / 29

https://doi.org/10.1371/journal.pcbi.1006105


Results

As alluded to in the introduction, we have tried to ensure that our loop-counting method is

useful in practice; i.e., it can be applied to real data-sets in a reasonable amount of time, while

accounting for experimental-design and providing a p-value to assess statistical-significance.

In the following subsections we give a brief overview of our algorithm. To reiterate, our

method accumulates information about ‘loops’ (i.e., 2 × 2 submatrices) within the data-array.

We start out with the simplest possible situation and explain when we expect our algorithm to

work. Then we compare the performance of our algorithm to a related algorithm—namely a

simple spectral method; this comparison allows us to discuss the relationship between our

method and the more sophisticated message-passing algorithms in the literature. Afterwards,

we explain how to generalize our algorithm to incorporate controls, covariates and sparse data.

Finally, we present some examples taken from gene-expression and GWAS data, and comment

on some practical considerations, such as finding p-values for a bicluster and delineating the

boundaries of a bicluster.

Simple case: D only

In the simplest situation there are no controls, covariates, or sparsity considerations, and we

are tasked with exposing low-rank structures within an M × N case-matrix D. In this case our

loop-counting algorithm reduces to the following very simple iteration, described earlier in

[39] and in more detail within sections A2 and A3 of S1 Text:

Step 0. Binarize D, sending each entry to either +1 or −1, depending on its sign (i.e., D = sign

(D));

Step 1. Calculate ‘loop-scores’ for each row and column. In their simplest form the loop-

scores for each row are given by the diagonal entries:

ZROW ¼ diagðDD⊺DD⊺Þ; ð1Þ

and the loop-scores for each column are given by the diagonal entries:

ZCOL ¼ diagðD⊺DD⊺DÞ; ð2Þ

Step 2. Restrict attention to the row-indices for which ZROW is highest (i.e., most positive)

and the column indices for which ZCOL is highest—e.g., throw away the rows/columns

for which ZROW and ZCOL are lowest (i.e., most negative).

Step 3. Go back to step 1.

Note that our algorithm is iterative; Steps 1 and 2 involve repeatedly recalculating scores

and eliminating portions of the data-array D (this recalculation can be done efficiently using a

low-rank update, as discussed in section A3:1 of S1 Text). Eventually, after repeating this pro-

cess multiple times, we will eliminate almost all the rows and columns of D. As a consequence

of this simple iteration, the output of the algorithm is a listing of row- and column-indices in

the order that they were eliminated. If there were indeed a low-rank bicluster hiding within D,

then (assuming certain criteria are satisfied) our algorithm will usually find it; retaining the

rows and columns of the bicluster until the end (see section A5 of S1 Text). After finding the

first bicluster in this manner, the entries of D corresponding to this first bicluster can be

scrambled (i.e., destroying their low-rank structure), and the next bicluster can be found by

running the algorithm again (see section A14:3 of S2 Text).

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 6 / 29

https://doi.org/10.1371/journal.pcbi.1006105


This algorithm can be understood in terms of loops (i.e., 2 × 2-submatrices) of the data-

matrix D; each loop involves up to two rows and two columns of D (see Fig 2). The row-scores

[ZROW]j accumulate a sum over all loops that intersect row-j of D. This sum contributes a ‘+1’

for each loop that is rank-1, and a ‘−1’ for each loop that is not rank-1. Similarly, the column-

score [ZCOL]k tallies the ranks of the loops intersecting column-k of D. As explained in section

A4 of S1 Text, these loop-scores contain ‘signals’ driven by the various structured elements

within the data-matrix D. Specifically, if D contains an m × n bicluster B of low numerical-

rank spanning rows JB and columns KB, then B will add * mn2 to the row-scores of j 2 JB, and

* m2n to the column-scores of k 2 KB.

Fig 2. Illustration of the algorithm operating on a case-matrix alone (i.e., D only). In Panel-A we show a large M × N
binarized matrix D (black and white pixels correspond to values of ±1, respectively). In the upper left corner of D we’ve inserted

a large rank-1 bicluster B (shaded in pink). Our algorithm considers all 2 × 2 submatrices (i.e., ‘loops’) within D. Several such

loops are highlighted via the blue rectangles (the corners of each rectangle pick out a 2 × 2 submatrix). Generally speaking,

loops are equally likely to be rank-1 or rank-2. Some loops, such as the loop shown in red, are entirely contained within B.

These loops are more likely to be rank-1 than rank-2. In Panel-B we show some examples of rank-2 and rank-1 loops. Given a

loop with row-indices j, j0 and column-indices k, k0, the rank of the loop is determined by the sign of DjkD⊺
kj0Dj0k0D⊺

k0 j. Our

algorithm accumulates a ‘loop-score’ for each row j and each column k. In its simplest form, the loop-score for a particular row j
is given by Sj0 ;k;k0DjkD⊺

kj0Dj0k0D⊺
k0 j ¼ ½DD⊺DD⊺�jj. Analogously, the loop-score for a column k is given by ½D⊺DD⊺D�kk. In Panel-C we

show the distribution of loop-scores we might expect from the rows or columns within D. The blue-curve corresponds to the

distribution of scores expected from the rows/cols of D that are not in B, whereas the red-curve corresponds to the distribution

of scores expected from the rows/cols of B. In Panel-D we show the distribution of loop-scores we might expect by pooling all

rows or columns of D. The rows or columns that correspond to the lowest scores are not likely to be part of B.

https://doi.org/10.1371/journal.pcbi.1006105.g002

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 7 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g002
https://doi.org/10.1371/journal.pcbi.1006105


The loop-scores contain these signals because of the following fact regarding high dimen-

sional space: a random planar projection of an eccentric gaussian-distribution is typically con-

centrated in non-adjacent quadrants. Put in more colloquial terms, one can imagine flipping a

dowel (numerical-rank 1) or a discus (numerical-rank-2) into the air so that it casts a shadow

centered on the origin of a two-dimensional plane. While it is certainly possible for the shadow

to be cast equally across all four quadrants, it is much more likely that the shadow will fall

mostly into opposite quadrants (see Fig A21 in section A5 of S1 Text). This fact implies that

the loops of D contain substantial information about biclusters within D.

As explained in section A5 of S1 Text, there are many situations where we can quantify when

our loop-counting algorithm will work. One example includes the ‘planted-bicluster’ problem

(section A6 of S1 Text). In this scenario we consider a large M × M data-matrix matrix D with

entries chosen independently from a distribution with median 0. After creating D we’ll embed

within D an m × m submatrix B, which is rank-l with ‘spectral-error’ ε (i.e., the first l singular-

values of B are equally large, but the (l + 1)st singular-value of B is ε times the first singular-value

—see section A5:1 of S1 Text). We’ll assume that M�m� 1. Given B, we can derive an equa-

tion for the probability gl,ε,m for a loop in B to be rank-1 rather than rank-2. Given gl,ε,m, our

loop-counting algorithm will detect B with high probability whenever m3ð2gl;ε;m � 1Þ ≳
ffiffiffiffiffiffiffiffiffi
2M3
p

.

This means that, when ε
ffiffiffiffi
m
p
� 1, our algorithm should work well if m ≳

ffiffiffiffiffi
M
p

. In addition, if

ε
ffiffiffiffi
m
p
� 1, then our algorithm should work well if m ≳

ffiffiffiffiffiffiffiffiffiffi
p2=43

p
�½ε

ffiffiffiffi
m
p
�
4=3
�
ffiffiffiffiffi
M
p

.

Numerical experiments corroborating this analysis are shown in Fig 3A. These numerical

experiments illustrate the performance of our algorithm on the planted-bicluster problem

described above, with the rank fixed at l = 1 on the left and l = 2 on the right. See Figs A29,

A30, and A31 in S1 Text for slightly more detail, as well as the l = 3 case. A more detailed dis-

cussion of our loop-counting algorithm (specifically, motivation for the binarization, loop-

counting, and iteration steps) is found in section A7 of S1 Text. A comparison between our

loop-counting method and some publicly available implementations of other biclustering

methods is found in section A7:4 of S1 Text.

Comparison with a simple spectral method

As we mentioned earlier, the loop-score associated with each row (or column) tallies the ranks

of all loops from that row (or column) to itself. One natural generalization of this notion is

to consider not merely loops—which are paths of length 4—but longer paths of length 2d+2

through the data-matrix D. Specifically, we can define ‘d-scores’—denoted as Zd
ROW and Zd

COL—

using the diagonal entries diag (DD⊺)d+1 and diag (D⊺D)d+1, respectively. The d-score associ-

ated with any row (or column) tallies the ranks of all 2d + 2-step paths leading from that row

(or column) to itself. Note that as d!1, these d-scores converge in direction to the entry-

wise-square of the dominant singular vectors of D.

These observations motivate the following simple spectral-biclustering method, which is

closely related to the spectral methods of [22, 40]:

Step 0. Binarize D, sending each entry to either +1 or −1 (i.e., D = sign(D) or D = 2(D> 0) − 1).

Step 1. Calculate the singular-value-decomposition D = USV⊺. Set~u and~v to be the first col-

umns of U and V.

Step 2. Set ½ZROW�j ¼ ~u
2
j and ½ZCOL�k ¼~v

2
k to be the entrywise-squares of the singular-vectors~u

and~v.

Step 3. Use ZROW and ZCOL to produce a ranked list of rows and columns of D.

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 8 / 29

https://doi.org/10.1371/journal.pcbi.1006105


When considering the planted-bicluster problem, this simple spectral method has detec-

tion-thresholds which are similar to those of the loop-counting method (see section A22 of S2

Text). However, as shown in Fig 3B, our loop-counting method often outperforms the simple

spectral method, particularly when the implanted bicluster is rank l> 1.

Fig 3. Performance of loop-scores vs spectral-biclustering applied to the planted-bicluster problem. For each instantiation of the planted-

bicluster problem we choose an M, m, ε and l; we use these parameters to generate a random M × M matrix D and embedded m × m rank-l
submatrix B with spectral noise ε. For each instantiation, our algorithm produces a list of row- and column-indices of D in the order in which they

are eliminated; those rows and columns retained the longest are expected to be members of B. To assess the success of our algorithm we calculate

the auc AR (i.e., area under the receiver operator characteristic curve) associated with the row-indices of B with respect to the output list from our

algorithm. The value AR is equal to the probability that: given a randomly chosen row from B as well as a randomly chosen row from outside of B,

our algorithm eliminates the latter before the former (i.e., the latter is lower on our list than the former); We calculate the auc AC for the columns

similarly. Finally, we use A = (AR + AC)/2 as a metric of success; values of A near 1 mean that the rows and columns of B were filtered to the top by

our algorithm, whereas values of A near 0.5 mean that our algorithm failed to detect B. In the top of Panel-A we show the trial-averaged auc A for

our loop-counting method as a function of ε
ffiffiffiffi
m
p

and logM (m). Results for l = 1 are shown on the left; l = 2 is shown on the right. Each subplot

takes the form of a heatmap, with each pixel showing the value of A for a given value of log
10
ðε

ffiffiffiffi
m
p

ð ÞÞ and logM (m) (averaged over at least 128

trials). The different subplots correspond to different values for M. Note that our loop-counting algorithm is generally successful when

log
10
ðε

ffiffiffiffi
m
p
Þ ≲ 0 and logMðmÞ ≳ 0:5. In the bottom of Panel-A we show the analogous auc A for a simple implementation of the spectral method

(see section A22 of S2 Text). In Panel-B we show the difference in trial-averaged A between these two methods (see colorbar for scale). Note that

when l� 2 or the noise is small, our loop-score generally has a higher rate of success than the spectral method. On the other hand, there do exist

parameters when l = 1 and ε
ffiffiffiffi
m
p
� 1 where the spectral method has a higher rate of success. In each panel the thin grey line shows the detection-

boundary for our loop-counting method (calculated using m3 ð2gl;ε;m � 1
� �

Þ ¼
ffiffiffiffiffiffiffiffiffi
2M3
p

).

https://doi.org/10.1371/journal.pcbi.1006105.g003

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 9 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g003
https://doi.org/10.1371/journal.pcbi.1006105


This phenomenon has to do with the asymptotic behavior of the singular-vectors of D close

to the detection-threshold (see [31, 32]) and is discussed in more detail in section A22:3 of S2

Text. In brief, when l> 1 and m is close to
ffiffiffiffiffi
M
p

, our loop-scores are more useful than the

entries of the dominant singular vector with regards to a binary classifier. This is one of the

main reasons that we have focused on our loop-counting method, and why we have not pur-

sued spectral methods for biclustering.

Remark: Above we’ve introduced a family of d-scores, with d = 1 corresponding to our

loop-scores, and d =1 corresponding to the simple-spectral scores. As one may expect, for

any given planted-bicluster problem the most useful d-score is neither the loop-score nor the

spectral-score, but one with an intermediate value of d. Taking this reasoning further, one

might imagine a score that is constructed nonlinearly; instead of building the d-score ½Zd
ROW�

by applying power-iteration to the covariance-matrix DD⊺, one might try and build an even

better score by applying a nonlinearity in between each stage of the power-iteration.

The message-passing algorithms of [33], [19], and [41] proceed along these lines. Generally

speaking, these algorithms choose an appropriate nonlinearity to apply between stages of a

‘message-passing procedure’ similar to power-iteration. By choosing this nonlinearity care-

fully, these methods can significantly reduce their detection-thresholds for a variety of prob-

lems very similar to our planted-bicluster problem (such as, e.g., the planted-clique problem).

Given the success of the message-passing algorithms of [33], [19], and [41], it seems certain

that there exists a message-passing algorithm that outperforms our loop-counting algorithm

when applied to the planted-bicluster problem; we fully intend to pursue this line of research

in the future (see the discussion in section A22:4 of S2 Text).

Incorporating experimental design

While appropriate for idealized situations such as the planted-bicluster problem, the simple

loop-counting algorithm described above is not immediately applicable to real data. The rea-

son is that the loop-scores in Eqs 1 and 2 do not take into account experimental design. To

tackle this issue we can redefine our scores, ensuring that the structures that generate the larg-

est signals correspond to those that are most relevant.

To describe this strategy in more detail, we’ll first focus on a situation involving cases and

controls. Specifically, let’s imagine that we are analyzing gene-expression data where MD of the

patients exhibit a certain disease, whereas the other MX patients do not (i.e., cases and controls,

respectively). Instead of arranging our data into a single M × N array, we will divide our data

into an MD × N array D describing the cases, and another MX × N array X describing the con-

trols. As is typical for gene-expression data, there will likely exist large subsets of genes which

are correlated across large subsets of the population—including both D and X—without being

particularly related to the disease. Such genes might include, e.g., genes related to develop-

ment, or ‘housekeeping’ genes that are strongly coexpressed in most patients.

If we were to simply search for the largest biclusters, we would find these common genetic

signatures, which are not related to the disease, and thus not of interest. Instead, we would like

to search for biclusters which are restricted to a subset of the case-patient-population in D and

which exhibit correlations which are not found in the control-population X. Such case-specific

biclusters are more likely to be related to disease mechanisms.

We can achieve this goal by slightly modifying ‘Step-0’ and ‘Step-1’ of the D-only algorithm

above. In Step-0 we now need to binarize both D and X. In Step-1 we need to calculate the

loop-scores in a slightly different way. Given any fixed case-row j 2 D, there will be two types

of loops that contribute to the score: (i) loops that are contained within D, and (ii) loops that

travel through X. If row-j were part of a bicluster which was restricted to D, then we would

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 10 / 29

https://doi.org/10.1371/journal.pcbi.1006105


expect row-j to participate in an abundance of rank-1 loops of type-(i), but not of type-(ii).

Based on this intuition, we score the first type of loop positively if it is rank-1 and negatively if

it is rank-2. In addition, we score the second type of loop the other way; negatively if it is rank-

1 and positively if it is rank-2. This strategy produces control-corrected row- and column-

scores of the form:

½ZROW�j ¼ ½ZDD
ROW�j � ½Z

DX
ROW�j ;where

½ZDD
ROW�j ¼

1

ðMD � 1ÞNðN � 1Þ
½DD⊺DD⊺�jj � NðN þMD � 1Þ
n o

;

½ZDX
ROW�j ¼

1

MXNðN � 1Þ
½DX⊺XD⊺�jj � MXN
n o

; and

½ZCOL�k ¼ ½ZDD
COL�k � ½Z

DX
COL�k ;where

½ZDD
COL�k ¼

1

ðN � 1ÞMDðMD � 1Þ
f½D⊺DD⊺D�kk � MDðMD þ N � 1Þg;

½ZDX
COL�k ¼

1

ðN � 1ÞMDMX
f½D⊺DX⊺X�kk � MDMXg:

These control-corrected loop-scores are designed so that biclusters which equally straddle

both the cases and the controls will—on average—produce no signal, while biclusters which

are significantly concentrated within the cases will still produce a signal. Biclusters which are

fully case-specific will generate signals that are (on average) as large as they would have been

using our original (uncorrected) loop-scores. A more detailed explanation of these control-

corrected loop-scores, as well as corroborating numerical experiments, can be found in sec-

tions A8 and A15:2 of S1 and S2 Text.

A similar principle can be used to correct for categorical-covariates, multidimensional con-

tinuous-covariates, as well as sparsity. We briefly discuss these corrections in the Methods sec-

tion, deferring the details to sections A9, A10 and A11 of S1 and S2 Text.

In the following subsections we briefly present two examples drawn from genomics. These

examples serve as proofs-of-principle for our method, and demonstrate that our method func-

tions in practice.

Example-A: Gene expression analysis

Our first example is taken from the GSE48091 data-set available from the gene-expression-

omnibus (found at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48091). See

‘Example-1b’ in section A1:2 of S1 Text for more details regarding this example.

The subset of data that we use comprises N = 16738 gene-expression measurements

(referred to later as ‘genes’ for simplicity) collected across 506 patients, each diagnosed

with breast-cancer. Of these patients, MD = 340 were ‘case’-patients that developed distant

metastatic disease. The remaining MX = 166 were ‘control’-patients that did not. The data-

set is illustrated in Fig 4, with each gene normalized to have median 0 across the patient-

population.

We’ll use our control-corrected loop-counting algorithm to search this data-set for case-

specific biclusters—namely subsets of genes that are structured in some way across a signifi-

cantly large subset of the case-patients, while not being similarly structured across the control-

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 11 / 29

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48091
https://doi.org/10.1371/journal.pcbi.1006105


population. These case-specific biclusters will have the potential to pinpoint genes useful for

diagnosis and discrimination between case and control status.

Some of our results are shown in Fig 5, which illustrates a large bicluster—comprising

m = 45 of the MD = 340 cases and n = 793 of the N = 16738 genes—that was embedded in the

case-matrix and discovered using our algorithm. This bicluster consists of genes that, taken

individually, are neither significantly over-expressed nor under-expressed—relative to the

control population. Instead, these 793 genes are significantly co-expressed (i.e., either strongly

correlated or anti-correlated) across a significant fraction of the case population (in this case

45/340 * 13% of the cases), without being as significantly co-expressed across a comparable

fraction of the control population. While a little difficult to see in Fig 5A, we’ve rearranged the

bicluster in Fig 5B to reveal its co-expression pattern; each patient in the bicluster is either

strongly correlated or anti-correlated with this stereotyped pattern. This statement can be

quantified as follows: Let’s define v 2 Rn to be the dominant right-principal-compont of this

bicluster, and let cj be the pearson’s-correlation between the jth-patient in the bicluster and v. If

we use the absolute value |cj| as a measure of ‘alignment’, most of the rows are aligned (with

the stereotyped pattern) at a value of 90% or more.

To illustrate that this stereotyped co-expression pattern is indeed case-specific (i.e., not

comparably shared across the controls), we replot the bicluster at the top of Fig 6 and below

we plot the control data—reorganized in an attempt to reveal co-expression patterns. As one

can see, while there are certainly some control patients that exhibit strong correlation or anti-

correlation with the stereotyped gene-expression pattern of the bicluster, the majority are not

Fig 4. Illustration of the GSE48091 gene-expression data-set used in Example-A (see main text). Each row

corresponds to a patient, and each column to a ‘gene’ (i.e., gene-expression measurement): the color of each pixel

codes for the intensity of a particular measurement of a particular patient (see colorbar to the bottom).MD = 340 of

these patients are cases, the other MX = 166 are controls; we group the former into the case-matrix ‘D’, and the latter

into the control-matrix ‘X’.

https://doi.org/10.1371/journal.pcbi.1006105.g004

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 12 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g004
https://doi.org/10.1371/journal.pcbi.1006105


so strongly aligned. In fact, for this example, only 3 of the 166 controls (i.e., significantly less

than 45/340) have an alignment |cj| that is greater than 90%; most only exhibit an alignment

around 0%−50%. This statement can be further quantified as follows: The distribution of align-

ments |cj| for the patients in the bicluster is significantly different than the distribution of align-

ments for the controls; the AUC (i.e., area under the receiver-operator-characteristic curve)

for these two distributions is 98%, meaning that there is a 98% chance that a randomly drawn

patient from the bicluster will have a higher alignment than a randomly drawn control. Note

that this AUC only implies a high prediction accuracy when discriminating cases within the

bicluster from the controls; this AUC does not translate into high case/control prediction accu-

racy overall.

Finally, we can ask: How significant is this bicluster? As described in more detail within the

Methods, this bicluster has a P-value of ≲ 0.008. We obtain this P-value by comparing this

bicluster against the distribution of biclusters obtained under a suitable ‘label-shuffled’ null-

hypothesis—i.e., formed from shuffling the case-vs-control labels (see also section A14:2 and

Figs A57 and A58 in S2 Text). This level of statistical significance implies that this signal is a

Fig 5. Illustration of bicluster found within gene-expression data-set. Both panels illustrate the same submatrix (i.e.,

bicluster) drawn from the full case-matrix shown at the top of Fig 4. This bicluster was found using our control-

corrected biclustering algorithm (described in section A8 of S1 Text). In Panel-A we represent this bicluster using the

row- and column-ordering given by the output of our algorithm. This ordering has certain advantages (see section

A14 of S2 Text), but does not make the co-expression pattern particularly clear to the eye. Thus, to show this co-

expression more clearly, we present the bicluster again in Panel-B, except this time with the rows and columns

rearranged so that the coefficients of the first principal-component-vector change monotonically. As can be seen, there

is a striking pattern of correlation across the 793 genes for the 45 cases shown.

https://doi.org/10.1371/journal.pcbi.1006105.g005

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 13 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g005
https://doi.org/10.1371/journal.pcbi.1006105


‘real’ feature of the data-set, and suggests that many of the genes implicated in this bicluster

may be important for distant metastatic disease.

If this were true, we would expect many of these genes to serve similar functions or affect

the same pathway. This is indeed the case: a gene-enrichment analysis performed on these

n = 793 genes reveals a significant enrichment for mitosis (p = 2e-9), DNA-replication (3e-8),

chromosome segregation (p = 2e-5) and many more; including several pathways that are likely

to play a role in the development of cancer. See Supplementary-material S2 Data for a full list

of gene-enrichment obtained using ‘Seek’ [42]. While these results are encouraging, we would

still need to perform some kind of replication study (involving an independent data-set) to

ensure that this bicluster is biologically-significant.

Example-B: Genome-wide-association-study (GWAS)

Our second example is a subset of a Genome-Wide-Association-Study used with permission

from the Bipolar Disorders Working Group of the Psychiatric Genomics Consortium

(PGC-BIP) [43]Due to data-usage agreements, only cursory information regarding this data-

set will be provided here. A more detailed description of the data-set, as well as the structures

we’ve found within it, will be provided in a later publication. See section A1:4 of S1 Text for

more details regarding this example.

This data-set includes N = 276768 alleles with varying minor-allele-frequency genotyped

across 16577 patients. These patients fall into two phenotypic categories: 9752 are neurotypi-

cal, whereas the remaining 6825 exhibit a particular psychiatric disorder. For this example

we’ll try and find a signal within the neurotypical patients that is not shared by those with the

Fig 6. Contrasting a bicluster with controls. This shows the bicluster of Fig 5B on top, and the rest of the controls on

the bottom. The control-patients have been rearranged in order of their correlation with the co-expression pattern of

the bicluster. Even though a few of the controls (i.e,. * 3/166) exhibit a coexpression pattern comparable to that

expressed by the bicluster, the vast majority do not.

https://doi.org/10.1371/journal.pcbi.1006105.g006

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 14 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g006
https://doi.org/10.1371/journal.pcbi.1006105


disorder; We’ll use the phenotypic information to divide the patients into MD = 9752 cases and

MX = 6825 controls. Note that, within this example, our nomenclature is non-standard; neuro-

typical patients are typically referred to as ‘controls’ and not cases. The reason we deviate from

this standard is because, below, we will try to find a bicluster within the neurotypical patients

that does not extend to include the remaining patients. In order to remain consistent with our

notation and equations throughout the rest of the manuscript (as well as S1 and S2 Text), we

will refer to these neurotypical patients as cases, and we will store their information in the

case-matrix D.

In addition to their genotyped data, each patient is also associated with a NT = 2-dimen-

sional vector of ‘mds-components’ that serve as a continuous-covariate. In this case the contin-

uous-covariate plays the role of a proxy for each patient’s genetic ancestry [37, 38].

Our objective in this situation is similar to Example-A: We would like to search for case-

specific biclusters involving subsets of alleles that are structured in some way across a signifi-

cantly large subset of the case-patients, while not being similarly structured across the control-

population. In addition, we’d like to ensure that the biclusters we find are well-distributed with

regard to the continuous-covariate (i.e., we don’t want to focus on a subset of patients that all

have the same ancestry).

Fig 7 illustrates the size of this data-set, as well as one case-specific low-rank bicluster which

we discovered using a version of our algorithm that corrects for controls, as well as sparsity

and continuous-covariates (see the ‘2-sided’ covariate-correction described in section A10 of

S1 Text). As can be seen from Fig 7, the pattern shown within the bicluster is rather different

than the pattern exhibited by the typical control. What may not be obvious from visual inspec-

tion is that this bicluster is essentially ‘rank-2’; i.e., the dominant two principal components

of this bicluster are large compared to the rest. Put another way, the patients within this biclus-

ter exhibit a second-order correlation across the subset of alleles in the bicluster; a correlation

not exhibited by the population at large. We illustrate this second-order structure in Fig A12
in S1 Text.

If we calculate the distribution of alignments across individuals in this bicluster and com-

pare them to the distribution of alignments across the controls (see, e.g., Example-A), we

obtain an AUC of > 99.75%. As in Example-A, this AUC by itself only implies that the pat-

tern within the bicluster is significantly different than the pattern outside the bicluster; it

does not imply that the bicluster itself is statistically significant. That is to say, this AUC only

implies a high prediction accuracy when discriminating cases within the bicluster from the

controls; this AUC does not translate into high case/control prediction accuracy overall.

Nevertheless, as described in more detail in section A14:2 of S2 Text, this bicluster is a statis-

tically-significant feature of the data-set—with a P-value of� 0.05 associated with the label-

shuffled null-hypothesis ‘H0x’.

In addition to ensuring that this bicluster was case-specific, our covariate-corrected algo-

rithm has also successfully ensured that this bicluster is balanced with regards to the continu-

ous-covariate. This balance is illustrated in Figs 8 and 9, and further corroborated by Fig A18
in S1 Text. If we were to run our algorithm without correcting for the continuous-covariates,

then we would find spurious biclusters involving patients that were highly concentrated in just

a few regions of covariate-space (see Fig A15 in S1 Text).

If we take a closer look at the bicluster itself, we see that the 706 genetic-loci within the

bicluster correspond to 124 different genes. These genes are enriched for many pathways,

including: phosphate-ion transmembrane transport (p = 1.6e-4), metal-ion transmembrane

transport (p = 5.7e-4), calcium-ion binding (p = 1.2e-3), GTPase-activation (p = 2.2e-3), ion-

gated channel activity (p = 3.3e-3), calcium-ion transport (p = 4.3e-3), voltage-gated channel

activity (p = 1.0e-2), calcium-signaling (p = 1.1e-3), long-term-potentiation (p = 1.1e-3) and

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 15 / 29

https://doi.org/10.1371/journal.pcbi.1006105


glutamatergic-synapses (p = 7e-3). See S4 Data for a full list of gene-enrichment obtained

using ‘Seek’. Because this bicluster was found within the neurotypical patients, it is possible

that these genes play a protective role in delaying the development or onset of the psychiatric

disorder associated with this data-set. Nevertheless, just as in our previous example, these

encouraging results do not yet demonstrate that this bicluster is biologically-significant. In

order to truly demonstrate biological-significance, we would need to search for a similar signal

within an independent data-set (i.e., perform a replication study).

Methods

Below we’ll briefly describe our approach to correcting for categorical- and continuous-covari-

ates. In each situation we’ll discuss the simplest possible case, involving case-patients only and

disregarding controls. The full details of our method—including how to combine the control-

correction with covariate- and sparsity-corrections—is given in section A12 of S2 Text.

Fig 7. Illustration of bicluster found within genome-wide-association-study dataset. In this figure we illustrate the

genome-wide association-study (i.e., GWAS) data-set discussed in Example-B (see main text). This data-set involves

16577 patients, each genotyped across 276768 genetic base-pair-locations (i.e., alleles). Many of these patients have a

particular psychological disorder, while the remainder do not. We use this phenotype to separate the patients into

MD = 9752 cases and MX = 6825 controls. The size of this GWAS data-set is indicated in the background of this

picture, and dwarfs the size of the gene-expression data-set used in Example-A (inset for comparison). At the top of the

foreground we illustrate an m = 115 by n = 706 submatrix found within the case-patients. This submatrix is a low-rank

bicluster, and the alleles are strongly correlated across these particular case-patients. The order of the patients and

alleles within this submatrix has been chosen to emphasize this correlation. For comparison, we pull out a few other

randomly-chosen case-patients and control-patients, and present their associated submatrices (defined using the same

706 alleles) further down.

https://doi.org/10.1371/journal.pcbi.1006105.g007

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 16 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g007
https://doi.org/10.1371/journal.pcbi.1006105


Categorical covariates

If the patients are drawn from different categories (e.g., study-number, platform type, etc.), then

it is typically important to ‘correct’ for the effect of this categorical-covariate, and to find biclus-

ters that are independent of covariate-category. In this section we discuss the simplest situation

involving only two covariate-categories of equal size (i.e., a binary covariate, such as gender).

Within the context of this scenario, we would like to ignore biclusters that include patients

from only one gender, favoring instead biclusters that include a reasonable mixture of patients

from both genders. Our strategy is to design a loop-score which tracks the loops associated

with the different covariate-categories, comparing them against one another. This loop-score

will demote the signal produced by any bicluster down to the signal that would be produced

by that bicluster’s ‘balanced component’ (i.e., the subset of that bicluster which straddles both

genders equally). As a result, ‘imbalanced’ biclusters that are concentrated in one gender will

produce almost no signal. At the same time, ‘balanced’ biclusters that include an equal number

of males and females will still produce a strong signal (equivalent, on average, to what they

would have produced if we did not correct for covariate-category).

In the simplest scenario (ignoring controls), the covariate-corrected loop-score for any

male patient j is given by:

½ZROW�j ¼ min ½Z1
ROW�j

1

p
; ½Z2

ROW�j
1

q

� �

;where

½Z1
ROW�j ¼

X

j fixed; j0 male; j0 6¼ j
k0 6¼ k

D1jkD1j0kD1j0k0D1jk0 ; and

½Z2

ROW�j ¼
X

j fixed; j0 female;
k0 6¼ k

D1jkD2j0kD2j0k0D1jk0

Fig 8. Continuous–covariate-distribution for the bicluster shown in Example-B. As mentioned in the introduction,

our algorithm proceeds iteratively, removing rows and columns from the case-matrix until there are none left. One of

our goals is to ensure that, during this process, our algorithm focuses on biclusters which involve case-patients that are

relatively well balanced in covariate-space. On the left we show a scatterplot illustrating the 2-dimensional distribution

of covariate-components across the remaining m = 115 case-patients within the bicluster shown in Example-B (i.e., Fig

7). The horizontal and vertical lines in each subplot indicate the medians of the components of the covariate-

distribution. On the right we show the same data again, except in contour form (note colorbar). The continuous-

covariates remain relatively well-distributed even though relatively few case-patients are left (compare with Fig 9).

https://doi.org/10.1371/journal.pcbi.1006105.g008

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 17 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g008
https://doi.org/10.1371/journal.pcbi.1006105


where we have divided our data-array D into male-patients ‘D1’, and female-patients ‘D2’,

and the fractions p = (MD1 − 1)/(M − 1) and q = (MD2)/(M − 1) are the fraction of other males

and females, respectively. The covariate-corrected loop-score for a female patient is defined

analogously.

Fig 9. Continuous–covariate-distribution from Example-B as the loop-counting algorithm proceeds. On top we show several scatterplots,

sampling from different iterations as our algorithm proceeds. Each scatterplot illustrates the 2-dimensional distribution of covariate-

components across the remaining case-patients at that point in the iteration. The horizontal and vertical lines in each subplot indicate the

medians of the components of the covariate-distribution. Below we show the same data again, except in contour form (note colorbar). Note that

the covariate-distribution remains relatively well-distributed as the algorithm proceeds.

https://doi.org/10.1371/journal.pcbi.1006105.g009

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 18 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g009
https://doi.org/10.1371/journal.pcbi.1006105


Regarding the column-scores:

½ZCOL�k ¼ min ½Z11
COL�k

1

a11

; ½Z12

COL�k
1

a12

; ½Z21

COL�k
1

a21

; ½Z22

COL�k
1

a22

� �

; where

½Z11
COL�k ¼

X

j0; j male; j0 6¼ j
k fixed; k0 6¼ k

D1jkD1jk0D1j0k0D1j0k; and

½Z12
COL�k ¼

X

j male; j0female;
k fixed; k0 6¼ k

D1jkD1jk0D2j0k0D2j0k; and

½Z21
COL�k ¼

X

j female; j0male;
k fixed; k0 6¼ k

D2jkD2jk0D1j0k0D1j0k; and

½Z22
COL�k ¼

X

j0; j female; j0 6¼ j
k fixed; k0 6¼ k

D2jkD2jk0D2j0k0D2j0k;

where fractions α11, α12, α21, α22 are defined to be a11 ¼ MD1 MD1 � 1ð Þ= �M2,

a12 ¼ a21 ¼ MD1MD2=
�M2, and a22 ¼ MD2 MD2 � 1ð Þ= �M2, with �M2 ¼ M2 � MD1 � MD2.

A more detailed explanation of this construction, as well as an extension to the general

case with three or more covariate-categories, is given in section A9 of S1 Text. An example

illustrating this methodology applied to a gene-expression data-set is given in section A1:3
of S1 Text.

One of the important aspects of the general case is that, often, one is interested in biclusters

that straddle many covariate-categories, even if they are not fully balanced across all the covari-

ate-categories. An example might be a data-set collecting patients across Icat separate studies.

In such a scenario one might be interested in biclusters that include patients from at least

Ireq < Icat of these individual studies. Our general method for categorical-covariate-correction

requires the user to specify this required Ireq, which is used in defining our loop-scores. Details

are given in section A9 of S1 Text.

Continuous covariates

For certain applications each patient is associated with a high-dimensional continuous-covari-

ate. For example, in genome-wide association studies, each patient is often equipped with an

NT-dimensional vector of ‘mds-components’, serving as a proxy for the genetic similarity of

those patients’ ancestors [37, 38]. Consequently, when attempting to control for genetic-ances-

try, we are not interested in ‘imbalanced’ biclusters involving only patients that are concen-

trated together in mds-space. Instead, we would like to ignore these mds-specific biclusters

and focus on ‘balanced’ biclusters which involve patients that are widely dispersed across mds-

space.

Our basic strategy for continuous-covariate correction will be similar to our strategy above.

We’ll design a loop-score which tracks the continuous-covariates associated with each loop,

comparing them against one another. This loop-score will demote the signal of any imbal-

anced biclusters down to 0. At the same time, balanced biclusters will produce a signal that is

—on average—as large as it would have been without covariate-correction.

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 19 / 29

https://doi.org/10.1371/journal.pcbi.1006105


In the simplest scenario (ignoring controls and categorical-covariates), the covariate-cor-

rected loop-scores are given by:

½ZROW�
2

j ¼ bZ
base
ROWc

2

j � ½Z
½T�
ROW�

2

j ; ½ZCOL�k ¼ ½Z
base
COL�k � ½Z

½T�
COL�k;

where the ‘base’ scores are defined via:

½Zbase
ROW�j ¼

gX

j fixed; j0 2 D; j0 6¼ j;
k0 6¼ k

DjkDj0kDj0k0Djk0 ; and

½Zbase
COL�k ¼

gX

j0; j 2 D; j0 6¼ j;
k fixed; k0 6¼ k

DjkDjk0Dj0k0Dj0k;

and the covariate-averaged scores are defined via:

½Z½T�ROW�
2

j ¼
1

k2

gX

t

Z½t�ROW

j k2

j
; and Z½T�COL

h i

k
¼

1

k2

gX

t

Z½t�COL

h i

k
;with

½Z½t�ROW�j ¼
gX

j fixed; j0 2 D;j0 6¼ j;
k0 6¼ k

DjkDj0kTj0tDj0k0Djk0Tjt; for each t 2 f1; . . . :NTg; and

½Z½t�COL�k ¼
gX

j0; j 2 D; j0 6¼ j;
k fixed; k0 6¼ k

DjkTjtDjk0Dj0k0Tj0tDj0k; for each t 2 f1; : . . . NTg:

In the above expressions we denote by T the M × NT matrix containing the continuous-covari-

ates (i.e., row-j of T contains the covariates for patient j). The sumfP denotes a normalized

sum (i.e., the total is divided by the number of summands), the function bxc = max(0, x), and

κ2 is a parameter that depends on NT (for NT = 2, κ2� 0.34).

A more detailed explanation of this construction, including the calculation of κ2 along with

corroborating numerical experiments, is given in section A10 of S1 and S2 Text.

Sparsity

Up to this point we’ve assumed that—after binarization—each column of the data-matrix has

a comparable number of positive and negative entries. This assumption is often valid when

dealing with gene-expression data (where we are free to normalize around the median of each

column), but not when dealing with genotyped data. Indeed, single-nucleotide-polymor-

phisms (SNPs) can often involve minor-allele-frequencies (MAFs) that are quite small (e.g.,

0.1 or smaller), giving rise to a large imbalance between ±1-entries in each column of the data-

matrix.

If a subset of columns in the data-matrix has a surplus of, say, negative entries, then that

portion of the data-matrix will be ‘sparse’ (i.e., it will contain far fewer ‘+1’-entries than ‘−1’-

entries). Such a sparse region is likely to contain large submatrices consisting of mostly nega-

tive entries, simply due to their abundance. The loop-counting algorithm we’ve described

so far will typically focus on these large submatrices, even though they are not statistically sig-

nificant. The reason for this is that the loop-score above assumes that each loop carries the

same weight, regardless of whether or not that loop comprises positive or negative entries.

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 20 / 29

https://doi.org/10.1371/journal.pcbi.1006105


It is straightforward to correct for sparsity by ‘normalizing’ each column of D; This normal-

ization rescores each loop so that ±1-entries that are otherwise abundant do not add much to

the score. Conversely, entries that are otherwise rare add more to the score.

Assuming that column-k of the data-matrix D has sparsity coefficient pk, and setting qk = 1

−pk, we calculate the sparsity-corrected loop-scores as follows (ignoring controls and covari-

ates for now):

½ZROW�j ¼
gX

j fixed; j0 6¼ j;
k0 6¼ k

½D � 1a⊺�jkDkk½D
⊺ � a1⊺�kj0 ½D � 1a⊺�j0k0Dk0k0 ½D

⊺ � a1⊺�k0 j;

½ZCOL�k ¼
gX

j0; j 2 D; j0 6¼ j;
k fixed; k0 6¼ k

½D⊺ � a1⊺�kj½D � 1a⊺�jk0Dk0k0 ½D
⊺ � a1⊺�k0j0 ½D � 1a⊺�j0kDkk;

where~a 2 RN is the N × 1 vector of means αk = pk − qk, D 2 RN�N is the diagonal matrix with

entries D
� 1

kk ¼ 4pkqk, and~1 2 RM is the M × 1 vector of all ones. See section A11 of S2 Text for

more details, as well as corroborating numerical experiments.

Combining all the corrections

In the previous sections we’ve discussed modifications to our algorithm that correct for con-

trols, covariates and sparsity. These can be combined in the following order to produce a single

loop-score that corrects for all these features simultaneously:

1. Correct for sparsity.

2. Correct for continuous covariates.

3. Correct for categorical covariates.

4. Correct for cases versus controls.

The motivation underlying these choices, as well as computational details and corroborat-

ing numerical experiments, are found in section A12 and A13 of S2 Text.

Obtaining a p-value

In addition to listing the rows and columns in the order that they were eliminated, our loop-

counting algorithm also produces a list of the average row- and column-scores taken across

the remaining data-matrix at each iteration. We refer to these average row- and column-scores

as row- and column-traces, as they are both proportional to the trace of DD⊺DD⊺ in the D-only

situation. These trace-lists allow us to determine a p-value for our bicluster without applying a

threshold to determine the ‘boundary’ of the bicluster.

To describe this process, let’s focus on Example-A (i.e., the gene-expression analysis). In

this example we are comparing case-patients to control-patients. The row- and column-traces

in this case can be rescaled to lie between −2 and +2 (and usually fall in the interval [0, 1]).

These traces provide a measure of how tightly correlated the remaining data-matrix is at each

iteration. More specifically: if, after sufficiently many iterations, the row- or column-traces

become large (i.e., came close to +1), then the remaining rows and columns should form a

highly correlated low-rank bicluster.

Our typical hypothesis (say, H1) is that there exists some disease-related structure in the

case-patients that is not exhibited by the control-patients. This is in contrast to the null-

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 21 / 29

https://doi.org/10.1371/journal.pcbi.1006105


hypothesis (H0) in which the case- and control-labels are actually arranged randomly and

have no disease-related structure. Under this null-hypothesis the traces we observe after run-

ning our algorithm on the original data should be similar to the traces we would find if we

were to shuffle the case-control labels randomly (across patients). To draw a sample from this

null-hypothesis H0, we shuffle the case-control labels of the patients indiscriminantly while

retaining the same number of cases and controls. If we were to correct for covariates, then we

would restrict our null-hypothesis slightly (H0x) so that the random-shuffles respect the covar-

iates. For example, if we were correcting for gender as a categorical-covariate, we would shuffle

the labels of case-males only with control-males, and shuffle the labels of case-females only

with control-females.

For each label-shuffled trial we rerun our algorithm, and collect the output. Each trial does

not depend on any of the other trials, and they can all be processed in parallel. This library of

label-shuffled traces produces a distribution associated with H0 (or H0x). We use this label-

shuffled distribution to calculate a p-value for the traces produced by the original data. An

illustration along these lines is shown in Figs 10 and 11, which corresponds to our Example-A

for gene-expression-analysis.

A full description of this procedure, as well as an analogous procedure used to find a p-

value for Example-B, can be found in section A14 of S2 Text. This section also describes how

we delineate each bicluster, and how we search for multiple biclusters.

Discussion

This paper has focused so far on the detection of low-rank biclusters within a larger data-matrix.

Our loop-counting method does a reasonable job of locating these low-rank biclusters (see sec-

tions A5 and A6 of S1 Text for analytical bounds), and can be adapted to deal with many com-

mon features of experimental design (see sections A8, A9, A10 and A11 of S1 and S2 Text).

Our methods can also be easily extended to tackle many related problems. For example, we

can treat ‘genetic controls’, look for ‘rank-0’ biclusters (i.e., differentially-expressed biclusters),

and even look for ‘triclusters’. The first two of these topics are explained in more detail in sec-

tions A15:1 and A15:2 of S2 Text, and we briefly discuss the third here.

Fig 10. Row-traces for the bicluster shown in Example-A. This bicluster was found by running our algorithm on the

data shown in Fig 4. Because we corrected for controls, we compare our original-data to the distribution we obtain

under the null-hypothesis H0 (see Methods). On the left we show the row-trace as a function of iteration for the

original-data (red) as well as each of the 256 random shuffles (blue). On the right we replot this same trace data,

showing the 5th, 50th and 95th percentile (across iterations) of the H0 distribution. Because we are not correcting for

any covariates, the column-traces are identical to the row-traces.

https://doi.org/10.1371/journal.pcbi.1006105.g010

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 22 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g010
https://doi.org/10.1371/journal.pcbi.1006105


There are often situations where the data-paradigm we’ve assumed—involving N measure-

ments taken across M patients—doesn’t suffice. For example, in a clinical study there may

be M patients, each of which are subjected to P different kinds of treatments (e.g., therapy

regimes, medications, etc). For each of these P treatments, N different variables may be mea-

sured for each patient. Within this paradigm, the data isn’t best represented as a 2-dimensional

array (e.g., a matrix), but rather as a 3-dimensional array (i.e., a box or a cube) comprising

both rows and columns, as well as ‘layers’. In formal terms, we imagine our data arranged into

an array D of dimension M × N × P, where Dj,k,l corresponds to the kth measurement of the jth-

patient as they undergo therapy l.
Within this 3-dimensional array, it is often prudent to search for subsets of patients that

exhibit some kind of simple structure across a subset of measurements as well as a subset of

treatments. Such a ‘tricluster’ would correspond to a ‘sub-cube’ of the data, rather than simply

a submatrix. The techniques we have discussed in the main text can readily be extended to

search for these kinds of objects as well.

In the simplest case (i.e., ignoring controls, covariates and sparsity), we first binarize the

data-cube D, sending each entry to either +1 or −1, depending on its sign. Once we binarize D,

Fig 11. A scatterplot of the data shown in Fig 10. Each row-trace shown on the left in Fig 10 is plotted as a single

point in 2-dimensional space; the horizontal-axis corresponds to the maximum row-trace and the vertical-axis

corresponds to the average row-trace (taken across the iterations). The original-data is indicated with a ‘
’, and each of

the random shuffles with a colored ‘•’. The p-value for any point ~w in this plane is equal to the fraction of label-

shuffled-traces that have either an x-position larger than xw or a y-position larger than yw, where xw and yw are the x-

and y-percentiles associated with the most extreme coordinate of ~w (details given in section A14:2) of S2 Text. Each

random shuffle is colored by its p-value determined by the label-shuffled-distribution. By comparing the original-trace

with the shuffled-distribution we can read off a p-value for the original-data of≲ 0.008.

https://doi.org/10.1371/journal.pcbi.1006105.g011

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 23 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g011
https://doi.org/10.1371/journal.pcbi.1006105


we can calculate the following scores:

½ZROW�j ¼
gX

j fixed; j0 6¼ j;
k0 6¼ k ; l

DjklDj0klDj0k0 lDjk0 l þ
gX

j fixed; j0 6¼ j;
k ; l0 6¼ l

DjklDj0klDj0kl0Djkl0 ;

½ZCOL�k ¼
gX

k fixed; k0 6¼ k;
j0 6¼ j ; l

DjklDjk0 lDj0k0 lDj0kl þ
gX

k fixed; k0 6¼ k;
j ; l0 6¼ l

DjklDjk0 lDjk0 l0Djkl0 ;

½ZLYR�l ¼
gX

l fixed; l0 6¼ l;
j0 6¼ j ; k

DjklDjkl0Dj0kl0Dj0kl þ
gX

l fixed; l0 6¼ l;
j ; k0 6¼ k

DjklDjkl0Djk0 l0Djk0 l;

corresponding to the row-, column- and layer-scores, respectively. Once we’ve calculated these

scores, we can remove the rows, columns and layers with low scores, and repeat the entire pro-

cess. As before, this process will focus on the rows, columns and layers of any embedded ‘triclus-

ters’ B with high probability as long as they are sufficiently large and sufficiently low-rank.

The reason this process works is that—as before—the scores accumulate the ranks of the

various loops within D. However, unlike the simpler situation discussed in the main text, D is

a 3-dimensional array (and not merely a matrix). Consequently, there are 3 different kinds of

loops within D, each traversing a different pair of array-dimensions (see Fig 12). Any loop

Fig 12. Illustration of the loops within a 3-dimensional array. We sketch the structure of a 3-dimensional data-array

D, with J rows, K columns and P ‘layers’. Each entry Dj,k,l will lie in the cube shown. The loops within D can be divided

into 3-categories: (a) iso-layer loops that stretch across 2 rows and 2 columns, (b) iso-column loops that stretch across

2 rows and 2 layers, and (c) iso-row loops that stretch across 2 columns and 2 layers. The row-score [ZROW]j aggregates

all the iso-column and iso-layer loops associated with row-j. The column-score [ZCOL]k aggregates all the iso-row and

iso-layer loops associated with column-k. The layer-score [ZLYR]l aggregates all the iso-row and iso-column loops

associated with layer-l.

https://doi.org/10.1371/journal.pcbi.1006105.g012

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 24 / 29

https://doi.org/10.1371/journal.pcbi.1006105.g012
https://doi.org/10.1371/journal.pcbi.1006105


within D that does not lie entirely within B is just as likely to be rank-1 as it is to be rank-2. On

the other hand, loops within D that are entirely contained within B are more likely to be rank-

1 than rank-2. This probability is not 100%, but it is still significantly greater than 50%, with

the exact value dependent on the kind of structure exhibited within B. Moreover, this probabil-

ity is still significantly greater than 50% even in the presence of a moderate amount of noise

(e.g., if B were not exactly a sum of outer products).

Slightly more detail, along with numerical experiments, can be found in section A15:3 of

S2 Text. Techniques along these lines have been used to find triclusters in clinical data involv-

ing several patients, measurements and therapies. See [44] for some preliminary results.

Supporting information

S1 Data. Gene enrichment analysis of Example-1a in S1 Text. This spreadsheet contains the

full list of pathways produced by a gene-enrichment analysis of the bicluster shown in the first

example in the Supplementary-text (involving gene-expression data). To perform this gene-

enrichment analysis we used ‘Seek’. Each page of this spreadsheet lists the enrichment results

using one of the 11 different gene-ontology databases available within the ‘Seek’ software.

(XLSX)

S2 Data. Gene enrichment analysis of Example-A in main text (Example-1b in S1 Text).

This spreadsheet contains the full list of pathways produced by a gene-enrichment analysis of

the bicluster shown in Example-A in the Main text (involving gene-expression data). To per-

form this gene-enrichment analysis we used ‘Seek’. Each page of this spreadsheet lists the

enrichment results using one of the 11 different gene-ontology databases available within the

‘Seek’ software.

(XLSX)

S3 Data. Gene enrichment analysis of Example-2 in S1 Text. This spreadsheet contains the

full list of pathways produced by a gene-enrichment analysis of the bicluster shown in the

Example-2 in the Supplementary-text (involving gene-expression data). To perform this gene-

enrichment analysis we used ‘Seek’. Each page of this spreadsheet lists the enrichment results

using one of the 11 different gene-ontology databases available within the ‘Seek’ software.

(XLSX)

S4 Data. Gene enrichment analysis of Example-B in main text (Example-3 in S1 Text).

This spreadsheet contains the full list of pathways produced by a gene-enrichment analysis

of the bicluster shown in Example-B in the main text (involving GWAS-data). To perform

this gene-enrichment analysis we used ‘Seek’. Each page of this spreadsheet lists the enrich-

ment results using one of the 11 different gene-ontology databases available within the ‘Seek’

software.

(XLSX)

S1 Text. Supplementary Information Part 1. The first part of this 2-part document describes

in more detail the examples shown in the main text. This document also contains a more

detailed analysis of our method.

(PDF)

S2 Text. Supplementary Information Part 2. The second part of this 2-part document

describes in more detail the examples shown in the main text. This document also contains

proofs of certain inequalities, and a comparison with a simple spectral method.

(PDF)

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 25 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s006
https://doi.org/10.1371/journal.pcbi.1006105


S1 Source Code. Matlab source code. This archive contains Matlab source code for our loop-

counting methods, along with a tutorial (also written in Matlab) which will guide users

through our our first example (involving gene-expression data).

(GZ)

S2 Source Code. C source code. This archive contains C source code for our loop-counting

methods, along with several drivers (written in Matlab) which allow users to replicate each of

our numerical experiments (shown in the main text and supplementary information).

(GZ)

Acknowledgments

The authors thank all patients and control subjects for their participation. We thank the Bipo-

lar Disorders Working Group of the Psychiatric Genomics Consortium (PGC-BIP) for provid-

ing access to the relevant data.

Bipolar Disorders Working Group of the Psychiatric Genomics Consortium (Bipolar

disorder): Devin Absher, Annelie Nordin Adolfsson, Rolf Adolfsson, Ingrid Agartz, Esben

Agerbo, Huda Akil, Diego Albani, Martin Alda, Judith Allardyce, Ney Alliey-Rodriguez,

Thomas D Als, Ole A Andreassen, Adebayo Anjorin, Swapnil Awasthi, Lena Backlund, Judith

A Badner, Jack D Barchas, Nicholas J Bass, Michael Bauer, Bernhard T Baune, Frank Bellivier,

Sarah E Bergen, Wade H Berrettini, Andrew Bethell, Joanna M Biernacka, Douglas H R Black-

wood, Cinnamon S Bloss, Michael Boehnke, Marco Boks, James Boocock, Gerome Breen,

Rene Breuer, Monika Budde, William E Bunney, Margit Burmeister, Jonas Bybjerg-Grauholm,

William Byerley, Marie Baekvad-Hansen, Anders D Borglum, Sian Caesar, Miquel Casas,

Pablo Cervantes, Kim Chambert, Alexander W Charney, Sven Cichon, David St. Clair, Toni-

Kim Clarke, Jonathan R I Coleman, David A Collier, Aiden Corvin, William Coryell, Nicholas

Craddock, David W Craig, Cristiana Cruceanu, David Curtis, Piotr M Czerski, Anders M

Dale, Udo Dannlowski, J Raymond DePaulo, Franziska Degenhardt, Jurgen Del-Favero,

Srdjan Djurovic, Amanda L Dobbyn, Howard J Edenberg, Amanda Elkin, Torbjorn Elvsasha-

gen, Valentina Escott-Price, Tonu Esko, Bruno Etain, Chun Chieh Fan, Anne Farmer, Manuel

Ferreira, Nicol Ferrier, Sascha B Fischer, Matthew Flickinger, Arianna Di Florio, Tatiana M

Foroud, Andreas J Forstner, Liz Forty, Josef Frank, Christine Fraser, Nelson B Freimer, Louise

Frisen, Mark A Frye, Janice M Fullerton, Katrin Gade, Julie Garnham, Helena A Gaspar, Elliot

S Gershon, Claudia Giambartolomei, Michael Gill, Fernando Goes, Scott D Gordon, Katherine

Gordon-Smith, Elaine K Green, Melissa J Green, Tiffany A Greenwood, Maria Grigoroiu-Ser-

banescu, Jakob Grove, Detelina Grozeva, Weihua Guan, Hugh Gurling, Jose Guzman-Parra,

Marian L Hamshere, Christine Soholm Hansen, Joanna Hauser, Martin Hautzinger, Urs Heil-

bronner, Stefan Herms, Maria Hipolito, Per Hoffmann, Peter A Holmans, David M Hougaard,

Laura Huckins, Christina M Hultman, Stephane Jamain, Ian R Jones, Lisa A Jones, Simone de-

Jong, Anders Jureus, Rene S Kahn, Radhika Kandaswamy, Robert Karlsson, John R Kelsoe,

James L Kennedy, George Kirov, Sarah Kittel-Schneider, Sarah V Knott, James A Knowles,

Manolis Kogevinas, Anna C Koller, Daniel L Koller, Ralph Kupka, Mikael Landen, Mark

Lathrop, Jacob Lawrence, William B Lawson, Markus Leber, Marion Leboyer, Phil H Lee,

Christiaan A de Leeuw, Shawn E Levy, Cathryn M Lewis, Jun Z Li, Qingqin S Li, Paul Lichten-

stein, Jolanta Lissowska, Chunyu Liu, Falk W Lohoff, Loes M Olde Loohuis, Susanne Lucae,

Anna Maaser, Donald J MacIntyre, Pamela B Mahon, Wolfgang Maier, Ulrik F Malt, Nicholas

G Martin, Manuel Mattheisen, Keith Matthews, Morten Mattingsdal, Fermin Mayoral-Cleries,

Steve McCarroll, Susan L McElroy, Kevin McGhee, Peter McGuffin, Melvin G McInnis,

Andrew M McIntosh, James D McKay, Alan W McLean, Francis J McMahon, Andrew

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 26 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006105.s008
https://doi.org/10.1371/journal.pcbi.1006105


McQuillin, Helena Medeiros, Sarah E Medland, Ingrid Melle, Fan Guo Meng, Andres Met-

spalu, Lili Milani, Vihra Milanova, Philip B Mitchell, Grant W Montgomery, Jennifer Moran,

Gunnar Morken, Derek W Morris, Ole Mors, Preben Bo Mortensen, Valentina Moskvina,

Walter J Muir, Niamh Mullins, Richard M Myers, Thomas W Muhleisen, Bertram Muller-

Myhsok, Benjamin M Neale, Hoang Nguyen, Caroline M Nievergelt, Ivan Nikolov, Vishwajit

Nimgaonkar, Merete Nordentoft, John I Nurnberger, Evaristus A Nwulia, Markus M Nothen,

Claire O’Donovan, Michael C O’Donovan, Colm O’Dushlaine, Ketil J Oedegaard, Roel A Oph-

off, Anil P S Ori, Lilijana Oruc, Urban Osby, Michael J Owen, Sara A Paciga, Jose Guzman

Parra, Carlos Pato, Michele T Pato, Jennifer M Whitehead Pavlides, Carsten Bocker Pedersen,

Marianne Giortz Pedersen, Roy H Perlis, Amy Perry, Tune H Pers, Andrea Pfennig, Benjamin

S Pickard, Danielle Posthuma, James B Potash, Peter Propping, Shaun M Purcell, Emma

Quinn, Josep Antoni Ramos-Quiroga, Soumya Raychaudhuri, Eline J Regeer, Andreas Reif,

Celine S Reinbold, Marta Ribases, John P Rice, Marcella Rietschel, Stephan Ripke, Fabio Rivas,

Margarita Rivera, Guy A Rouleau, Panos Roussos, Douglas M Ruderfer, Douglas Ruderfer,

Martin Schalling, Alan F Schatzberg, William A Scheftner, Peter R Schofield, Nicholas J

Schork, Thomas G Schulze, Johannes Schumacher, Markus Schwarz, Ed Scolnick, Laura J

Scott, Alessandro Serretti, Tatyana Shehktman, Paul D Shilling, Engilbert Sigurdsson, Pamela

Sklar, Claire Slaney, Olav B Smeland, Erin N Smith, Jordan W Smoller, Janet L Sobell, Anne T

Spijker, Eli A Stahl, Hreinn Stefansson, Kari Stefansson, Michael Steffens, Stacy Steinberg, Eys-

tein Stordal, John S Strauss, Fabian Streit, Jana Strohmaier, Patrick F Sullivan, Szabolcs Szelin-

ger, Cristina Sanchez-Mora, Robert C Thompson, Thorgeir E Thorgeirsson, Jens Treutlein,

Vassily Trubetskoy, Maciej Trzaskowski, Gustavo Turecki, Arne E Vaaler, Helmut Vedder,

Eduard Vieta, John B Vincent, Weiqing Wang, Yunpeng Wang, Stanley J Watson, Cynthia

Shannon Weickert, Thomas W Weickert, Thomas Werge, Thomas F Wienker, Richard Wil-

liamson, Ashley Winslow, Stephanie H Witt, Naomi R Wray, Adam Wright, Hualin Xi, Simon

Xi, Wei Xu, Allan H Young, Peter P Zandi, Peng Zhang, Sebastian Zollner.

Author Contributions

Conceptualization: Aaditya V. Rangan, Caroline C. McGrouther, John Kelsoe, Nicholas

Schork, Eli Stahl, Qian Zhu, Arjun Krishnan, Vicky Yao, Olga Troyanskaya, Seda Bilaloglu,

Preeti Raghavan.

Data curation: Sarah Bergen, Anders Jureus, Mikael Landen.

References
1. Dhillon IS. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceed-

ings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

2001;p. 269–274.

2. Van Mechelen I, Bock HH, De Boeck P. Two-mode clustering methods: A structured overview. Statisti-

cal Methods in Medical Research. 2004; 13:363–394. https://doi.org/10.1191/0962280204sm373ra

PMID: 15516031

3. Patrikainen A, Meila M. Comparing subspace clusterings. IEEE Transactions on Knowledge and Data

Engineering. 2006; 18:902–916. https://doi.org/10.1109/TKDE.2006.106

4. Yoon S, Benini L, De Micheli G. Co-clustering: a versatile tool for data analysis in biomedical informat-

ics. IEEE transactions on information technology in biomedicine: a publication of the IEEE Engineering

in Medicine and Biology Society. 2007; 11:493–494. https://doi.org/10.1109/TITB.2007.897575

5. Kriegel HP, Kroger P, Zimek A. Clustering high-dimensional data: A survey on subspace clustering, pat-

tern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data. 2009; 3:1–58. https://

doi.org/10.1145/1497577.1497578

6. Peeters R. The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics. 2003;

131:651–654. https://doi.org/10.1016/S0166-218X(03)00333-0

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 27 / 29

https://doi.org/10.1191/0962280204sm373ra
http://www.ncbi.nlm.nih.gov/pubmed/15516031
https://doi.org/10.1109/TKDE.2006.106
https://doi.org/10.1109/TITB.2007.897575
https://doi.org/10.1145/1497577.1497578
https://doi.org/10.1145/1497577.1497578
https://doi.org/10.1016/S0166-218X(03)00333-0
https://doi.org/10.1371/journal.pcbi.1006105


7. Hartigan JA. Direct clustering of a data matrix. Journal of the American Statistical Association. 1972;

67:123–129. https://doi.org/10.1080/01621459.1972.10481214

8. Neng Fan NB, Boyko N, Pardalos PM. Recent advances of data biclustering with application in compu-

tational neuroscience. Springer Optimization and its Applications. 2009; 38:105–132.

9. Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM

Transactions on Computational Biology and Bioinformatics. 2004; 1:24–45. https://doi.org/10.1109/

TCBB.2004.2 PMID: 17048406

10. Tanay A, Sharan R, Shamir R. Handbook of computational molecular biology. Computer and Informa-

tion Science Series 9. Biclustering algorithms: A survey. Chapman and Hall/CRC. 2005;.

11. Busygin S, Prokopyev O, Pardalos PM. Biclustering in data mining. Computers and Operations

Research. 2008; 35:2964–2987. Part Special Issue: Bio-inspired Methods in Combinatorial Optimiza-

tion. https://doi.org/10.1016/j.cor.2007.01.005

12. Eren K, Deveci M, Kucuktunk O, Catalyurek UV. A comparative analysis of biclustering algorithms for

gene expression data. Briefings in Bioinformatics. 2012; 32.

13. Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data.

Bioinformatics. 2002; 18:1–44. https://doi.org/10.1093/bioinformatics/18.suppl_1.S136

14. Bergmann S, Ihmels J, Barkai N. Iterative signature algorithm for the analysis of large-scale gene

expression data. Physical Review E. 2003; 67:031902. https://doi.org/10.1103/PhysRevE.67.031902

15. Lonardi S, Szpankowski W, Yang Q. Finding Biclusters by Random Projections. Annual Symposium on

Combinatorial Pattern Matching. 2004;p. 102–116.

16. Turner H, Bailey T, Krzanowski W. Improved biclustering of microarray data demonstrated through sys-

tematic performance tests. Computational Statistics & Data Analysis. 2005; 48:235–254. https://doi.

org/10.1016/j.csda.2004.02.003

17. de Castro P, de Franga F, Ferreira H, Von Zuben F. Evaluating the performance of a biclustering algo-

rithm applied to collaborative filtering: A comparative analysis. In: Proceedings of the 7th International

Conference on Hybrid Intelligent Systems. 2007;p. 65–70.

18. Shabalin AA, Weigman VJ, Perou CM, Nobel AB. Finding large average submatrices in high dimen-

sional data. The Annals of Applied Statistics. 2009; 3:985–1012. https://doi.org/10.1214/09-AOAS239

19. Farinelli A, Denitto M, Bicego M. Biclustering of expression microarray data using affinity propagation.

PRIB LNBI. 2011; 7036:13–24.

20. O’Connor L, Feizi S. Biclustering using message passing. Advances in Neural Information Processing

Systems. 2014; 27.

21. Chi EE, Allen GI, Baraniuk RG. Convex Biclustering. arXiv. 2016;1408.0856v4. [stat.ME].

22. Alon N, Krivelevich M, Sudakov B. Finding a large hidden clique in a random graph. Proceeding

SODA’98 Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms. 1998;

p. 594–598.

23. Santamaria R, Quintales L, Theron R. Methods to bicluster validation and comparison in microarray

data. In: Yin H, Tino P, Corchado E, Byrne W, Yao X, editors, Intelligent Data Engineering and Auto-

mated Learning. 2007;4881:780–789. Springer Berlin Heidelberg, number 4881 in Lecture Notes in

Computer Science.

24. Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse princi-

pal components and canonical correlation analysis. Biostatistics. 2009; 10:515–534. https://doi.org/10.

1093/biostatistics/kxp008 PMID: 19377034

25. Lee M, Shen H, Huang JZ, Marron JS. Biclustering via Sparse Singular Value Decomposition. Bio-

metrics. 2010; 66:1087–1095. https://doi.org/10.1111/j.1541-0420.2010.01392.x PMID: 20163403

26. Sill M, Kaiser S, Benner A, Kopp-Schneider A. Robust biclustering by sparse singular value decomposi-

tion incorporating stability selection. Bioinformatics. 2011; 27:2089–2097. https://doi.org/10.1093/

bioinformatics/btr322 PMID: 21636597

27. Lazzeroni L, Owen A. Plaid models for gene expression data. Statistica Sinica. 2002; 12:61–86.

MR1894189.

28. Sun X, Nobel AB. On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian ran-

dom matrix. Bernoulli. 2013; 19:275–294. https://doi.org/10.3150/11-BEJ394 PMID: 24194673

29. Bhamidi S, Dey PS, Nobel AB. Energy landscape for large average submatrix detection problems in

gaussian random matrices. arXiv. 2013;1211.2284v2. [math.PR].

30. Gao C, McDowell IC, Zhao S, Brown CD, Engelhardt BE. Context Specific and Differential Gene Co-

expression Networks via Bayesian Biclustering. PLOS Computational Biology. 2016;http://dx.doi.org/

10.1371/journal.pcbi.1004791.

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 28 / 29

https://doi.org/10.1080/01621459.1972.10481214
https://doi.org/10.1109/TCBB.2004.2
https://doi.org/10.1109/TCBB.2004.2
http://www.ncbi.nlm.nih.gov/pubmed/17048406
https://doi.org/10.1016/j.cor.2007.01.005
https://doi.org/10.1093/bioinformatics/18.suppl_1.S136
https://doi.org/10.1103/PhysRevE.67.031902
https://doi.org/10.1016/j.csda.2004.02.003
https://doi.org/10.1016/j.csda.2004.02.003
https://doi.org/10.1214/09-AOAS239
https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.1093/biostatistics/kxp008
http://www.ncbi.nlm.nih.gov/pubmed/19377034
https://doi.org/10.1111/j.1541-0420.2010.01392.x
http://www.ncbi.nlm.nih.gov/pubmed/20163403
https://doi.org/10.1093/bioinformatics/btr322
https://doi.org/10.1093/bioinformatics/btr322
http://www.ncbi.nlm.nih.gov/pubmed/21636597
https://doi.org/10.3150/11-BEJ394
http://www.ncbi.nlm.nih.gov/pubmed/24194673
http://dx.doi.org/10.1371/journal.pcbi.1004791
http://dx.doi.org/10.1371/journal.pcbi.1004791
https://doi.org/10.1371/journal.pcbi.1006105


31. Baik J, Ben-Arous G, Peche S. Phase transition of the largest eigenvalue for nonnull complex sample

covariance matrices. The Annals of Probability. 2005; 33:1643–1697. https://doi.org/10.1214/

009117905000000233

32. Paul D. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statis-

tica Sinica. 2007; 17:1617–1642.

33. Frey BJ, Dueck D. Mixture modeling by affinity propagation. In Proceedings of the 18th International

Conference on Neural Information Processing Systems. 2005;(NIPS’05):379–386.

34. Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007; 315:972–976.

https://doi.org/10.1126/science.1136800 PMID: 17218491

35. Ames BP, Vavasis S. Nuclear norm minimization for the planted clique and biclique problems. arXiv.

2009;0901.3348.

36. de Smet R, Marchal K. An ensemble biclustering approach for querying gene expression compendia

with experimental lists. Bioinformatics. 2011; 27:1948–1956. https://doi.org/10.1093/bioinformatics/

btr307 PMID: 21593133

37. Tian C, Gregersen PK, Seldin MF. Accounting for ancestry: population substructure and genome-wide

association studies. Hum Mol Genet. 2008; 17:142–150. https://doi.org/10.1093/hmg/ddn268

38. Lee AB, Luca D, Roeder K. A spectral graph approach to discovering genetic ancestry. Ann Appl Stat.

2010; 4:179–202. https://doi.org/10.1214/09-AOAS281 PMID: 20689656

39. Rangan AV. A simple filter for detecting low-rank submatrices. Journal of Computational Physics. 2012;

231:2682–2690. https://doi.org/10.1016/j.jcp.2011.12.032

40. Kluger Y, Basri R, Chang JT, Gerstein M. Spectral Biclustering of Microarray Data: Coclustering Genes

and Conditions. Genome Research. 2003; 13:703–716. https://doi.org/10.1101/gr.648603 PMID:

12671006

41. Deshpande Y, Montanari A. Finding hidden cliques of size
ffiffiffiffiffiffiffiffiffi
N=e

p
in nearly linear time. arXiv.

2013;1304.7047v1.

42. Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, et al. Targeted exploration and analysis of

large cross-platform human transcriptomic compendia. Nature Methods. 2015; 12:211–214. https://doi.

org/10.1038/nmeth.3249 PMID: 25581801

43. Consortium PG. Abstracts of the XXIIIrd World Congress of Psychiatric Genetics (WCPG): Final sym-

posia and plenary abstracts. European Neuropsychopharmacology. 2015;.

44. Raghavan P, Lu Y, Bayona C, Bilaloglu S, Yousefi A, Tang A, et al. Determination of treatment algo-

rithms for patient subgroups for post stroke hand function rehabilitation. Society for Neuroscience

Poster Presentation. 2016;Poster number 436.07/UU4.

A loop-counting method for biclustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006105 May 14, 2018 29 / 29

https://doi.org/10.1214/009117905000000233
https://doi.org/10.1214/009117905000000233
https://doi.org/10.1126/science.1136800
http://www.ncbi.nlm.nih.gov/pubmed/17218491
https://doi.org/10.1093/bioinformatics/btr307
https://doi.org/10.1093/bioinformatics/btr307
http://www.ncbi.nlm.nih.gov/pubmed/21593133
https://doi.org/10.1093/hmg/ddn268
https://doi.org/10.1214/09-AOAS281
http://www.ncbi.nlm.nih.gov/pubmed/20689656
https://doi.org/10.1016/j.jcp.2011.12.032
https://doi.org/10.1101/gr.648603
http://www.ncbi.nlm.nih.gov/pubmed/12671006
https://doi.org/10.1038/nmeth.3249
https://doi.org/10.1038/nmeth.3249
http://www.ncbi.nlm.nih.gov/pubmed/25581801
https://doi.org/10.1371/journal.pcbi.1006105

