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Abstract: The proteomes that make up the collection of proteins in contemporary organisms evolved through recombina-

tion and duplication of a limited set of domains. These protein domains are essentially the main components of globular 

proteins and are the most principal level at which protein function and protein interactions can be understood. An impor-

tant aspect of domain evolution is their atomic structure and biochemical function, which are both specified by the infor-

mation in the amino acid sequence. Changes in this information may bring about new folds, functions and protein archi-

tectures. With the present and still increasing wealth of sequences and annotation data brought about by genomics, new 

evolutionary relationships are constantly being revealed, unknown structures modeled and phylogenies inferred. Such in-

vestigations not only help predict the function of newly discovered proteins, but also assist in mapping unforeseen path-

ways of evolution and reveal crucial, co-evolving inter- and intra-molecular interactions. In turn this will help us describe 

how protein domains shaped cellular interaction networks and the dynamics with which they are regulated in the cell. Ad-

ditionally, these studies can be used for the design of new and optimized protein domains for therapy. In this review, we 

aim to describe the basic concepts of protein domain evolution and illustrate recent developments in molecular evolution 

that have provided valuable new insights in the field of comparative genomics and protein interaction networks. 
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INTRODUCTION 

 The protein universe is the collection of proteins of all 
biological species that exist or have once existed on Earth 
[1]. Our sampling and understanding of it began over half a 
century ago, when the first peptide and protein sequences 
were determined by Sanger [2, 3] and, subsequently, the se-
quencing of RNA and DNA [4-6]. In the meantime, the ge-
nome projects of the last decade have uncovered an over-
whelming amount of sequence data and researchers are now 
starting to address a series of fundamental questions that 
should shed light onto protein evolution processes [7-10]. 
For instance, how many gene encoding sequences are present 
in one genome? How many sequences are repetitive and are 
these sequences similar in the various organisms on Earth? 
Which genes were involved in the large scale genome 
duplications that we see in animals?  

 A comparison of sequences for evolutionary insight is 
best achieved by looking at the structural and functional 
(sub)units of proteins, the protein domains. By convention,  
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domains are defined as conserved, functionally independent 
protein sequences, which bind or process ligands using a 
core structural motif [11-13]. Examples of domain modes of 
actions in signaling cascades for instance, are to connect 
different components into a larger complex or to bind signal-
ing-molecules [14, 15]. Protein domains can usually fold 
independently, likely due to their relatively limited size, and 
are well known to behave as independent genetic elements 
within genomes [16, 17]. The sum of these features makes 
protein domains readily identifiable from raw nucleotide and 
amino acid sequences and many protein family resources 
(e.g., Superfamily and SMART [see Table 1]) indeed fully 
rely on such sequence similarity and motif identifications 
[18, 19]. 

DOMAIN IDENTIFICATION, SEQUENCE ALIGN-

MENT AND PHYLOGENY 

 The algorithms that are used for domain identification are 
built around a set of simple assumptions that describe the 
process of evolution. In general, evolution is believed to 
form and mold genomes largely via three mechanisms, 
namely i) chemical changes through the incorporation of 
base analogs, the effects of radiation or random enzymatic 
errors by polymerases, ii) cellular repair processes that 
counter mutations, and iii) selection pressures that manifest 
themselves as the positive or negative influence that deter-
mines whether the mutation will be present in subsequent 
generations [20, 21]. By definition, each of these phenomena 
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has its own rate, while their combined effect gives a certain 
probability for the change of one defined amino acid (or nu-
cleotide) to another within a specific time interval. 

 Although already informative in its own right, mutation 
data can be significantly different among species due to dis-
similar metabolisms, generation times, population sizes, life-

Table 1. List of Public Resources and Databases Relevant to Domain Analysis 

Resource URL 

Protein domain databases 

Pfam http://www.sanger.co.uk/Pfam/ 

Prosite http://www.expasy.org/prosite/ 

SMART http://smart.embl-heidelberg.de 

Superfamily http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/hmm.html 

Structural analysis 

CATH http://www.cathdb.info/latest/index.html 

SCOP http://scop.mrc-lmb.cam.ac.uk/scop/ 

SSM http://www.ebi.ac.uk/msd-srv/ssm/ 

Swiss-MODEL http://swissmodel.expasy.org/ 

Alignment software 

BLAST http://www.ncbi.nlm.nih.gov/blast/Blast.cgi 

ClustalW http://www.ebi.ac.uk/Tools/clustalw2/ 

Muscle http://www.ebi.ac.uk/muscle/ 

Protein interaction 

HPRD http://www.hprd.org 

MINT http://mint.bio.uniroma2.it/mint/Welcome.do 

STRING http://string.embl.de/ 

Phylogenetic analysis 

MrBayes (Bayesian) http://mrbayes.csit.fsu.edu/ 

PhyML (Max. Likelihood) http://atgc.lirmm.fr/phyml/ 

PHYLIP (various) http://evolution.genetics.washington.edu/phylip.html 

CAPS (residue coevolution) http://bioinf.gen.tcd.ie/~faresm/page11/page11.html 

Visualization 

Pymol (structural) http://pymol.sourceforge.net/ 

NJplot (phylogeny) http://pbil.univ-lyon1.fr/software/njplot.html 

DiepView (structural) http://spdbv.vital-it.ch/ 

TreeView (phylogeny) http://taxonomy.zoology.gla.ac.uk/rod/treeview.html 

Visant (protein interaction) http://visant.bu.edu/ 

Sequence depositories 

Ensembl (genome projects) http://www.ensembl.org 

PDB (structures) http://www.rcsb.org/pdb/home/home.do 

NCBI http://www.ncbi.nlm.nih.gov/sites/gquery?itool=toolbar 

UniProt http://www.expasy.uniprot.org/ 
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styles, reproductive strategies, or the lack of apparent po-
lymerase-dependent proofreading such as in positive-

stranded RNA viruses [22-25]. Consequently, substitution 
rates need therefore be calculated to correctly compare two 
or more sequences and hunt uncharted genomes for compa-
rable domains. Particularly this last strategy, using general 
rate matrices like BLOSOM and PAM, is an elegant example 
of how new protein functions can be discovered [26-30]. 
Fast algorithms for pair-wise alignments can be found in the 
Basic Local Alignment Search Tool (BLAST), whereas mul-
tiple sequence alignments (MSAs, Fig. 1A) in which multi-
ple sequences are compared simultaneously are commonly 
created with for example ClustalX and MUSCLE (see Table 

1) [31-34]. 

 Close relatives, sharing an overall sequence identity 
above for example 50% and a set of functional properties, 
can also be grouped into families and subfamilies. In turn, 
these families share also evolutionary relationships with 
other domains and form together so-called domain superfa-
milies [18, 35]. Evolutionary distances between related do-
main sequences can easily be estimated from sequence 
alignments, provided that the correct rate assumptions are 
made. Subsequently, these can be used to compute the 
phylogenies of the domain that share an evolutionary history. 
These, often tree-like graphs (Fig. 1B), depend heavily on 
rate variation models, such as molecular clocks or relaxed 
molecular clocks (e.g., Maximum Likelyhood and Bayesian 
estimation), which are calibrated with additional evidence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Example of sequence alignment and phylogeny. (A) This figure shows an example alignment of the PDZ domain with different 

shadings representing the amount of conservation (100, 75 or 50%) at a particular position in the sequence. (B) This tree is the phylogenetic 

presentation of the alignment in Fig. (1A). It was computed using Bayesian estimation and presents the best-supported topology for the 

alignment. Numbers indicate % support by the two methods used, while # indicates gene duplication events in the common ancestor and * 

marks a species-specific duplication event. For computational details, please see [42].  
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such as fossils and may therefore also provide valuable in-
formation on aspects like divergence times and ancestral 
sequences [36-38]. Commonly used phylogenetic analysis 
strategies are listed in Table 1.  

 A limitation of all inferred phylogenetic data is that it is 
directly dependent on the alignment and less so on the pro-
grams used to build the phylogenetic tree [39]. One of the 
shortcomings of automated alignments may thus derive from 
the fact that they commonly employ a scoring and penalty 
procedure to find the best possible alignment, since these 
parameters vary from species to species [22, 23], as men-
tioned above. Careful inspection of alignments is therefore 
advisable, even though software has been developed that 
combines the alignment procedure and phylogenetic analysis 
iteratively in one single program [40].  

DOMAIN DIVERSIFICATION 

 Although sequence and phylogenetic analysis provide a 
relatively straightforward way for looking at domain diver-
gence, comparison of solved protein structures has shown 
that protein tertiary organizations are much more conserved 
(>50%) than their primary sequence (>5%) [41]. For this 
reason, protein structures and their models provide signifi-
cantly more insight into the relations of protein domains and 
how domain families diverged [16]. For example, the inac-
tive guanylate kinase (GK) domain present in the MAGUK 
family was shown to originate from an active form of the 
GK domain residing in Ca2+ channel beta-subunits 
(CACNBs) through both sequence and structural comparison 
[42]. Furthermore, identification of functionally or structur-
ally related amino acid sites in a fold sheds light on the com-
plex, co-evolutionary dynamics that took place during selec-
tion [43].  

 As described above, the evolution of a protein domain is 
generally the result of a combination of a series of random 
mutations and a selection constraint imposed on function, 
i.e., the interaction with a ligand. The interaction between 
protein and ligand can be imagined as disturbances of the 
protein’s energy landscape, which in turn bring about spe-
cific, three-dimensional changes in the protein structure [44, 
45]. Binding energies however, need not be smoothly dis-
tributed over the protein’s binding pocket as a limited num-
ber of amino acids may account for most of the free-energy 
change that occurs upon binding [45-47]. In these cases, new 
binding specificities (including loss of binding) may there-
fore arise through mutations at these hot spots. An example 
is a recent study of the PDZ domain in which it was shown 
that only a selected set of residues, and in particular the first 
residue of -helix 2 ( B1), directly confers binding to a set 
of C-terminal peptides [48]. 

 The folding of a domain is essentially based on a com-
plex network of sequential inter-molecular interactions in 
time [49]. This has of course significant implications for 
domain integrity, particularly if one assumes that the core of 
a protein domain is and has to be largely structurally con-
served. Indeed, even single mutations that arise in this area 
may easily derail the folding process, either because their 
free energy contribution influences residues in the direct 
vicinity or disturbs connections higher up in the intermolecu-
lar network [49]. It is therefore hypothesized that protein 

evolution took place at the periphery of the protein domain 
core, and that gradual changes via point mutations, insertions 
and deletions in surface loops brought about the evolutionary 
distance we see among proteins to date [21, 50-52].  

 However, distant sites also contribute to the thermody-
namics of catalytic residues. This is achieved through a 
mechanism called energetic coupling, which is shaped by a 
continuous pathway of van der Waals interactions that ulti-
mately influences residues at the binding site with similar 
efficiency as the thermodynamic hotspots [53, 54]. Indeed in 
such cases, evolutionary constraints are not placed on merely 
one amino acid in the binding pocket, but on two or more 
residues that can be shown to be statistically coupled in 
MSAs [54, 55]. In addition to contributions to binding, these 
principles also explain why the core of a domain structure 
will remain largely conserved, while at functionally related 
places residues can (rapidly) co-evolve with an overall neu-
tral effect [56]. Of course, these aspects of co-evolution are 
also of practical consequence for structure prediction and 
rational drug design [43]. 

DOMAIN DUPLICATION 

 Through selective mutation, protein domains have been 
the tools of evolution to create an enormous and diverse as-
sembly of proteins from likely an initially relatively limited 
set of domains. The combined data in GenBank and other 
databases now covers over 200.000 species with at least 50 
complete genomes and this greatly facilitates genome com-
parisons [57-59]. Following such extensive comparisons, 
currently > 1700 domain superfamilies are recognized in the 
recent release of the Structural Classification of Proteins 
(SCOP) [60] and it has become clear that many proteins con-
sist of more than one domain [17, 61, 62]. Indeed, it has been 
estimated that at least 70% of the domains is duplicated in 
prokaryotes, whereas this number may even be higher in 
eukaryotes, likely reaching up to 90% [35]. 

 There are various mechanisms through which protein 
domain or whole proteins may have been duplicated. On the 
largest scale, whole genome duplication such as those seen 
in the vertebrate genomes duplicated whole gene families, 
including postsynaptic proteins, hormone receptors and mus-
cle proteins, and thereby dramatically increased the domain 
content and expanded networks [42, 63, 64]. On the other 
end of the scale, domains and proteins have been duplicated 
through genetic mechanisms like exon-shuffling, retrotrans-
positions, recombination and horizontal gene transfer [65-
67]. Since the genetic forces, like exon-shuffling and ge-
nome duplication vary among species, the total number of 
domains and the types of domains present fluctuate per ge-
nome. Interestingly, comparative analyses of genomes have 
shown that the number of unique domains encoded in organ-
isms is generally proportional to its genome size [60, 68]. 
Within genomes, the number of domains per gene, the so-
called modularity, is related to genome size via a power-law, 
which is essentially the relation between the frequency f and 
an occurrence x raised by a scaling constant k (i.e., 

   
f (x) xk

) [69, 70]. A similar correlation is found when the 
multi-domain architecture is compared to the number of cell 
types that is present in an organism, i.e., the organism com-
plexity or when the number of domains in a abundant super-
family is plotted against genome size (Fig. 2) [71, 72].  
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DOMAIN SELECTION 

 Given the amount of domain duplication and apparent 
selection for specific multi-domain encoding genes in, for 
example, vertebrates, it may come as little surprise that not 
all domains have had the same tendency to recombine and 
distribute themselves over the genomes [68, 73]. In fact, 
some are highly abundant and can be found in many differ-
ent multi-domain architectures, whereas others are abundant 
yet confined to a small sample of architectures or not abun-
dant at all [68, 70]. Is there any significant correlation be-
tween the propensity to distribute and the functional roles 
domains have in cellular pathways? 

 Some of the most abundant domains can be found in as-
sociation with cellular signaling cascades and have been 
shown to accumulate non-linearly in relation to the overall 
number of domains encoded or the genome size [70]. Addi-
tionally, the on-set of the exponential expansion of the num-
ber of abundant and highly recombining domains has been 
linked to the appearance of multicellularity [70]. A reoccur-
ring theme among these abundant domains is the function of 
protein-protein interaction and it appears that particularly 
these, usually globular domains, have been particularly se-
lected for in more complex organisms [70]. This positive 
relation is underlined by the association of these abundant 

domains with disease such as cancer and gene essentiality as 
the highly interacting proteins that they are part of have cen-
tral places in cascades and need to orchestrate a high number 
of molecular connections [74, 75]. Their shape and coding 
regions, which usually lie within the boundaries of one or 
two exons, make them ideally suited for such a selection, 
since domains are most frequently gained through insertions 
at the N- or C-terminus and through exon shuffling [76-78]. 

 From a mutational point of view, protein-protein interac-
tion domains are different from other domains as well and 
this appears to be particularly true for the group of small, 
relatively promiscuous domains like SH3 and PDZ. These 
domains are promiscuous in the sense that they both tend to 
physically interact with a large number of ligands [79, 80] 
and are prone to move through the genome to recombine 
with many other domains. It has been found that particularly 
these domains evolve more slowly than non-promiscuous 
domains [70]. This likely stems from the fact that they are 
required to participate in many different interactions, which 
makes selection pressures more stringent and the appearance 
of the branches on phylogenetic trees relatively short and 
more difficult to assess when co-evolutionary data in terms 
of other domains in the same gene family or expression pat-
terns is limited [42, 63]. Non-promiscuous domains on the 
other hand can quite easily evade the selection pressure by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Selection on superfamily domain size. (A) Increase in superfamily domain size fitted to a power-law for kinase-like domains (I), 

Ankyrin-repeats (II), PDZ-like (III), voltage-gated potassium channels (IV), the catalytic domain of metalloproteases (V) and the average 

increase in superfamily size (VI). R
2
 value for each fit was at least 0.9. (B) Neutral or decreasing family sizes can be found for the MFS gen-

eral substrate transporters (I), NAD(P)-binding Rossmann folds (II), Ribonucleases H (III), PLP-dependent transferases (IV), periplasmic 

binding proteins type II (V), ATPase domains of HSP90/topoisomerase II/histidine kinase-like folds (VI) and the average increase in super-

family size (VII) as in 2A. 
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obtaining compensatory mutations either within themselves 
or their specific binding partner [70]. 

 The overall phenomenon that the number of protein do-
mains and their modularity increases as the genome expands 
has not been linked to a conclusive biological explanation 
yet. A rationale for the increase in interactions and functional 
subunits, however, may derive from the paradoxical absence 
of correlation between the number of genes encoded and 
organism complexity, the so-called G-value paradox [81]. 
There is indeed evidence that domains involved in the same 
functional pathway tend to converge in a single protein se-
quence, which would make pathways more controllable and 
reliable without the need for supplementary genes [73]. Ad-
ditionally, the number of different arrangements found in 
higher eukaryotes is, given the vast scale of unique domains 
present, relatively limited. This in turn implies that evolu-
tionary constraints have played an important role in selecting 
the right domain combinations and the right order from N- to 
C-terminus in multi-domain proteins [13, 82]. In fact, the 
ordering and co-occurrence of domains was demonstrated to 
hold enough evolutionary information to construct a tree of 
life similar to those based on canonical sequence data [70]. 
Furthermore, the increased use of alternative splicing and 
exon skipping in higher eukaryotes likely supplied a novel 
way of proteome diversification by restricting gene duplica-
tion and stimulating the formation of multi-domain proteins 
[83, 84]. In plants, however, the latter notion is not supported 
since both mono- and dicots show limited alternative splic-
ing and a more extensive polyploidy [85-87]. 

THE EVOLUTION OF DOMAIN INTERACTION 

NETWORKS 

 It is clear that some of the above characteristics are un-
derappreciated in the phylogenetic analysis of linear amino 
acid sequences. Moreover, the effects of evolution extend 
even further than these aspects and entail transcriptional and 
translational regulation, intramolecular domain-domain in-
teractions, gene modifications and post-translational protein 
modifications [88-96]. New methods are thus being devel-
oped to take into account that when sequences evolve, their 
close and distant functional relationships evolve in parallel. 
Correlations of mutations have already been found between 
residues of different proteins [97, 98] and compensating mu-
tational changes at an interaction interface were shown to 
recover the instability of a complex [99]. These observations 
are evidence for the current evolutionary models for the pro-
tein-protein interaction (PPIs) networks that are being con-
structed through large-scale screens [100-102]. In these, a 
gene duplication or domain duplication (depending on the 
resolution of the network) implies the addition of a node, 
while the deletion of a gene or domain reduces the amount of 
links in the network (Fig. 3). In the next step, extensive net-
work rewiring may take place, driven by the effect of node 
addition or node loss in the network (i.e., the duplicability or 
essentiality of a domain/protein) and mutations in the do-
main-interaction interface [67, 74, 103-105].  

 Beyond mutations at the domain and protein level, regu-
lation of protein expression provides another vital mecha-
nism through which protein networks can evolve. Microarray 
studies are now well under way to map genome-wide ex-

pression levels of related and non-related genes under a vari-
ety of conditions [91, 94-96]. For example, transcriptional 
comparisons have investigated aging [106] and pathogenicity 
[107]. Unfortunately, given the highly variable nature of 
gene expression and the fact that different species may re-
spond different to external stimuli, such comparisons can 
only be performed under strictly controlled research condi-
tions. To date most studies have therefore focused on the 
embryogenesis, metamorphosis, sex-dependency and muta-
tion rates of subspecies [94, 108-111]. Other studies have 
revealed valuable information on promoter types and dupli-
cation events [91-94]. 

 To overcome the limitations mentioned in the previous 
paragraph, the analysis of co-expression data has been de-
veloped to supplement the direct comparison of individual 
gene expression changes [95]. In this procedure, a co-
expression analysis of gene pairs within each species pre-
cedes the cross-comparison of the different organisms in the 
study. This approach thus primarily focuses on the similarity 
and differences of the orthologous genes within network, and 
is therefore ideally suited for the study of protein domain 
evolution and has already revealed that species-specific parts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Evolutionary models for protein-protein interactions. The 

evolution of protein networks is tightly coupled to the addition or 

deletion of nodes. Additionally, events that introduce mutations in 

binding interfaces of proteins may result in the addition or loss of 

links in the network. Node addition may take place through e.g., 

domain duplication or horizontal gene transfer, while rewiring of 

the network is mediated by point mutations, alternative splice vari-

ants and changes in gene expression patterns.  
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of an expression network resulted via a merge of conserved 
and newly evolved modules [95, 112, 113]. 

CONCLUDING REMARKS 

 Finding evolutionary relationships protein domains is 
mostly based on orthology and thus commonly performed on 
best sequence matches. Identifying these and categorizing 
them depends largely on multiple sequence alignments and 
this will in most cases give good indications for function, 
fold and ultimately evolution. However, this approach usu-
ally discards apparent ambiguities that arise from species-
specific variations (e.g., due to population size, metabolism 
or species-specific domain duplications or losses) and may 
therefore introduce significant biases [114]. Biases may also 
derive from the method of alignment, the rate variation 
model used to infer the phylogeny, and the sample size used 
to build the alignment [39, 40, 115]. Care should therefore 
be taken to not regard orthology as a one-to-one relationship, 
but as a family of homologous relations [91], to select for 
appropriate analysis methods [39, 115] and extend compara-
tive data to protein interactions and expression profiles [91]. 
Indeed, as our wealth of biological information expands, our 
systems perspective will improve and provide us with an 
opportunity to reveal protein domain evolution at the level 
network organization and dynamics. Large-scale expression 
studies are beginning to show us evolutionary correlations 
between gene expression levels and timings [94, 106, 107, 
112, 116], while others demonstrate spatial differences be-
tween paralogs or (partial) overlap between interaction part-
ners [117-120]. Indeed, when we are able to map the spatio-
temporal aspects of inter- and intra-molecular interactions 
we will begin to fully understand the versatile power of evo-
lution that shaped the protein universe and life on Earth 
[118]. 
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