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ABSTRACT

Background: Pseudalcantarea grandis (Schltdl.) Pinzén & Barfuss is a tank
bromeliad that grows on cliffs in the southernmost portion of the Chihuahuan desert.
Phytotelmata are water bodies formed by plants that function as micro-ecosystems
where bacteria, algae, protists, insects, fungi, and some vertebrates can develop.
We hypothesized that the bacterial diversity contained in the phytotelma formed in a
bromeliad from an arid zone would differ in sites with and without surrounding
vegetation. Our study aimed to characterize the bacterial composition and putative
metabolic functions in P. grandis phytotelmata collected in vegetated and
non-vegetated sites.

Methods: Water from 10 individuals was sampled. Five individuals had abundant
surrounding vegetation, and five had little or no vegetation. We extracted DNA and
amplified seven hypervariable regions of the 16S gene (V2, V4, V8, V3-6, 7-9).
Metabarcoding sequencing was performed on the Ion Torrent PGM platform.
Taxonomic identity was assigned by the binning reads and coverage between hit
and query from the reference database of at least 90%. Putative metabolic functions
of the bacterial families were assigned mainly using the FAPROTAX database.

The dominance patterns in each site were visualized with rank/abundance curves
using the number of Operational Taxonomic Units (OTUs) per family. A percentage
similarity analysis (SIMPER) was used to estimate dissimilarity between the sites.
Relationships among bacterial families (identified by the dominance analysis and
SIMPER), sites, and their respective putative functions were analyzed with shade
plots.

Results: A total of 1.5 million useful bacterial sequences were obtained. Sequences
were clustered into OTUs, and taxonomic assignment was conducted using BLAST
in the Greengenes databases. Bacterial diversity was 23 phyla, 52 classes, 98 orders,
218 families, and 297 genera. Proteobacteria (37%), Actinobacteria (19%), and
Firmicutes (15%) comprised the highest percentage (71%). There was a 68.3%
similarity between the two sites at family level, with 149 families shared. Aerobic
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chemoheterotrophy and fermentation were the main metabolic functions in both
sites, followed by ureolysis, nitrate reduction, aromatic compound degradation, and
nitrogen fixation. The dominant bacteria shared most of the metabolic functions
between sites. Some functions were recorded for one site only and were related to
families with the lowest OTUs richness. Bacterial diversity in the P. grandis tanks
included dominant phyla and families present at low percentage that could be
considered part of a rare biosphere. A rare biosphere can form genetic reservoirs, the
local abundance of which depends on external abiotic and biotic factors, while their
interactions could favor micro-ecosystem resilience and resistance.

Subjects Biodiversity, Bioinformatics, Genomics, Molecular Biology, Plant Science
Keywords Bromeliads, High endemicity, Water sample, 16S, Proteobacteria, Actinobacteria,
Firmicutes, Taxonomic variation, Functional redundancy, Resilience

INTRODUCTION

Phytotelmata are water bodies formed by plants that function as micro-ecosystems
(Benzing, 2000). The community comprises bacteria, cyanobacteria, protists, fungi, green
algae, mosses, vascular plants, insects, crustaceans, and a few vertebrates (Benzing,

20005 Kitching, 2001; Brandt, Martinson ¢ Conrad, 2016). Under natural conditions,
organisms are frequently replaced, and the system has been used as a study model for food
webs (Mogi, 2004). Phytotelmata are most frequently found in tropical areas but can also
occur in temperate forests, swamps, and deserts. In arid environments, the phytotelma-
associated micro-ecosystem is defined by the seasonality of water availability. Once
water accumulates following the rains, growth occurs in the aquatic biota that is well
adapted to temporary environments, significantly increasing the diversity of aquatic
organisms in the area (Calhoun et al., 2017).

Although different plant families form phytotelmata, the Bromeliaceae have various
anatomical, morphological, and physiological adaptations that allow them to grow in areas
with wide resource variations (Giongo et al., 2019). For example, the leaves are arranged in
a tight rosette, and the plant epidermis is covered with trichomes that absorb humidity
and nutrients, allowing the plants to grow in arid environments with scarce nutrients
(Benzing, 2000; Goffredi, Kantor & Woodside, 2011). Pseudalcantarea grandis (Schltdl.)
Pinzén & Barfuss is a bromeliad found in saxicolous habitats, up to 2.5 m in height
and with a branched inflorescence present in March and April. It is native to central-
eastern Mexico to Honduras (Rzedowski, 2006). The species thrives on canyon cliffs of the
major rivers of the northeastern Bajio region, Mexico, at altitudes ranging from 400 to
1,600 m asl. Due to the inaccessibility of its populations, it presents no particular
conservation problems.

Characterization and identification of organisms contained in environmental samples
can be conducted using different approaches, such as sample culture, target sequencing,
metabarcoding, metatranscriptomics, and metagenomics. The diversity of specific groups
in the tank bromeliads has been analyzed with targeted sequencing on ciliates and
vertebrates (Brozio et al., 2017; Simdo et al., 2017). Using metatranscriptomics, Goffredi,
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Jang & Haroon (2015) found 450 species of Archaea and bacteria in Vriesea platynema
Gaudich. (Bromeliaceae) tanks. Metabarcoding is the direct analysis of DNA fragments
contained in an environmental sample (Cabral et al., 2018). This technique allows

the identification of microorganisms with no need for culturing (Rodriguez-Nuiiez,
Rullan-Cardec ¢ Rios-Velazquez, 2018). Metabarcoding has been used to identify
bacterial and eukaryotic biodiversity in the phytotelmata of Sarracenia purpurea L.
(Sarrraceniaceae) (Grothjan & Young, 2019). In tank bromeliads, bacterial metabarcoding
has been used in five studies, four in Brazil and one in Puerto Rico, all in tropical
forests (Louca et al., 2016; Louca et al., 2017; Simdo et al., 2017; Rodriguez-Nuriez,
Rullan-Cardec & Rios-Velazquez, 2018; Giongo et al., 2019; Simao et al., 2020). To our
knowledge, however, arid zone bromeliads have not been studied.

The biotic composition of the phytotelmata depends on the species, its location, and
local factors that affect water conditions (Benzing, 2000; Louca et al., 2016; Louca et al.,
2017; Males, 2016). Bromeliad tanks form a unique freshwater environment that differs
in oxygen concentration and pH from the external environment, thus providing a habitat
for a diverse community (Goffredi, Kantor ¢ Woodside, 2011). The phytotelmata in
bromeliads from tropical forests can contain methanogens, which are microorganisms
responsible for carbon cycling (Goffredi, Kantor ¢» Woodside, 2011). When comparing the
community of archaea and methanogens in phytotelmata from different tank water
volume, it was found that the methane cycle formation in the phytotelma decreases during
dry periods in neotropical forests (Brandt, Martinson ¢ Conrad, 2016). Identifying the
bacterial communities of bromeliad phytotelmata from different ecological niches can
help to understand their interaction with the metabolism of the host plant (Louca et al.,
2017). The phytotelmata of P. grandis constitutes a temporary aquatic ecosystem in a
desert, and its biodiversity has not been studied. Although water availability is highly
seasonal, we hypothesized that the tank bacterial composition will differ in sites with
and without surrounding vegetation. Our study aimed to characterize the bacterial
composition and putative metabolic functions in P. grandis phytotelmata collected in
vegetated and non-vegetated sites.

MATERIALS AND METHODS

Site descriptions, plant selection, and sampling

The study site is located in the Las Angosturas canyon, also known as Barranca Tolimdn,
in Zimapan, Hidalgo, in central Mexico (20°50.933'N, 99°26.7'W, 900 masl) (Fig. 1).
The area is located in the southernmost portion of the Chihuahuan desert (Herndndez ¢
Gomez-Hinostrosa, 2005) and constitutes a local floristic region of high endemism
(Medellin-Leal, 1982). The exact location of the study area does not feature in any
geomorphological or geological publications. However, adjacent canyons in the same
region have been subjected to detailed studies (Segestrom, 1961; Carrillo, 1981; Carrillo ¢
Sutter, 1981; Arévalo, 1991). The geological formations are Trancas (Late Jurassic, Early
Cretaceous), el Doctor (Middle Cretaceous), and Soyatal (Upper Cretaceous), formed by a
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Figure 1 Collection site map.
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combination of calcareous rocks alternated with calcareous limestones, calcareous
lutites, and sandstones. Structurally, the canyon is formed by rocky vertical cliffs at
80-90° angles. The P. grandis plants grow on sandstone rocks on the vertical cliffs (Fig. 2)
of the El Doctor formation. Ten individuals of 50 cm or more in diameter were sampled on
cliffs: five with little or no vegetation (Fig. 2A) and five with abundant surrounding
vegetation (Fig. 2B). Four of our vegetated sample sites had a NE orientation and one a
NW orientation; all sites were surrounded by either xerophytic scrub or tropical deciduous
forest. The non-vegetated sites all faced N. The plant species surrounding the sample
sites were identified and recorded (Table 1). Water samples were collected in June 2018
during the rainy season since the plants are dry for the rest of the year, either empty or full
of debris (Figs. 2C, 2D). Experiments were approved by the “Comité de Bioética de la
Facultad de Ciencias Naturales” bioethics committee (39FCN2019). Bromeliads were
reached by rappel (Figs. 2E, 2F). Nest® cell scrapers were used to scratch the inside of
each tank, and the water in the bromeliad was vigorously shaken in order to obtain a
homogeneous sample. Water volumes of 50 to 100 ml were collected using 10 ml sterile
serological pipettes. Samples were stored in 50 ml conical Falcon tubes, transported on dry
ice, and stored at —79 °C until processed.

DNA extraction and sequencing

The five samples of each site were homogenized and pooled. A total of 100 ml of sampled
water was filtered through a 0.22 um nitrocellulose Millipore® membrane. The membrane
was then frozen and macerated in liquid nitrogen. DNA was extracted in triplicate

with the QIAmp DNA extraction® kit following the manufacturer’s instructions. DNA
quality and quantity were evaluated using spectrophotometry in a NanoDrop®
instrument. PCR amplicons of seven hypervariable regions of the 16S gene were amplified
with two primer sets, the first targeting V2, V4, V8, and the second V3-6, 7-9, with the Ion
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Figure 2 Vegetated and unvegetated sites. (A) Little or no surrounding vegetation. (B) Abundant
surrounding vegetation. (C) Phytotelmata dry and full of debris. (D) Phytotelmata with water and no
debris. (E & F) Rapel sampling. Full-size k&) DOI: 10.7717/peerj.12706/fig-2

16S™ Metagenomics kit (Thermo Fisher Scientific, Waltham, MA, USA), following the
manufacturer’s protocol. The metabarcoding sequencing was performed on the Ion
Torrent PGM platform, and the amplicons were purified with Agencourt® AMPure® XP.
The Ion Plus Fragment Library kit protocol was followed in order to construct the libraries.
Fragment presence, size, and concentration were analyzed using a Bioanalyzer 2100
with the High Sensitivity DNA assay (Agilent, Santa Clara, CA, USA). Libraries were
quantified using real-time PCR to obtain an equimolar dilution factor for mixing the
libraries. Templates were prepared via an emulsion PCR in the Ion One Touch System
(Life Technologies, Carlsbad, CA, USA) and quantified in a fluorometer in Qubit® 3.0
(Thermo Fisher Scientific, Waltham, MA, USA). The template was loaded in the PGM
318™ chip using the sequencing kit for 400 base pairs, following the lon PGM™ Hi-Q™
View Sequencing Kit protocol.
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Table 1 Floristic inventory at Las Angosturas canyon.

Family Scientific name Vegetated/unvegetated site
Asparagaceae Agave xylonacantha Salm-Dyck Vegetated/unvegetated
Asteraceae Gochnatia hypoleuca (DC.) A. Gray Vegetated
Bromeliaceae Hechtia glomerata Zucc. Vegetated
Bromeliaceae Hechtia tillandsioides (André) L. B. Smith Vegetated/unvegetated
Bromeliaceae Tillandsia recurvata L. Vegetated

Burseraceae Bursera morelensis Ram. Vegetated

Cactaceae Mammilaria elongata DC. Vegetated

Cactaceae Myrtillocactus geometrizans (Mart. ex Pfeiff.) Console =~ Vegetated

Cactaceae Opuntia rastrera F.A.C. Weber Vegetated
Crassulaceae Echeveria secunda Booth Vegetated
Crassulaceae Sedum Vegetated

Fabaceae Acacia berlandieri Benth. Vegetated

Fabaceae Mimosa leucaenoides Bentham Vegetated
Fouquieriaceae  Fouquieria splendens Engelm. Vegetated

Onagraceae Hauya elegans DC. Vegetated

Myrtaceae Psidium guajava L. Vegetated
Selaginellaceae  Selaginella lepidophylla (Hook. & Grev.) Spring. Vegetated
Zygophyllaceae  Morkillia acuminata Rose & Painter Vegetated

Data analysis

Bioinformatic analysis

Bacteria were determined using Ion Reporter™. Sequencing results were analyzed using
the metagenomics application for multiple groups based on the Greengenes v13.5
database. Primers used for amplification were identified, and a minimum sequence length
of 150 bp was defined. To assign taxonomic identity, we considered two criteria: the
binning reads had to be repeated at least 10 times, and the coverage between hit and query
from the reference database had to be at least 90%.

Analysis of bacterial composition between sites

Bacterial families were ordered by taxonomic hierarchy for each site, and a richness
stacked barplot was produced at order and family level with Microsoft Excel tools.

The bacterial composition of the two sites vegetated (V) and non-vegetated (NV) was
compared using the Serensen similarity coefficient based on a presence/absence matrix for
bacterial families, and a Venn diagram was generated using vegan and VennDiagram
packages in R Studio v3.6.1 (R Core Team, 2019). In addition, the dominance patterns of
bacterial families were visualized with rank/abundance curves, using the number of
OTUs per family. A percentage similarity analysis (SIMPER) was used to estimate the
dissimilarity between sites. SIMPER was performed with the composition and number of
OTUs per family, a data pretreatment by square root-transformation, and the Bray—Curtis
similarity coefficient.
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A shade plot was constructed using the most important bacterial families, according to
dominance and contribution to the dissimilarity between the vegetated and non-vegetated
sites. These bacterial families were selected with the bacterial dominance analysis and
SIMPER results, considering a cumulative contribution of ~40% in both. In this shade
plot, a matrix of family composition and number of OTUs was used. For the classification
of families, a Whittaker association coefficient was used with data previously standardized
to percentages, and the group average linkage method. In the samples from vegetated
and non-vegetated sites, a Bray-Curtis similarity and a square-root transformation were
used.

Metabolic functions

To identify putative metabolic functions, we used the FAPROTAX database v.1.2.4
(Louca, Parfrey ¢» Doebeli, 2016). This database assigns a putative metabolic function to
each OTU based on the literature and, for some taxa, associates this function with
cultured taxa with a verified function in the same taxonomic group. The current bacterial
diversity not recognized under culture is high, and therefore the generalized assignment
may change in future studies. However, this database provides information on 4,600
taxa (Louca et al., 2017). We analyzed the data in two ways: combined and separated
(vegetated and non-vegetated sites), and with data from each site separately. Function was
assigned at the family and genus level whenever possible. The putative taxa function
that was absent from the FAPROTAX database was inferred based on the available
literature. We looked for the family name and then reviewed its metabolic functions
(Bergey & Holt, 2005; Louca et al., 2016; Louca et al., 2017). Furthermore, the relationship
between bacterial families identified by the dominance and SIMPER analysis, and their
respective putative functions, was analyzed with another shade plot. This analysis was
performed with a binary matrix based on the Serensen similarity coefficient to associate
families and functions using the group average linkage method. The range/abundance
curves, SIMPER, and shade plots were generated in PRIMER 7 7.0.21 (Clarke ¢» Gorley,
2015).

RESULTS

The water volume of each bromeliad varied from 50 to 150 ml. A total of 5,411,296 reads
was obtained. Once depurated, 1,499,606 sequences were considered useful, constituting
208,306 binning reads within the phytotelma. The bacterial dataset included 23 phyla,
52 classes, 98 orders, 218 families, and 297 genera (Table S1). Three phyla comprised the
highest percentage of the bacterial community: Proteobacteria (37%), Actinobacteria
(19%), and Firmicutes (15%). The remained 29% comprised the phyla Acidobacteria,
Aquifica, Armatimonadetes, Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi,
Cyanobacteria, Deinococcus-Thermus, Fusobacteria, Gemmatimonadetes, Ignavibacteriae,
Lentisphaerae, Nitrospinae, Nitrospirae, Planctomycetes, Spirochaetes, Synergistetes,
Tenericutes, and Verrucomicrobia, ranging from 5.8 to 0.5% (Fig. 3A). The phytotelmata
of P. grandis in the vegetated site contained 19 phyla, 41 classes, 83 orders, and 179
families, 30 of which were exclusive. In the non-vegetated site, 20 phyla, 44 classes, 87
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Figure 3 Percentage of relative abundance present in the Pseudoalcantarea grandis tank. Relative abundance of bacterial taxa present in the
Pseudoalcantarea grandis tank. (A) Bacterial composition and abundance at phylum level of all bromeliads samples. (B) Community composition at
order and family level at vegetated (V) and non-vegetated (NV) sites “taxa exclusive at the vegetated site, **taxa exclusive at the non-vegetated site.
(C) Venn diagram showing the unique and shared taxa at order and family level. Full-size £&] DOLI: 10.7717/peerj.12706/fig-3

orders, and 188 families were found, and 39 families were exclusive (Fig. 3B). The Sorensen
coefficient indicates a 68.3% similarity between the two sites at the family level, with 149 of
the 218 families shared between both (Fig. 3C).

The dominance analysis and SIMPER outputs showed that 56 families contributed
mostly to bacterial dissimilarity and dominance between the vegetated (V) and
non-vegetated (NV) sites (Fig. 4, Fig. S1, Table S2). Of these, 19 families contributed ~40%
of the accumulated relative abundance (dominance) in both sites: Acetobacteraceae,
Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Clostridiaceae,
Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae, Hyphomicrobiaceae,
Methylobacteriaceae, Microbacteriaceae, Nocardioidaceae Oxalobacteraceae,
Rhodobacteraceae, Rhodocyclaceae, Rhodospirillaceae, Sphingomonadaceae,
Veillonellaceae and Xanthomonadaceae (Fig. 4). Eight families were dominant, with
similar relative abundance at both sites, and did not contribute significantly to the
dissimilarity between sites (Bradyrhizobiaceae, Chitinophagaceae, Clostridiaceae,
Comamonadaceae, Flavobacteriaceae, Rhodobacteraceae, Rhodospirillaceae, and
Sphingomonadaceae). Another five families presented a different dominance and
contribute to the dissimilarity between sites (Caulobacteraceae, Enterobacteriaceae,
Methylobacteriaceae, Oxalobacteraceae, and Rhodocyclaceae, Fig. 4).

The families exclusive to each site presented low relative abundance values, but
contributed to the dissimilarity between sites (Fig. 4). Twelve families were recorded
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Vegetated site Non-vegetated site

15 Demequinaceae
Cryomorphaceae
Desulfobacteraceae
Desulfuromonadaceae
Thermolithobacteraceae
10 Thioalkalispiraceae
Veillonellaceae
Christensenellaceae
Acanthopleuribacteraceae
5 Fusobacteriaceae
Frankiaceae
Holophagaceae
Marinifilaceae

Solibacteraceae

0 Syntrophorhabdaceae
Peptoniphilaceae

Rickettsiaceae

_[ Saprospiraceae
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Chitinophagaceae
Rhodospirillaceae

Nocardioidaceae

Comamonadaceae
Flavobacteriaceae
Bradyrhizobiaceae
Microbacteriaceae

Hyphomicrobiaceae
Clostridiaceae
Sphingomonadaceae

Rhodobacteraceae
Acetobacteraceae
Oxalobacteraceae
Caulobacteraceae

Xanthomonadaceae
Alcaligenaceae
Enterobacteriaceae
Geodermatophilaceae
Pseudomonadaceae
Methylobacteriaceae
Paenibacillaceae

— Brucellaceae
Colwelliaceae
Clostridiales_Family_XIll
Aurantimonadaceae
Alicyclobacillaceae
Nitrosomonadaceae
Peptostreptococcaceae
Deinococcaceae
Gordoniaceae
Victivallaceae
Thiotrichaceae
Sutterellaceae
Sporolactobacillaceae

Figure 4 Families that contribute to bacterial dissimilarity. Families that contributed to bacterial
dissimilarity and dominance between vegetated (V) and non-vegetated (NV) sites. First column:
vegetated sites. Second column: non-vegetated sites. Full-size &) DOT: 10.7717/peerj.12706/fig-4
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exclusively in the vegetated site, (Alicyclobacillaceae, Aurantimonadaceae,
Clostridiales_Family XIII, Colwelliaceae, Deinococcaceae, Gordoniaceae,
Nitrosomonadaceae, Peptostreptococcaceae, Sporolactobacillaceae, Sutterellaceae,
Thiotrichaceae, and Victivallaceae) and 17 exclusively in the non-vegetated site
(Acanthopleuribacteraceae, Christensenellaceae, Cryomorphaceae, Demequinaceae,
Desulfobacteraceae, Desulfuromonadaceae, Frankiaceae, Fusobacteriaceae,
Holophagaceae, Marinifilaceae, Peptoniphilaceae, Rickettsiaceae, Solibacteraceae,
Syntrophoriolaceaceae, Theribacteraceae, Thioalkalispiraceae, and Veillonellaceae)
(Fig. 4).

The putative bacterial functional diversity of the 218 families recorded was classified
into 44 categories (Table S3). The predominant functions at the two analysis levels (shared,
vegetated and non-vegetated) were aerobic chemoheterotrophy and fermentation.

The main functions performed by the shared families were aerobic chemoheterotrophy
(28%), fermentation (20%), ureolysis (7%), nitrate reduction (6%), and cellulolysis (6%).
Another 39 functions were present but at lower percentages (Table S1). In P. grandis,
there are minimal differences in the percentage of the main metabolic functions performed
in vegetated and non-vegetated sites. In the vegetated site, aerobic chemoheterotrophy
(27%), fermentation (20%), cellulolysis (7%), and ureolysis (6%) were the most important
functions. Finally, the main metabolic functions in the non-vegetated site were aerobic
chemoheterotrophy (27%), fermentation (23%), ureolysis (7%), and nitrate reduction (6%)
(Table S1).

The 56 bacterial families identified by dominance and SIMPER analysis perform 31
putative metabolic functions (Fig. 5). The dominant bacterial families with most functions
were Enterobacteriaceae (7), Comamonadaceae (6), Bradyrhizobiaceae (5), and
Xanthomonadaceae (5) (Fig. 5). The predominant functions in both sites were aerobic
chemoheterotrophy (46%), and fermentation (38%), carried out by 26 and 21 families,
respectively. Other functions, such as nitrate reduction (16 %), ureolysis (11%), aromatic
compound degradation, and nitrogen fixation (9%), were performed by less than nine
families. Aerobic ammonia oxidation was exclusively found in the vegetated site related
to the family Nitrosomonadaceae. Four functions were present exclusively in the non-
vegetated site: iron and sulfur respiration (1%) performed by Desulfuromonadaceae
and Desulfobacteraceae respectively. Photoautotrophy (9%) and methylotrophy (7%)
were performed by Frankiaceae, Rickettsiaceae and Thioalkalispiraceae, while
Christensenellaceae only participated in photoautotrophy and Acanthopleuribacteraceae
in methylotrophy (Fig. 5).

DISCUSSION

The results of this study indicate that the composition of bacterial families in the
phytotelmata of P. grandis is similar between the vegetated and non-vegetated sites.
Nevertheless, they present a different dominance pattern as a function of the richness of
OTUs associated with these families. Bacterial richness in P. grandis is composed of 23
phyla and 218 families. This result contrasts with Aechmea bromeliifolia and A. nudicaulis,
each of which contain 51 phyla (Rodriguez-Nuiiez, Rullan-Cardec ¢ Rios-Velazquez,
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2018), and with the 30 phyla reported in Aechmea gamosepala, Vriesea friburgensis,

and V. platynema (Simao et al., 2020). However, at the family level, we found a greater
richness in P. grandis compared to Aechmea nudicaulis (81 families Louca et al., 2016),
A. nudicaulis and Neoregelia cruenta (56 families Louca et al., 2017), and A. gamosepala
and V. platynema (103 families, Giongo et al., 2019). We considered that the families with a
low richness of OTUs that contribute a low percentage (<1%) to the diversity of

P. grandis could possibly be considered as a rare biosphere (Pedrds-Alio, 2012; Jousset et al.,
2017). Although the record of these families could be a product of chance rather than
ecological forces, the triplicate sequencing decreases such probability. In this study, another
factor contributing to the detection of these OTUs was the use of seven hypervariable
regions of the 16S. Some studies demonstrate that these regions vary in sensitivity and level
of informativeness for different approaches (Yang, Wang ¢» Qian, 2016; Fiannaca et al.,
2018; Huttenhower et al., 2012; Soergel et al., 2012; D’Amore et al., 2016; Zheng et al., 2015;
Chakravorty et al., 2007).

The dominant metabolic function within the bacterial community in tank bromeliad is
the decomposition of complex organic compounds accumulated as vegetal detritus (Louca
et al., 2016). Members of the Phylum Actinobacteria are saprophytes that decompose a
wide spectrum of plant and animal remains (Zhang et al., 2017). They also occur in
polluted environments of both terrestrial and aquatic ecosystems (Rosenberg, Delong ¢
Thompson, 2014). Proteobacteria are the dominant group in soil microbial communities
(Zhang et al., 2017), as well as in bromeliad phytotelmata (Louca et al., 2016; Louca et al.,
2017). Many Firmicutes can also decompose organic debris, resist high temperatures,
and remain in dehydrated environments by inactivity (Parkes ¢ Sass, 2009). Their
presence in the P. grandis tanks suggests the occurrence of a nutrient recycling process,
which provides resources for both the associated biota and the plant itself.

Despite some differences in bacterial taxonomic diversity in P. grandis between
vegetated and non-vegetated sites, the dominant bacteria share most of the metabolic
functions. The six main functions, aerobic chemoheterotrophy, fermentation, ureolysis,
nitrate reduction, aromatic compound degradation, and nitrogen fixation, are prominent,
since these are carried out by the families with a greater amount of OTUs in both sites.
The first three functions mentioned above occur in equal percentages when the 212
families were included. Aechmea nudicaulis (L.) Griseb. (Bromeliaceae) and Sarracenia
purpurea L. (Sarraceniaceae) present different bacterial composition in their phytotelmata,
but with similar functions (Louca et al., 2016; Grothjan ¢ Young, 2019). However,
when the geochemical conditions of the tanks of A. nudicaulis and Neoregelia cruenta
(Graham) L.B. Sm. (Bromeliaceae) are compared, functional community structure is
strongly correlated with the different ecological conditions provided by the vegetal
cover and access to freshwater (Louca et al., 2017). In P. grandis when the total family
richness is considered a slight decrease in cellulolysis (7% vs. 5%) and a slight increase in
fermentation (21% vs. 23%) were detected in vegetated compared to non-vegetated
sites. Moreover, some putative functions were recorded only in one site and related to
families with the lowest richness of OTUs. These differences could be related to
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environmental factors that were not considered in this study. More studies are required to
gather conclusive evidence in this regard.

The bacterial composition of P. grandis shows differences between sites in terms of the
exclusive families, relative abundance of OTUs, and percentages of putative metabolic
functions performed. Although the two sites share 68.3% of their composition, the
unshared families suggest variations in the physiochemical conditions of the phytotelmata
at each site. The bacterial community of vegetated site presents families which require an
acidic pH and high levels of organic carbon and nitrogen compounds. For example,
Alicyclobacillaceae grows in acid environments produced by carbohydrates (Stackebrandt,
2014). Deinococcaeae can live with high radiation levels (Murray, 1992), and
Nitrosomonadaceae play significant roles in control of the nitrogen cycle in freshwater
environments as ammonia oxidizers (Prosser, Head ¢ Stein, 2014) (Fig. 4). In contrast, the
sample from the non-vegetated site contained families with metabolic functions that
are associated with autotrophic organisms, and others adapted to carbon and oxygen
scarcity that utilize inorganic nitrogen and sulfur compounds deposited by rock sediments
in their life cycle. Some of the families are Fusobacteriaceae that ferment carbohydrates
and can live in anaerobic sediments (Olsen, 2014). Desulfobacteraceae are strictly
anaerobic sulfate-reducing bacteria that grow best at moderate temperatures (Kuever,
2014). Desulfuromonadaceae are found in anoxic environments and are associated with
methanogens and phototrophic green sulfur bacteria (Greene, 2014) (Figs. 4, 5).

The families Frankiaceae, Rickettsiaceae, and Thioalkalispiraceae also perform
methylotrophy (i.e. they can obtain energy from single-carbon compounds). The largest
number of families belongs to the orders Actinomycetales and Rhizobiales, taxa that
degrade plant debris and comprise genera (such as Streptomyces and Rhizobium) that
present symbiotic relationships with plants. Their function in P. grandis is as degraders
and symbionts, promoting plant growth and maintaining the ecosystem formed inside the
bromeliad. The differences in the orders and families of bacteria unique to each site
indicate that, when the phytotelma is exposed, the biota will mostly be autotrophic and will
utilize the rock sediments from the slope (chemoautotrophs) and sunlight (phototrophs)
for their metabolic functions.

The bacterial diversity found in the tank suggests that the organisms that inhabit
these small aquatic microhabitats take advantage of water availability to develop. After the
dry season, endospores in the tank, or from the environment around the tank (e.g., in the
air, in the debris) proliferate quickly during the short rainy season and are specialized
in the decomposition of complex organic compounds. Rare biosphere bacteria (OTUs or
species with frequencies less than or equal to 1% (Pedros-Ali, 2012)) play important
ecological roles as drivers of ecosystem key functions. They are also considered genetic
reservoirs, the abundance of which depends on external abiotic and biotic factors. Their
interactions could favor micro-ecosystem resilience and resistance (Coveley, Elshahed ¢
Youssef, 2015; Jousset et al., 2017). We found that a few families also present in low
frequencies have putative metabolic functions recorded for one site only. They include
Alcanivoracaceae, which are involved in aliphatic non-methane hydrocarbon degradation
and oil bioremediation. However, the presence of these families should be treated with
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some caution. Future studies on tank bromeliads should address the relationship between
the rare families and the maintenance of the micro-ecosystem.

CONCLUSIONS

We hypothesized that bacterial diversity in the phytotelmata from an arid zone would
differ in sites with and without surrounding vegetation. Slight differences were found for
Pseudalcantarea grandis in taxonomic richness, number of OTUs for the dominant

and exclusive families, and the putative metabolic functions performed in each site.

The non-vegetated site was richer in families and exclusive OTUs than the vegetated site.
In the latter, families such as Deinococcaeae and Nitrosomonodaceae prefer an acidic pH
and high levels of nutrients. The phytotelma of the non-vegetated site contain families
such as Fusobacteriaceae and Desulfobacteraceae that thrive under carbon and oxygen
shortage and can metabolize inorganic and sulfur compounds. The organisms that inhabit
the small ephemeral aquatic microhabitats are well adapted to prolonged dry periods
and development quickly in water presence. Their taxonomic variation could fulfill
specialized functions in the degradation of organic matter, photo- or chemoautotrophy
depending on the exposure to different conditions. Our study is the first to characterize the
P. grandis microbiome and the information generated will be of utility to new studies in
tank bromeliads and related groups.
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