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Abstract: Ultrasound-based shear wave elastography (SWE) provides the means to quantify tissue
mechanical properties in vivo and has proven valuable in detecting degenerative processes in tendons.
Its current mode of use is for two-dimensional rendering measurements, which are highly position-
dependent. We therefore propose an approach to create a volumetric reconstruction of the mechano-
acoustic properties of a structure of interest based on optically tracking the ultrasound probe during
free-hand measurement sweeps. In the current work, we aimed (1) to assess the technical feasibility
of the three-dimensional mapping of unidirectional shear wave velocity (SWV), (2) to evaluate the
possible artefacts associated with hand-held image acquisition, (3) to investigate the reproducibility of
the proposed technique, and (4) to study the potential of this method in detecting local adaptations in a
longitudinal study setting. Operative and technical feasibility as well as potential artefacts associated
with hand-held image acquisition were studied on a synthetic phantom containing discrete targets of
known mechanical properties. Measurement reproducibility was assessed based on inter-day and
inter-reader scans of the patellar, Achilles, and supraspinatus tendon of ten healthy volunteers and
was compared to traditional two-dimensional image acquisition. The potential of this method in
detecting local adaptations was studied by testing the effect of short-term voluntary isometric loading
history on SWV along the tendon long axis. The suggested approach was technically feasible and
reproducible, with a moderate to very good reliability and a standard error of measurement in the
range of 0.300–0.591 m/s for the three assessed tendons at the two test-retest modalities. We found
a consistent variation in SWV along the longitudinal axis of each tendon, and isometric loading
resulted in regional increases in SWV in the patellar and Achilles tendons. The proposed method
outperforms traditional two-dimensional measurement with regards to reproducibility and may
prove valuable in the objective assessment of pathological tendon changes.

Keywords: imaging; biomechanics; ultrasound; shear wave elastography; stereophotogrammetry;
tendon; tendinopathy; validation study; reproducibility of results

1. Introduction

Tendon-related complaints, such as tendinopathy, are common in athletes, workers,
and the general population [1], with the patellar, Achilles, and supraspinatus tendons being
among the most frequently affected [2]. The typical diagnostic procedure of tendinopathies
includes the reporting of symptoms during daily activities, the manual palpation of the ten-
don and its insertions (pressure-induced pain), as well as radiological signs through imaging.
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Additionally, quantitative assessments of the elastic properties of tendon structures have
proven valuable in identifying pathologic and traumatic conditions [3]. Degenerative pro-
cesses of such conditions include an increase in collagen type III fibers, fibrocartilaginous
changes caused by an upregulated production of glycosaminoglycans (GAGs), tenocyte
rounding and proliferation, and neovascularization [4–7]. Collagen type III fibers exhibit a
reduced ability to form cross-links compared to collagen type I fibers, and their accumula-
tion results in reduced fiber orientation [5]. Moreover, GAGs contain highly hydrophilic
side chains and increase the water content in the tendon [8,9]. As a consequence of these
adaptations, the stiffness of pathological tendons is reduced [10–12], favoring traumatic
tendon injuries such as ruptures [13,14].

Ultrasound (US) shear wave elastography (SWE) allows a quantitative assessment
of local tissue elasticity. Briefly, a focused acoustic radiation force impulse displacing the
tissue is produced. This tissue displacement propagates perpendicularly to the direction
of the impulse as a shear wave, which can be observed with a high frame rate (3–18 kHz)
brightness-mode (B-mode) US and appropriate tracking algorithms [15]. The instantaneous
group velocity of such shear waves is related to the tissues’ elastic properties and can be
mapped on a regular grid superimposed onto the B-mode US image [16]. Quantitative
measurements of the elastic properties of structures of the musculoskeletal system have
proven valuable in identifying various pathologic and traumatic conditions [3]. In par-
ticular, SWE has the potential to depict tendon damage and degeneration and predict
impending structural failure [17].

Commonly, when investigating specific tissue properties using US SWE, the scans are
performed in a two-dimensional (2D) fashion with a limited field of view (FOV), severely
complicating the assessment of larger structures and rendering the retrieved results highly
position-dependent. Specifically in the case of tendon imaging, pathological alterations
in structural composition and architecture are oftentimes spatially confined and their
assessment over time consequently requires accurate spatial referencing.

One potential solution to overcome these limitations might be found in the following
approach: when the US transducer’s position and orientation (i.e., its pose) over a series of
measurement frames is known, 2D measurements can be projected into three-dimensional
(3D) space, allowing the volumetric reconstruction of shear wave velocity (SWV) and the
underlying B-mode images. To this end, we propose a free-hand 3D ultrasound approach
based on optical probe tracking on a SWE-capable US device in order to obtain a 3D map-
ping of unidirectional shear wave velocity of human tendons in vivo, hereafter called 3D
SWVM. Such an approach enables the investigation of larger structures, only limited by
the maximum measurement depth of the device (approximately 5 cm [18]), and analyses of
substructures can be performed offline. As for any new measurement technique, criteria of
sufficient validity and reproducibility must be met in order to provide a clinically viable
assessment tool. Moreover, particularly in the context of intra-subject effects in a longitudi-
nal setting, the ideal technique should enable the investigation of tendon adaptation with
sufficient spatial resolution.

Therefore, the aims of the study were: (1) to assess the technical feasibility and validity
of 3D SWVM by scanning an elastography tissue phantom and validating the acquired data
with the reference values of the substructures in the phantom provided by the manufacturer;
(2) to evaluate potential artefacts caused by out-of-plane transducer motion during image
acquisition at varying transducer speeds; (3) to investigate the inter-operator- and inter-day
reproducibility of 3D SWVM in patellar-, supraspinatus-, and Achilles tendons compared
to traditional 2D SWVM; and (4) to assess the effect of isometric loading on local tendon
SWV in healthy adult subjects.

2. Materials and Methods
2.1. Free-Hand 3D Shear Wave Velocity Mapping

Measurements of shear wave group velocity were acquired as provided by the ultra-
sound device (Aixplorer Ultimate, SuperSonic Imagine, Aix-en-Provence, France) using a
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linear 5 cm transducer (SuperLinear SL18-5, SuperSonic Imagine, Aix-en-Provence, France).
In order to project 2D US frames into 3D space, the transducer was equipped with a custom-
built marker set and image positions and orientations were recorded synchronous to image
acquisition with an optical tracking system (FusionTrack 500, Atracsys LLC, 7 Hz sampling
frequency, tracking accuracy 0.09 mm (RMS)). The volumetric sampling of the volume of
interest was achieved by manually moving the US transducer orthogonal to the imaging
plane in a continuous motion (<5 mm/s). Where the volume of interest was larger than the
lateral FOV, the transducer was repositioned during the scanning procedure with the image
acquisition halted. In vivo measurements consisted of 3 of these measurement sweeps,
whereas phantom measurements were acquired in one continuous motion. The volumetric
reconstruction of both B-mode and SWV data was performed using a voxel-based approach
averaging pixel intensities, where multiple pixels were sampled into the same voxel at an
isometric resolution of 0.5 mm [19,20]. For the reconstruction of SWV volumes, pixel values
of zero were discarded before reconstruction because these do not constitute valid SWV
estimates [3]. Depending on the transducer path during scanning, multiple frames map
into the same voxel. The overall SWV (v) of a structure was therefore estimated by using
a weighted mean of all voxels contained within the segmentation, weighting (ωi) each
voxel’s (Vi) average SWV (v(Vi)) with the inverse of its respective standard error:

v =
∑n

i=1ωi × v(Vi)

∑n
i=1ωi

, with ωi =

√
n(Vi)

σ(Vi)
(1)

To prevent the occurrence of singularities, the minimum of σ(Vi) was set to be 0.5 m/s.
B-mode images were acquired with a sampling frequency of 7 Hz. SWE images can be
acquired at a maximum frequency of 2 Hz. One dataset typically consisted of a total
of 1000 B-mode and 200 SWE US images. Images were recorded and processed using
MATLAB (2019b, The MathWorks, Inc., Natick, MA, USA). Volumetric segmentation was
performed manually by using the underlying 3D B-mode reconstruction [21].

2.2. Phantom Experiments

Technical feasibility and validity of free-hand 3D SWVM was assessed using an
elastography tissue phantom (Elasticity QA Phantom, model 049, CIRS Inc., Virginia, WV,
USA) containing four different types of acoustic inclusions of uniform known stiffness.
3D SWVM was performed by scanning each inclusion separately with the transducer
oriented perpendicular to the long axis of the inclusion. A total of 200 SWS frames were
obtained per measurement, and each measurement was repeated three times. 2D SWVM
was performed by positioning the transducer statically over the largest cylinder of the
inclusion with analogous transducer orientation. The 2D measurement was repeated five
times and each measurement was segmented manually.

To determine the effect of out-of-plane transducer motion on shear wave velocity
estimates, the US transducer was connected to the crosshead of a materials testing machine
(ZWICK Roell Z010, Ulm, Germany) in order to be able to accurately manipulate the
speed at which the phantom was scanned. 3D SWVM was performed of the largest
cylinder of each inclusion applying a constant transducer speed of motion and repeating
the measurement at varying transducer speeds ranging from 0 to 33 mm/s, with the latter
comprising the maximum applicable crosshead speed of the machine. Each measurement
consisted of 125 SWV frames. The mean SWV of the inclusion was calculated as described
in Equation (1). Young’s modulus (E) values of the inclusions provided by the manufacturer
were converted into shear wave velocity (v, ms−1), with an assumed density (ρ) of 1040,
1040, 1050, and 1060 kgm−3 for the inclusion of type I to IV [22], respectively, based on the
following equation [23]:

v =

√
E
3ρ

(2)
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2.3. In Vivo Reproducibility Experiments

Ten healthy subjects (mean (SD) age: 28.1 (3.0), female: 4) without history of upper
or lower limb musculoskeletal pathology were included and the right patellar, Achilles,
and supraspinatus tendon were imaged. All the subjects reported to be physically ac-
tive (at least one intense or more than 30 min of moderate physical activity per week).
The in vivo study was approved by the local ethics committee (KEK-ZH-NR: 2017-01395).
All the participants were informed in writing about the measurement procedures and
provided written consent.

All the tendon measurements were conducted with the US transducer oriented parallel
to the fiber axis of the tendon, which can be accomplished by observing and maximizing
the fibrillar appearance of the intratendinous structure in relation to transducer rotation
(about its long axis). Minimal transducer pressure was applied, and proper acoustic trans-
mission was ensured with the application of a generous amount of US gel. The subjects
were positioned at least 5 min prior to the assessment to prevent any immediate loading his-
tory from affecting the measurements and were instructed to remain as relaxed as possible,
during this preconditioning phase as well as during the scanning procedure. Each structure
was imaged by both operators on day one in a randomized order. Approximately 24 h later,
each structure was imaged twice by operator one, once to assess inter-day reproducibility
and a second time immediately following a 15 s maximum voluntary isometric tendon
loading exposure. Post-loading measurements were conducted with the subjects in the
same position as during pre-loading measurements. The experiment was powered to yield
an intra-class correlation (ICC) precision of ±0.15 to detect a pre-post loading effect of
Cohen’s d = 1 [24].

2.3.1. In Vivo 3D SWVM

Figure 1 provides an illustration of the subject positioning during US examination
and isometric tendon loading.
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Figure 1. Top row: Subject position during ultrasound examination of the patellar, Achilles, and 
supraspinatus tendon, respectively. Bottom row: experimental setup used to induce tendon load-
ing stimulus for either of the three tendons assessed. 

2.3.2. In Vivo 2D SWVM 
During the in vivo assessments, six 2D SWVM measurements were acquired by po-

sitioning the transducer statically over the central portion of the tendon, oriented parallel 
to its long axis. The region of interest (ROI) was defined as a full-thickness portion of the 
tendon with a length of 2 cm and was segmented manually post-measurement. In the 
patellar tendon, the proximal border of the ROI was defined as the patellar tendon inser-
tion. The ROI for the Achilles and the supraspinatus tendon was placed just proximal to 
the tendon insertion (Figure 2). The mean shear wave velocity for one measurement se-
quence was then calculated by averaging all the pixel values of the six frames contained 
in the segmentation mask. 

Figure 1. Top row: Subject position during ultrasound examination of the patellar, Achilles,
and supraspinatus tendon, respectively. Bottom row: experimental setup used to induce tendon
loading stimulus for either of the three tendons assessed.

The patellar tendon was imaged with the subject in supine position and an adjustable
support underneath the knee with a knee flexion angle of approximately 20 degrees.
3D SWVM was performed on the entire tendon length. For 2D SWVM, the transducer
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was positioned over the thickest part of the tendon parallel to its long axis, ensuring the
region of interest (ROI) as described below is fully included. The tendon loading exposure
consisted of having the subject in a sitting position with the knees flexed 90 degrees,
the right ankle fixated by a brace, and instructing the subject to perform a 15 s maximum
voluntary isometric knee extension.

For the imaging of the Achilles tendon, the subject was lying prone on an examination
table with their foot hanging just over the edge, ensuring a relaxed ankle position. 3D SWVM
was performed on the distal portion of the tendon for a total length of approximately 10 cm.
For the tendon loading exposure, the subject was instructed to perform a one-legged
complete foot plantarflexion in a standing position, touching the wall for balance.

The imaging of the supraspinatus tendon was performed with the subject in supine
position with the right arm positioned under the lumbar back with the palm facing down.
Tendon loading consisted of brace-resisted arm abduction with the elbow joint in extension.

2.3.2. In Vivo 2D SWVM

During the in vivo assessments, six 2D SWVM measurements were acquired by posi-
tioning the transducer statically over the central portion of the tendon, oriented parallel
to its long axis. The region of interest (ROI) was defined as a full-thickness portion of the
tendon with a length of 2 cm and was segmented manually post-measurement. In the
patellar tendon, the proximal border of the ROI was defined as the patellar tendon insertion.
The ROI for the Achilles and the supraspinatus tendon was placed just proximal to the
tendon insertion (Figure 2). The mean shear wave velocity for one measurement sequence
was then calculated by averaging all the pixel values of the six frames contained in the
segmentation mask.
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Figure 2. Exemplary 2D shear wave elastography measurements of the 3 types of tendons studied after the manual seg-
mentation of the region of interest. 
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registration landmarks were defined: patellar tendon: the most proximal point of tibial 
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mal point of calcaneal insertion and proximal location with a distance of 10 cm from the 
distal tendon-calcaneus insertion; supraspinatus tendon: the most distal and most proxi-
mal point of humerus insertion (see the illustrations in the top row of Figure 6). These 
landmarks were manually annotated and used to orient the volumes and were kept at 
fixed longitudinal positions in order to obtain a positional frame of reference. Averaging 
along the longitudinal axis was performed using a Gaussian convolution kernel (σ = 5 
mm) and the voxel weighting scheme described in Equation (1). 

2.4. Statistical Analysis 
The validity of both measurement modalities was assessed by comparing the mean 

SWV of each phantom inclusion, averaged over the three test repetitions with the manu-
facturer-provided reference values. Measurement reproducibility was analyzed in the two 
domains of measurement agreement and measurement reliability. The prior was de-
scribed in terms of standard error of measurement (SEm), and the latter was described 
using intra-class correlation coefficients (ICC(2, 1)) [25] and associated 95% confidence 
intervals based on a two-way random effects model assessing the absolute agreement of 
a single-measure approach [26]. ICC values were classified as poor (≤0.2), fair (0.21–0.4), 

Figure 2. Exemplary 2D shear wave elastography measurements of the 3 types of tendons studied
after the manual segmentation of the region of interest.
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2.3.3. Tendon Response to Loading

SWV as a function of relative longitudinal position along the axis of the tendon before
and after the loading exposure was computed. In the three tendon types, the following
registration landmarks were defined: patellar tendon: the most proximal point of tibial
insertion and the most distal point of patellar insertion; Achilles tendon: the most proximal
point of calcaneal insertion and proximal location with a distance of 10 cm from the distal
tendon-calcaneus insertion; supraspinatus tendon: the most distal and most proximal point
of humerus insertion (see the illustrations in the top row of Figure 6). These landmarks
were manually annotated and used to orient the volumes and were kept at fixed longi-
tudinal positions in order to obtain a positional frame of reference. Averaging along the
longitudinal axis was performed using a Gaussian convolution kernel (σ = 5 mm) and the
voxel weighting scheme described in Equation (1).

2.4. Statistical Analysis

The validity of both measurement modalities was assessed by comparing the mean SWV
of each phantom inclusion, averaged over the three test repetitions with the manufacturer-
provided reference values. Measurement reproducibility was analyzed in the two domains
of measurement agreement and measurement reliability. The prior was described in terms
of standard error of measurement (SEm), and the latter was described using intra-class
correlation coefficients (ICC(2, 1)) [25] and associated 95% confidence intervals based on
a two-way random effects model assessing the absolute agreement of a single-measure
approach [26]. ICC values were classified as poor (≤0.2), fair (0.21–0.4), moderate (0.41–0.6),
good (0.61–0.8), and very good (>0.8) [27]. The effect of tendon loading on the overall
SWV was assessed with a paired-samples t-test. Analogously, paired-samples t-tests were
performed on each computed longitudinal position to test for regional loading effects.
Statistical analysis was conducted with MATLAB (2019, The MathWorks, Inc., Natick, MA,
USA) and SPSS (Version 26, IBM Corp., Armonk, NY, USA). Statistical significance was set
at α = 0.05.

3. Results
3.1. Elastography Phantom

Scanning the elastography phantom revealed 3D SWVM to be technically feasible.
Figure 3 presents a visualization of the reconstruction. Each voxel’s opacity was determined
based on its assigned shear wave velocity with varying thresholds for the different phantom
inclusion types. The shape of the phantom inclusions can readily be distinguished solely
based on the stiffness information available.
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Figure 3. Elastography phantom scan. (A) Schematic depiction of the procedure used to validate 3D shear wave velocity on
an elastography phantom including discrete targets of known stiffness. The phantom was scanned with the US transducer
oriented orthogonal to the contained cylinders and volumetric mapping was implemented using a motion capture system
and a reflective marker set attached to the transducer. (B) Heatmap visualization of the volumetric shear wave velocity
reconstruction of the four inclusions.
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The calculated mean shear wave velocities of the four phantom inclusions using 3D
SWVM and 2D SWVM were subsequently compared with the reference values provided
by the manufacturer. 3D SWVM underestimated the reference values by −13.4%, −18.4%,
−23.5%, and −24.0%, whereas 2D SWVM showed accuracies of −10.1%, −20.2%, −22.6%,
and −23.7% related to the four types of inclusions, respectively (Table 1).

Table 1. Mean (±SD) shear wave velocity of the four inclusion types in the elastography tissue
phantom. Calculated mean values in the reconstructed 3D volume (3D SWVM) and 2D images
(2D SWVM) with respective standard deviations in comparison to the reference values provided by
the manufacturer.

Inclusion 3D SWVM [m/s] 2D SWVM [m/s] Reference Values by
Manufacturer [m/s]

Type I 1.27 (±0.05) 1.32 (±0.22) 1.47
Type II 1.83 (±0.04) 1.79 (±0.02) 2.24
Type III 3.09 (±0.00) 3.13 (±0.03) 4.04
Type IV 4.12 (±0.07) 4.13 (±0.03) 5.42

In a separate experiment, the influence of transducer motion during measurement
was quantified. When compared to transducer-static recordings, transducer motion below
20 mm/s introduced a maximum measurement error of 0.15 m/s during the scanning of
inclusion type IV (Figure 4). Varying transducer motion up to 33 mm/s yielded a persistent
SWV overestimation compared to the velocity values acquired during static recording.
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motion below 20 mm/s. Error bar: ±SD.

3D SWVM yielded a high reproducibility for elastography phantom measurements
with an ICC = 0.999 (0.987; 1) and SEm = 0.043 m/s. Similarly, 2D SWVM yielded an
estimated ICC of 0.993 (0.970; 0.999) and a SEm of 0.10 m/s.

3.2. In Vivo Tendon Imaging

3D B-mode reconstruction allowed the manual segmentation and subsequent masking
of the 3D SWVMs of the acquired in vivo measurements (Figure 5).
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The reliability of the in vivo 3D SWVM of tendons ranged between moderate to very
good, whereas the measurement uncertainty was between 0.303 and 0.591 m/s (Table 2).
2D SWVM, on the other hand, displayed a poor to moderate reliability, with an SEm
between 0.516 and 1.068 m/s (Table 3).

Table 2. Estimates of intra-class correlation coefficients (ICC) and standard error of measurement
(SEm) for the assessment of the patellar, Achilles, and supraspinatus tendons using 3D shear wave
velocity mapping.

3D SWVM Inter-Operator Inter-Day

ICC (95% CI) SEm [m/s] ICC (95% CI) SEm [m/s]

Patellar tendon 0.736 (0.270; 0.926) 0.440 0.904 (0.680; 0.975) 0.303
Achilles tendon 0.436 (−0.195; 0.820) 0.553 0.591 (−0.015; 0.878) 0.505

Supraspinatus tendon 0.632 (0.079; 0.892) 0.591 0.556 (−0.037; 0.866) 0.501

Table 3. Estimates of intra-class correlation coefficients (ICC) and standard error of measurement
(SEm) for the assessment of the patellar, Achilles, and supraspinatus tendons using 2D shear wave
velocity mapping.

2D SWVM Inter-Operator Inter-Day

ICC (95% CI) SEm [m/s] ICC (95% CI) SEm [m/s]

Patellar tendon 0.495 (−0.122; 0.842) 0.892 0.545 (−0.053; 0.862) 0.901
Achilles tendon 0.455 (−0.172; 0.827) 1.043 0.591 (0.014; 0.878) 1.068

Supraspinatus tendon 0.350 (−0.291; 0.783) 0.761 0.323 (−0.318; 0.772) 0.516

3.3. Tendon Response to Loading

Maximum voluntary isometric tendon loading resulted in an overall mean (±SD)
increase in the SWV of 0.70 ± 1.16 (p = 0.090), 0.75 ± 0.81 (p = 0.017), and 0.04 ± 0.92 m/s
(p = 0.888) in the patellar, Achilles, and supraspinatus tendon, respectively. The analysis
of SWV along the longitudinal axis of the tendon revealed considerable regional varia-
tion. Likewise, the response to loading was highly position-dependent, with a significant
increase in the SWV for specific regions in the patellar and Achilles tendons (Figure 6).
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4. Discussion

In the current study, we found (1) 3D SWVM to be technically feasible with a high
reproducibility in elastography phantom measurements, and with similar bias as the tradi-
tional 2D SWVM approach when compared to the manufacturer-provided reference values.
(2) Out-of-plane transducer motion had a small nonlinear effect on the SWV estimates,
which may be considered negligible in most potential applications. (3) In vivo 3D SWVM
showed moderate to good reliability for the Achilles and supraspinatus tendons, whereas
for the patellar tendon it was shown to have a good to very good reliability. The reliability
of 2D assessments on the other hand ranged from poor to moderate. (4) There was consider-
able variation in SWV along the longitudinal axis of all tendons, with significant increases
in SWV after tendon loading in specific regions of the patellar and the Achilles tendons.

4.1. Three-Dimensional Mapping of Shear Wave Velocity in Human Tendon Is a Technically
Feasible and Valid Approach

Within the elastography tissue phantom experiment, the technical feasibility of gener-
ating a 3D map of SWV was clearly demonstrated. We further note that the assessment
time and operator proficiency required to robustly acquire images with sufficient technical
quality were compatible with the eventual clinical translation. The random error was
revealed to be sufficiently small. However, the validation of the absolute values against
the manufacturer-provided reference values yielded only limited agreement. The elastic
response of most materials is dependent on the strain as well as the rate at which it is
applied. Moreover, the depth of measurement [28] as well as the size of the assessed
inclusion [29] has been reported to influence results. Mulabecirovic et al. have reported
better agreement with manufacturer-provided reference values when using traditional 2D
SWVM [22]. A possible explanation for this discrepancy is that this study limited analysis
to the central region of the phantom inclusions, whereas in the current study the inclusion
was analyzed in its entire diameter.

4.2. Potential Artefacts Caused by Out-of-Plane Transducer Motion during Image Acquisition at
Varying Transducer Speeds

When using conventional SWE imaging, the transducer is usually held stationary
during the measurement process, which is not possible when scanning an entire tissue
volume. Out-of-plane transducer motion introduces various potential sources of additional
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measurement error, such as biased tissue strain estimation due to changes in the imaged
scatterer configuration during SW tracking. Current SWE devices rely on plane-wave
B-mode imaging at frame rates exceeding 5000 Hz, and tissue deformation is usually
estimated merely from one frame to the next [30]. Consequently, at a transducer speed of
motion of 33 mm/s the out-of-plane displacement of the FOV between two consecutive
measurements will lie below 0.01 mm. This miniscule displacement evidently does not pro-
hibit measurement but may conceivably reduce the signal-to-noise ratio in the strain field
maps. The current results indicate a nonlinear influence of out-of-plane transducer motion
on SWV estimates. When the transducer motion is kept below 20 mm/s however, the max-
imum measurement error of 0.15 m/s may be rated acceptable for most musculoskeletal
applications. The in-plane transducer motion had no effect on SWV measurements in a
previous study [31].

4.3. Inter-Operator and Inter-Day Reproducibility of 3D SWVM in Human Tendon

The reproducibility of a measurement can be described in two distinct domains often
denoted as agreement and reliability. Whereas the prior aims to determine the measurement
error inherent to the technique under investigation, the latter relates test–retest discrepan-
cies (intra-subject variability) to the overall spread of the acquired data and is consequently
a direct function of the heterogeneity of the studied subject cohort [26]. In view of the
fact that the current cohort was comprised of healthy, physically active subjects with a
narrow age range, the presented ICC values are a conservative estimate of the reliability
to be expected in a cohort more representative of the general population [32–34], and in
particular when including cases with symptomatic tendons [35].

The technique under study yielded highly reproducible measurements in the con-
trolled laboratory setting, with a marked decrease in reproducibility for in vivo measure-
ments, which can be attributed to multiple potential factors. The tendon is composed of
primarily aligned collagen, and therefore SWV is orientation-dependent [34,36]. Indeed,
Peltz et al. [37] reported a lower reliability of ICC = 0.85 in an in vitro tendon SWE study.
Tendon SWV is position-dependent [33,35,38], which may explain the lower reproducibility
in the case of 2D SWE. Furthermore, tendon elasticity undergoes natural fluctuations in
relation to loading history [39] and hydration state [40].

The measurement reproducibility of 2D SWVM for the assessment of either tendon
studied herein has been described previously with varying results. A number of those in-
vestigations studied a cohort with a high inherent heterogeneity either by reporting pooled
reliability for multiple age groups [34] or by combining healthy subjects and subjects with a
relevant pathology [41], rendering direct comparison difficult. Others based their analysis
on estimates of Young’s modulus rather than analyzing the underlying SWV [33,42–46].
We chose to analyze the latter, since the simple conversion formula shown in Equation (2)
relies on material isotropy and linear elasticity, assumptions clearly violated in the case
of tendons. Other conversion approaches are not straightforward and material model-
dependent [47]. A further factor limiting comparability with some studies [36,48,49] is
patient positioning and the imposed joint flexion angle during measurement. Among other
factors, tendon SWV is directly dependent on the tensile force during measurement [46,50].
For instance, Baumer et al. [48] reported an increase in the inter-day reliability of supraspina-
tus tendon measurements when the subject was actively lifting his arm (ICC = 0.94) com-
pared to the relaxed position (ICC = 0.48). In the context of assessing tendon integrity,
SWE aims to describe characteristics inherent to the material, rather than being a proxy for
tendon loading; since the weight of the arm will vary (reproducibly) among the subjects,
the prior protocol may yield critically biased results.

The available literature indicates the 2D SWVM of the patellar tendon to be region-
dependent, with ICC values in the range of 0.71–0.83 [35,51] and 0.40–0.84 [49,51] in an inter-
day and inter-operator setting, respectively. Achilles tendon assessments were reported
to yield an inter-day reliability of ICC: 0.54–0.71 [35,52], and an inter-operator reliability
of ICC = −0.01 with the foot in neutral position [36]. Regarding the reproducibility of
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supraspinatus tendon measurements, apart from the study performed by Baumer et al.
mentioned above, we did not find any additional literature allowing direct comparison
to the current study. Few of the mentioned reproducibility studies quantify measurement
agreement. Tas et al. [53] estimates the SEm for patellar tendon 2D SWVM to be 0.51–0.56
and 0.7 m/s, in an inter-day and inter-operator setting, respectively. Payne et al. [52]
reports a high inter-day agreement with SEm = 0.23 m/s for Achilles tendon assessments
with a relaxed foot position.

4.4. Local Tendon Shear Wave Velocity

We found consistent variation in SWV along the longitudinal axis of each tendon.
Such behavior was not present along the medio-lateral or the superficial-deep axis (data not
shown). The observed variation is likely a result of an interplay of various factors. Tendon
tissue changes towards both the muscular and the bony transition in structure and compo-
sition [54–56]. Moreover, guided shear wave propagation (leaky Lamb wave guided mode)
may cause the SWV to be dependent on the tendon diameter [47]. Irrespective of the nature
of the underlying factors, the observed position-dependency underlines the necessity of
accurate spatial referencing of SWE measurements both in intra- as well as in inter-subject
study settings.

4.5. Effect of Isometric Loading on Tendon Shear Wave Velocity in Healthy Adult Subjects

Tendons’ biochemical, biomechanical, and structural properties adapt in response to
loading or the absence thereof in the long term. Towards a deeper understanding of the
mechanisms governing chronic tendon adaptation, the study of acute effects of loading may
be pivotal [57]. In our experiment, all three tendon structures behaved consistently with an
increase in SWV in response to 15 s maximum voluntary isometric contraction, with statis-
tical significance only for the patellar and the Achilles tendon. Data from the literature on
the matter are sparse but support our findings in that variable modes of loading resulted
in an increase in Achilles tendon SWV [39,44,45]. Contrary to these findings, the global
tendon stiffness assessed by measuring force-controlled tendon elongation was reduced fol-
lowing isometric contractions [58] and static stretching [59] in the Achilles tendon, as well
as following eccentric knee extension exercises in the patellar tendon [60]. Structurally,
tendon loading has been reported to induce the uncrimping and re-alignment of wavy
collagen fibers and reduce fluid content [61,62]. These changes conceivably lead to reduced
hysteresis as a result of an increase in the capacity for elastic energy storage accompanied by
reduced viscosity [63]. According to theoretical modelling, however, longitudinal tendon
SWV is not affected by viscous behavior, which may explain this apparent discrepancy
of increased SWV at lower global tendon stiffness [47]. Following this line of thought,
a tendon’s response to loading in SWV may be indicative of its structural organization
and could potentially be used as a marker for the presence of functionally impaired tissue,
such as that found in partial tendon rupture and degeneration [4], and warrants further
investigation.

4.6. Methodological Considerations

There are limitations to this study that need to be considered. The current investigation
solely assessed reproducibility related to the imaging procedure. Inter-evaluator differences
during the manual segmentation of the acquired data would additionally have to be
considered before the large-scale implementation of the technique. As evident from the
large variation in SWV across the tendon long axis, depicting the entire measurement
consisting of millions of localized SWV estimates in one value may be overly simplistic in
clinical applications, but we believe this serves its purpose in establishing measurement
reproducibility.
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5. Conclusions

In the current study, we found the 3D mapping of unidirectional shear wave velocity
to be a feasible extension of traditional 2D measurement with improved reproducibility.
The volumetric spatial referencing of the measurements in a longitudinal study setting
allows the objective characterization of local alterations in mechano-acoustic properties
and demonstrates potential towards the functional assessment of both pathological and
physiological tendon adaptations.
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