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Abstract

Background: The conventional approach for clinical studies is to 
identify a cohort of potentially eligible patients and then screen for 
enrollment. In an effort to reduce the cost and manual effort involved 
in the screening process, several studies have leveraged electronic 
health records (EHR) to refine cohorts to better match the eligibility 
criteria, which is referred to as phenotyping. We extend this approach 
to dynamically identify a cohort by repeating phenotyping in alterna-
tion with manual screening.

Methods: Our approach consists of multiple screen cycles. At the 
start of each cycle, the phenotyping algorithm is used to identify eli-
gible patients from the EHR, creating an ordered list such that patients 
that are most likely eligible are listed first. This list is then manually 
screened, and the results are analyzed to improve the phenotyping for 
the next cycle. We describe the preliminary results and challenges 
in the implementation of this approach for an intervention study on 
heart failure.

Results: A total of 1,022 patients were screened, with 223 (23%) 
of patients being found eligible for enrollment into the intervention 
study. The iterative approach improved the phenotyping in each 
screening cycle. Without an iterative approach, the positive screening 
rate (PSR) was expected to dip below the 20% measured in the first 
cycle; however, the cyclical approach increased the PSR to 23%.

Conclusions: Our study demonstrates that dynamic phenotyping can 

facilitate recruitment for prospective clinical study. Future directions 
include improved informatics infrastructure and governance policies 
to enable real-time updates to research repositories, tooling for EHR 
annotation, and methodologies to reduce human annotation.
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Introduction

The adoption of electronic health records (EHRs) in the USA 
has generated large datasets that enable observational research. 
An essential step in utilizing these datasets for research is to 
identify patients with certain characteristics that match a set of 
eligibility criteria, a process known as phenotyping or patient 
cohort identification. Phenotyping requires significant manual 
effort to create labeled/validation datasets, and a population 
database is required to execute the algorithm [1].

Phenotyping has been reported to be useful for retrospec-
tive studies [2-4]; however, it has been relatively under-utilized 
for prospective studies. Although there has been considerable 
thought on phenotyping strategies for pragmatic clinical tri-
als (PCTs) [5-7], much of the phenotyping for clinical studies 
has focused on developing disease registries or disease cohorts 
that serve as an initial focused pool for studies related to a par-
ticular disease [1, 8, 9].

Disease registries often cannot be readily used for pro-
spective studies, as each study has specific eligibility criteria, 
and additional algorithms are thus necessary to implement the 
eligibility criteria to refine the disease registry, which costs 
significant effort. Due to the high cost and effort involved, phe-
notyping has largely been used for pre-screening before start-
ing recruitment, and no previous reports of actively phenotyp-
ing for intra-study recruitment have been published to date. To 
address this gap, we describe an approach for phenotyping in 
tandem with manual screening, referred to as dynamic pheno-
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typing (DP). We implement this approach to facilitate recruit-
ment for a prospective study on heart failure.

The study team had utilized a phenotyping algorithm to 
identify an initial cohort of heart failure patients prior to com-
mencing recruitment. However, as the study progressed, the 
study team recognized the need to refine the disease-cohort to 
match the eligibility criteria, which evolved into an approach 
of dynamically performing phenotyping in tandem with man-
ual screening. We report on the challenges encountered when 
using this approach, and we test the hypothesis that DP can 
significantly improve the screening rate.

Materials and Methods

This study was carried out at Partners Healthcare, Boston and 
was approved by the Institutional Review Board. For the case 
study, we performed phenotyping using data for 193,808 pa-
tients with a coded diagnosis of heart failure. This study was 
conducted in compliance with the ethical standards of the re-
sponsible institution on human subjects as well as with the 
Helsinki Declaration.

DP

Our approach consists of multiple screen cycles. At the start of 
each cycle, a phenotyping algorithm is used to identify eligible 
patients from the EHR, creating an ordered list such in which 
those patients most likely to be eligible are listed first. This list 
is manually screened, and the results are analyzed to improve 
phenotyping for the next cycle. We applied this approach to 
EHR data at Brigham and Women’s Hospital (BWH) to accrue 
heart failure patients with reduced ejection fraction (HFrEF) 
for an intervention study, as described below in the methods 
section.

Heart failure study

Although national guidelines exist for the pharmacological 
therapy of HFrEF, many eligible patients do not receive op-
timal guideline-directed medical therapy. To address this gap, 

we created a program to remotely optimize HFrEF patient 
care using supervised non-licensed navigators. DP was used to 
identify patients eligible for the study. Treating providers were 
approached for consent to adjust medical therapy in accord-
ance with ACC/AHA guidelines [10, 11]. Once consent was 
obtained, patients were contacted by phone by a navigator who 
completes a medication reconciliation and provides education 
over the telephone [28-32].

We obtained data for 193,808 patients with a coded di-
agnosis of heart failure from the institutional research patient 
data repository [12-15]. The eligibility criteria for the study in-
cluded adult patients that had a diagnosis of HFrEF, and whose 
cardiac care was managed primarily by a cardiologist at BWH. 
Patients were excluded for the following reasons: end-stage 
renal disease, active chemotherapy, low life expectancy, risk 
of frailty, transplant, intravenous inotrope use, prior need for 
mechanical ventricular support, unstable disease, and/or a his-
tory of medication non-adherence.

The primary challenge was to identify eligible patients 
from the pool of patients that had a coded diagnosis of heart 
failure. As the distributions for exclusion criteria were expect-
ed to be small, we focused on implementing the inclusion cri-
teria through in-silico phenotyping.

We utilized a variety of approaches to develop algorithms 
for extracting variables (Table 1), including rules, regular ex-
pressions for text processing and logistic regression [16]. In 
addition, we measured the performance of phenotyping in each 
cycle by measuring the positive screen rate (PSR) on the an-
notations resulting from manual screening in the next cycle.

Results

We applied the DP approach to facilitate recruitment for a 
real-world study on in HFrEF. Table 2 presents the results of 
the first four cycles, while Figure 1 summarizes the results for 
each cycle.

Cycle I

The initial cohort was developed using: 1) a logistic regression 
model trained on a dataset of 250 patient records that were 

Table 1.  List of Algorithms for Pre-Screening

Inclusion criteria Model types Data modalities
Cycle

I II III IV
Heart failure Logistic regression Coded data and notes √

Simple inference EF algorithm √ √ √
EF ≤ 40 Simple regular expression All notes √

Elaborate text-processing Notes from cardiology service √ √ √
Primary cardiologist at institution Rules Notes √

Rules Coded data and notes √ √
Logistic regression Coded data and notes √

EF: ejection fraction.
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manually annotated for heart failure, 2) a regular expression 
for extracting ejection fraction (EF), and 3) a rule that the care 
provider with the highest count of cardiology notes was identi-
fied as the primary cardiologist.

Major reasons for ineligibility included high EF, incorrect 
identification of primary cardiologist and no heart failure. Half 
of the false positives were due to a combination of incorrect 
extraction of EF, heart failure and incorrect identification of 
primary cardiologist, which motivated the study team to refine 
the phenotyping algorithm.

Cycle II

We improved the algorithm extraction of EF by developing 
patterns to identify echocardiograms and by using regular ex-
pressions to extract numbers, ranges, and prose mentions of 
EF. This approach was found to eliminate false positives due 
to incorrect EF extraction. Moreover, accurate EF extraction 
obviated the need for the heart failure algorithm, since, by defi-
nition, EF ≤ 40 is logically sufficient to enter the intervention 
program.

To improve identification of the primary cardiologist, 
we added the restriction of having two visits to the institu-
tional cardiologist within a 2-year period, a finding that was 
suggested by the navigation team. However, as observed in 
Figure 2, this restriction did not decrease the number of false 
positives.

Cycle III

We further attempted to improve detection of the cardiologist 
by using the total number of EHRs authored by the cardiolo-
gists. False positives due to EF extraction errors reappeared in 
this cycle due to a lag in updates to the research repository; the 
patients had undergone echocardiography after the repository 
update.

Cycle IV

The limited performance of rule-based approaches for identi-
fying the primary cardiologist led the study team to develop a 
logistic regression-based model, which was found to reduce 
false positives (Fig. 2).

PSR

The PSR improved in cycles II-IV over the first cycle, and the 
iterative approach resulted in an improvement in PSR; the P-
value of the Chi-square statistic upon comparing average PSR 
for cycles II-IV (36%) and to PSR for the first cycle (20%) is 
< 0.01.

Discussion

A total of 1,022 patients were screened, with 223 (23%) of pa-
tients being found eligible for enrollment into the intervention 
program. When a single run of phenotyping is used, the pool 
of eligible patients is expected to decline as manual screen pro-
gresses, resulting in more false positives and a subsequently 
downward trend in the PSR. We used iteratively improved 
phenotyping in each screening cycle. This process offset the 
dip in the PSR by providing an enriched cohort in every cycle. 
Without an iterative approach, the PSR was expected to dip 

Table 2.  PSR in Each Screening Cycle

Cycle I II III IV Total
Screened in (A) 165 24 14 30 233
Screened out (B) 670 26 34 59 789
Total screened (C = A + B) 835 50 48 89 1,022
PSR (A/C)% 20 48 29 34 23

PSR: positive screening rate.

Figure 1. DP consists of multiple screen cycles. At the start of each cycle, phenotyping is used to identify eligible patients from 
the EHR, creating an ordered list in which the most eligible patients are listed first. This list is manually screened, and the results 
are analyzed to improve phenotyping for the next cycle. DP: dynamic phenotyping; EHR: electronic health record.
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below the 20% measured in the first cycle; however, the cycli-
cal approach increased the PSR to 23%.

Recruitment for prospective clinical studies has been re-
ported to be resource intensive requiring a large number of pa-
tients to be screened in order to achieve enrollment goals [1, 
17-27]. Hence, DP may be useful to improve the screening rate 
for clinical studies.

One advantage of the dynamic approach is that manual 
screening performed by the navigators in each cycle provides a 
better perspective on the distribution of false positives. The lat-
ter helps direct the focus of the phenotyping team for refining 
the algorithms for the next cycle. However, one caveat is the 
additional resources required for phenotyping to keep up with 
the rapid operational pace of the clinical study.

A major challenge for DP is the lack of research infor-
matics infrastructure necessary to maintain the performance 
and real-time data needs for such analyses. Specifically, the 
gaps are the latency in updates to research repositories from 
the EHR and lack of tooling for navigators to record anno-
tations while performing manual screening. The latency in 
updates to research repositories lags behind EHR updates by 
days to weeks. Hence, patients selected by phenotyping often 
have events and visits during the lag period, which leads to 
false positives. For instance, the false positives in cycles III 
and IV due to incorrect EF were a result of patients having new 
echocardiograms after an update to the research repository. 
While it is true that most research or care innovation studies 
do not require the most recent patient data, DP for prospective 
studies presents a new use-case that requires a near real-time 

repository [28].
The second infrastructure barrier was a lack of tooling that 

allows navigators to store their annotations for chart reviews. 
Instead, navigators used spreadsheet software to record their 
annotations, which required substantial curation for re-integra-
tion into the subsequent DP cycle.

Data governance also poses a challenge for DP, as re-
searchers require the same data fields to develop algorithms 
that the navigators have access to in the EHR system. For in-
stance, our research repository lacked the metadata of “clinical 
service type” for notes, and there was no encounter metadata 
for notes, both of which were available for navigators that 
helped researchers identify the primary cardiologist for the 
patient. The absence of these fields in our research repository 
resulted in additional effort being necessary for the develop-
ment of the phenotyping algorithm.

Furthermore, we terminated the manual screening phase 
(in the DP cycles) when the PSR was below a subjective 
threshold. The manual screening was often prolonged due to 
logistical reasons such as delays in the updating of the research 
repository for executing the phenotyping. In an ideal scenario, 
DP cycles are executed in real-time and the phenotyping is ex-
ecuted after each manual screening/annotation.

Limitations

One limitation in our study was that we did not extensively 
investigate optimization of the phenotyping algorithms. Sec-

Figure 2. Composition of manual screening performed in each cycle. 1) No HF and EF accounted for 25% of false positives. HF 
was detected by machine learning and EF was extracted using a simple regular expression from clinical notes. 2) Optimization 
of EF parser and inferring HF from low EF eliminated many false positives. But failure to exclude patients not primarily managed 
by the outpatient cardiology clinic at BWH emerged as a challenge. This was because the cardiologist was inferred using total 
number of EHRs entries authored for the patient. 3) Cardiologist was inferred from number of EHR entries limited to the outpatient 
setting. But this did not significantly reduce false positives. 4) Use of machine learning to infer the primary cardiologist signifi-
cantly excluded patients that are not managed at BWH. HF: heart failure; EF: ejection fraction; BWH: Brigham and Women’s 
Hospital; EHR: electronic health record.
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ondly, we did not implement a model for exclusion criteria, 
which forms a significant proportion of false positives (Fig. 
2). Both of these limitations were due to the required fast pace 
of the study; in retrospect, it would have further improved the 
PSR. Also, the phenotyping algorithms may be converged 
more rapidly by utilizing active learning and semi-supervised 
approaches [29-31].

Conclusions

Our study demonstrates that DP can facilitate recruitment for 
prospective clinical study. Future directions include improved 
informatics infrastructure and governance policies to enable 
real-time updates to research repositories, tooling for EHR an-
notation and methodologies to reduce human annotation.
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