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The vestibular system is the sensory apparatus that helps the body maintain its postural equilibrium, and semicircular canal is an
important organ of the vestibular system.The semicircular canals are three membranous tubes, each forming approximately two-
thirds of a circle with a diameter of approximately 6.5mm, and segmenting them accurately is of great benefit for auxiliary
diagnosis, surgery, and treatment of vestibular disease. However, the semicircular canal has small volume, which accounts for less
than 1% of the overall computed tomography image. Doctors have to annotate the image in a slice-by-slice manner, which is time-
consuming and labor-intensive. To solve this problem, we propose a novel 3D convolutional neural network based on 3DU-Net to
automatically segment the semicircular canal. We added the spatial attention mechanism of 3D spatial squeeze and excitation
modules, as well as channel attention mechanism of 3D global attention upsample modules to improve the network performance.
Our network achieved an average dice coefficient of 92.5% on the test dataset, which shows competitive performance in
semicircular canals segmentation task.

1. Introduction

The lifetime prevalence of vertigo among adults is 7.4%, with
a one-year prevalence of 4.9% and a one-year incidence of
1.4% [1]. Dysfunction of the vestibular system is one of the
most essential causes for vertigo. The vestibular apparatus is
small, beautifully formed, and located on the deep side of the
temporal bone that controls the human sense of balance and
movement [2]. Humans can perceive head rotation, angular
acceleration, and orientation in space due to the specific
structures of the vestibular system: the otolith organs and
semicircular canals [3]. Semicircular canal encodes head
rotational velocity and provides input to the vestibule-ocular
reflex, vestibulocollic reflex, vestibulospinal system, vesti-
buloreticular system, cerebellum, and cortex [4]. Benign

paroxysmal positional vertigo (BPPV) is the most common
cause of vertigo due to the vestibular system disorders. The
mechanism of BPPV has been attributed to cupulolithiasis or
canalithiasis, which can affect the function of semicircular
canal and thus cause vertigo [5]. As shown in Figure 1, the
semicircular canal consists of a superior semicircular canal, a
posterior semicircular canal, and a lateral semicircular canal.
Among medical imaging technologies, Computed Tomog-
raphy (CT) technology is an important method for inner ear
disease diagnosis. However, semicircular canals have so-
phisticated structure and small volume, which accounts for
less than 1% of total area in a single CT image [6], and it
brings huge difficulties to diagnosis. Automatic segmenta-
tion of the semicircular canals in CT images can help screen
out diseases such as malformation and superior semicircular
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canal bony dehiscence. In addition, the angle of the seg-
mented semicircular canal can be used to customize the
reduction therapy during the treatment of otolithiasis. The
anatomical semicircular canal model is of great significance
for studying the mechanism of the vestibule. Thus, it is
meaningful to automatically segment the semicircular ca-
nals, which provide precious anatomical training resources
for doctors.

Recently, a variety of advanced algorithms have been
proposed for medical image processing, ranging from tra-
ditional method to machine learning and deep learning [7].
Some traditional methods, like the threshold method, re-
quire manually setting one or several suitable thresholds.
However, with limited spatial resolution or motion artifacts
in CT imaging, some voxels in CT images contain a mixture
of many tissue types instead of just a single tissue type [8].
Thus, multiple thresholds setting is required, which is time-
consuming and has poor generalization performance. The
region growing method is another traditional method that
requires selecting suitable seed points, and the segmentation
results are highly correlated with them. However, it is
challenging to choose appropriate seed points manually. The
patterns of regional growth are also sensitive to noise, which
may cause the extracted region to blank or link the separate
region under the case of local effect [9]. Clustering is a
machine-learning-based technique for image segmentation.
The principle of clustering is simple and its convergence
speed is fast, which is one of the most important reasons why
the industry adopts it a lot. Nevertheless, the clustering
method is sensitive to the local intensity changes [10]; its
performance is unavoidably interfered by noise in small
organ segmenting tasks of CT volumes.

Although the methods mentioned above are relatively
simple to implement, using these manual segmentation
methods to segment small organs in the CTvolumes is time-
consuming and not task-specific [11], which requires a
sophisticated knowledge base of anatomy. In addition, small
organ segmentation tasks require high precision, and in that
case, these traditional methods are not suitable. In recent
years, with the fast development of artificial intelligence
technology represented by deep learning, additional

technical methods for the precise segmentation of medical
images have been proposed [6]. Numerous deep learning
network structures are proposed in different organ seg-
mentation tasks, such as skin [12], brain tumor [13], heart
[10], lung [14], and pancreas [15, 16] segmentation.

Medical image segmentation based on deep learning
technology can be roughly divided into two categories,
namely, 2D CNN- (Convolutional Neural Network) based
methods and 3D CNN-based methods. Methods are based
on 2D CNN segment volumetric CTor Magnetic Resonance
Imaging (MRI) data in a layer-by-layer manner. For ex-
ample, Fully Convolutional Network (FCN) [17] substitutes
fully connected layers with convolutional layers, which in-
creases the generalization ability of the network and im-
proves training efficiency at the same time. However, the
FCN architecture tends to omit the detailed information of
the image due to pooling layers. Thus, some researches have
been investigated to improve the accuracy of segmentation.
Later on, a U-Net [18] architecture was proposed. This
architecture improves the segmentation accuracy and ad-
dresses the problem of gradient vanishing, becoming one of
the most popular architectures in segmentation tasks of
medical images [6].

Volumetric data accounts for a large portion of medical
image modalities, such as 3D computed tomography (CT),
3D Magnetic Resonance images, and 3D ultrasound [19].
Although 2D CNNs have achieved a great breakthrough in
slice-based medical image segmentation tasks, the slicing
strategy in 2D CNNs segmentation pipelines hardly takes
full advantage of the 3D spatial information existing in the
volumetric CT images to achieve competitive segmentation
results as 3D CNNs. To utilize the entire 3D medical image,
several 3D segmentation networks have been proposed,
including 3D U-Net [20], V-Net [21], Residual Symmetric
U-Net [22], DenseVoxNet [23], and VoxResNet [19]. These
3D architectures can make full use of the 3D contexture
information and greatly improve their capability to segment
objects from volumetric data.

Among the networks mentioned, 3D U-Net is most
widely used. 3D U-Net adopts a bilateral symmetric ar-
chitecture including an encoder path to capture context
information and a symmetric decoder path to recover
spatial position, and in this way, it provides a full-reso-
lution segmentation. The encoder and decoder are con-
nected by skip connections [6]. However, the skip
connections used in 3D U-Net may cause the loss of de-
tailed information due to the gap between low-level fea-
tures and high-level features [24]. To overcome the
shortage of 3D U-Net, we introduce attention mechanism
to the 3D U-Net, including 3D spatial squeeze and exci-
tation (3D spatial SE) [25] module, as well as 3D Global
Attention Upsample (3D GAU) [26] module. The 3D
spatial SE module is a kind of spatial attention module that
captures the spatial dependencies between any two posi-
tions of the feature maps from the encoder, aiming at
guiding the network to “look where.” The 3D GAU module
is deployed at the decoder path, which is a kind of channel
attention module. This module uses low-level information
to help high-level features recover images detail, which

Lateral semicircular canal

Superior semicircular canal

Posterior semicircular canal

Figure 1: Structure of the semicircular canal in the inner ear.
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avoids the shortcomings of original skip connections used
in 3D U-Net. By adding the attention mechanism, our
network is capable of increasing receptive field and seg-
menting small objects more effectively. Experimental re-
sults show that the proposed network achieves the highest
accuracy in the semicircular canal segmentation task.

For the clinical field, surgeons routinely review the CT
volumes as multiplanar two-dimensional representations,
although the CT datasets are inherently volumetric. Tradi-
tional methods based on handcraft features, as well as most
of the previous deep learning methods, still process two-
dimensional images layer by layer. It is difficult for these
methods to meet clinical requirements in terms of speed and
accuracy. Our 3D deep learning network with attention
mechanism can segment small organs like semicircular
canals accurately, quickly, and fully automatically using
three-dimensional data, which is a further step to computer-
aided otopathy CT image processing. Specifically, the seg-
mentation results can be used to establish a virtual reality
surgical simulation of the inner ear surgery or help to
customize the reduction therapy during the treatment of
otolithiasis.

We make the following contributions:

(1) We propose a novel network and apply it to the
semicircular canal CT segmentation task. This
method can automatically separate the semicircular
canals from multiple volumes, assisting radiologists
in clinical diagnosis.

(2) We adapt attention mechanism to the 3D U-Net
architecture. The 3D spatial SE modules of spatial
attention mechanism are deployed at the encoder
and the 3D GAU modules of channel attention
mechanism are added at the decoder. The attention
mechanism guides the network training process and
improves model sensitivity to foreground pixels in
the whole CT volumes without requiring compli-
cated heuristics. Our proposed network solves the
problem of information loss in skip connections of
3D U-Net, achieving great effects in segmenting
small organs like the semicircular canal in the CT
volumes.

(3) Sufficient ablation experiments have been done to
verify the effectiveness of the improvements based on
3D U-Net. We also compare the performance of our
proposed network and the other state-of-the-art
CNN architectures.

(4) The semicircular canal can be segmented effectively
with the proposedmethod, so can the other organs in
the future, for example, facial nerve [27], cochleae
[28], and spinal cord [29].

The rest of this article is organized as follows: Section 2
briefly reviews related works, and Section 3 details our
network architecture, training method, and inference pro-
cess in further depth. The dataset we used and the experi-
ment results are introduced in Section 4. Finally, Section 5
and Section 6 present the discussion and conclusion,
respectively.

2. Related Works

2.1. Traditional Segmentation Methods. Before the rapid
development of deep learning, traditional methods like
threshold method and region growing method are most
widely used. Threshold method requires manually or au-
tomatically setting thresholds to segment targets from the
background. It is suitable for segmenting high-contrast
objects with sharp edges. However, it tends to be sensitive to
noise and relies on image quality [30]. It is time-consuming
and nearly impossible tomanually find suitable thresholds in
the whole 3D medical dataset [31]. Region growing method
is very sensitive to the selection of seed points and noise. If
the seed points are not selected properly, segmentation is
prone to mistake background noise as the target. Such
methods often require high contrast between the target area
and the background [8]. In that way, due to the low contrast
of CT images, threshold method and region growingmethod
are not suitable for our scenario.

2.2. Machine-Learning-Based Methods. Clustering is a ma-
chine-learning-based technique for grouping similar data
according to certain similarity criteria. K-means clustering
and fuzzy C-means clustering (FCM) algorithms are two
basic clustering segmentation algorithms in image pro-
cessing [30]. Image segmentation methods based on fuzzy
clustering and their improved algorithms have been widely
used. Abdel-Maksoud et al. [32] proposed an image seg-
mentation approach for accurate brain tumor detection
using K-means clustering technique integrated with fuzzy
C-means algorithm, improving the segmentation quality
and accuracy in minimal execution time. However, the
clustering method is too sensitive to noise and does not meet
clinical requirements.

2.3. Deep-Learning-Based Segmentation Methods. 2D CNN-
based methods greatly improve segmentation accuracy
compared with traditional segmentation methods. For ex-
ample, Havaei et al. [33] proposed a two-way shallow net-
work with different cascade structures for the segmentation
of tumors in brainMRI images.This network achieved a dice
score of 83.2% on the test dataset. Ronneberger et al. [18]
proposed a U-Net architecture for cell segmentation. This
architecture improves the segmentation accuracy and ad-
dresses the problem of gradient vanishing, so it becomes one
of the popular architectures in segmentation tasks of medical
images. By introducing new modules or improvements,
many U-Net variants have been proposed. For example, Li
et al. [34] modified the U-Net structure by deleting the crop
operation and changing the loss function, which increases
the processing speed of the network by 70% and enhances
the performance of ore image segmentation. Weighted Res-
UNet [35] is inspired by residual connections [36]. The
residual connections are added in the encoding stage of
U-Net. Weighted Res-UNet surpasses the baseline U-Net
model on both the accuracy and sensitivity performance in
the retinal vessel segmentation problem. To reduce the
burden of deep network training, Tao et al. [37] combined
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the U-Net with residual network and changed the serial
connection mode of convolution layer into a form of re-
sidual mapping and achieved better Mean Intersection over
Union (MIoU) (0.928) in the precipitation cloud segmen-
tation task. Zhou et al. [24] proposed U-Net ++ which re-
designs the jump path to narrow the semantic gap between
the feature maps of the encoding subnetwork and the
decoding subnetwork, achieving an average IoU gain of 3.9
points over U-Net in liver and polyp CT image segmentation
tasks.

However, there is massive missing spatial information in
2D slice-based medical data. To make full use of 3D medical
images, several 3D segmentation networks have been pro-
posed. 3D U-Net [20], an extension of 2D U-Net archi-
tecture [18], takes 3D volumes as input and processes them
with corresponding 3D operations. This network can learn
from sparsely annotated volumetric images and achieves
good results for Xenopus kidney segmentation. To solve the
problem of semicircular canal and other small organ seg-
mentation, Li et al. proposed 3D-DSD [6], redesigned a 3D
dense connection block and 3D multipool feature fusion
scheme in the encoding stage, and adopted a 3D depth
supervision mechanism in the decoding stage. The network
improves the accuracy in temporal bone segmentation over
3D U-Net, achieving an average dice coefficient of 77.8% on
their dataset. V-Net [21] uses a codec scheme and proposes a
loss layer based on dice coefficients. The network helps to
deal with situations where there is a strong imbalance be-
tween the number of foreground voxels and background
voxels, and the author demonstrated the efficiency in the
prostate segmentation task. Based on 3D U-Net, Residual
Symmetric U-Net [22] is designed for 3D reconstruction of
neurons from electron microscopic brain images. The net-
work replaces concatenation joining by summation joining
where the skip connections join the expanding path and
avoids the border effect that may hurt accuracy. Huang et al.
[38] introduced DenseNet for object recognition, which
introduces direct connections from any layer to all subse-
quent layers to ensure the maximum information flow
among layers, reducing the information loss. Song et al. [39]
extended DenseNet and proposed Deep 3D-Multiscale
DenseNet, which has a great effect on suppressing the
overfitting problem of network training when the dataset is
small. Yu et al. [23] extended DenseNet to cardiovascular
three-dimensional segmentation and proposed Dense-
VoxNet. Their network achieved the best dice score of
0.931± 0.011. Chen et al. [19] proposed VoxResNet for key
brain tissues segmentation in 3D MR images. To effectively
train the deep network with limited training data, they
seamlessly integrate multimodality and multilevel contex-
tual information into the network, which helps harness the
complementary information of different modalities and
exploit the features of different scales.

3. Methods

In this section, we introduce the proposed 3D end-to-end
architecture with 3D spatial SE modules and 3D GAU
modules for semicircular canal segmentation.

3.1. The Proposed Network Architecture. Our proposed
network is based on the 3D U-Net architecture which is
widely used in medical image analysis. The 3D U-Net ar-
chitecture is composed of an encoder and a decoder, which
extracts low-level features and high-level features, respec-
tively. The encoder extracts the features by a series of
convolution and max-pooling layers, while the decoder
recovers image resolution by deconvolution layers. How-
ever, the levels of features in the encoder path are much
lower than those in the decoder path, so it is not conducive
enough to make full use of the multiscale and multilevel
features by simply using the skip connections to concatenate
the feature maps from different paths. Therefore, we, re-
spectively, introduce two attention modules to emphasize
meaningful features along spatial and channel axes. 3D
Spatial SE [25] module and 3D GAU [26] module are
employed as the spatial attention module and the channel
attention module, respectively, and they provide guidance
for CNN to focus on the targets rather than the background
efficiently.

The network is shown in Figure 2. Encoder path consists
of four layers, the first three of which contain two convo-
lution operations (kernel: [3, 3, 3], stride: [1, 1, 1], channels:
32, 64, 128) each followed by a batch normalization and a
rectified linear unit (ReLU). The max-pooling operations
(kernel: [2, 2, 2], stride: [2, 2, 2]) are employed between each
layer. We introduce 3D spatial SE modules at the end of each
layer to spatially calibrate the features and get the four
feature maps of L1, L2, L3, and L4 in Figure 2. In the decoder
stage, low-level and high-level feature maps from adjacent
layers are fused by several 3D GAU modules, and the
cascaded 3D GAU modules restore the image size at the
same time.

3.2. 3D Spatial SE Module. Squeeze and excitation (SE)
attention block [40] is introduced to improve the accuracy of
segmentation, which only excites channelwise. The Spatial
SE attention block was designed based on the SE attention
block, which “squeezes” along the channels and “excites”
spatially [25]. Considering that the pixelwise spatial infor-
mation of low-level features is more informative, we extend
the Spatial SE module to 3D and introduce it into the en-
coder. The 3D spatial SE block is depicted in Figure 3. We
consider the input feature map as follows:

U0 � u
1,1,1,1

, u
1,1,1,2

, . . . , u
h,i,j,k

, . . . , u
C,D,H,W

 , (1)

where uh,i,j,k ∈ R, h ∈ 1, 2, . . . , C{ }, i ∈ 1, 2, . . . , D{ },
j ∈ 1, 2, . . . , H{ }, and k ∈ 1, 2, . . . , W{ }. h represents the
channel location. i, j, and k represent the spatial location in
the image. By a 3D convolution (kernel: [3, 3, 3], stride: [1, 1,
1], channels: 1) conv3d with output channel of one, the
spatial squeeze operation is achieved, generating a projection
tensor U1 ∈ R1×D×H×W. This projection tensor passes
through a sigmoid operation σ(·) to rescale activations to [0,
1], which is used to excite U0 spatially by a spatial-wise
multiply operation. The definition can be formulated as
follows:
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U2 � σ U1(  × U0. (2)

The spatial attention module tells where to focus, and the
feature at a specific position is updated by aggregating
features at all positions. This recalibration helps the network
concentrate more on relevant spatial information and ignore
the irrelevant ones.

3.3. 3D Global Attention Upsample Module. Our channel
attention module is inspired by Pyramid Attention Network
[26], in which 2D GAU module is used to merge the two
feature maps that belong to adjacent layers and establish a
connection between the high-level and low-level features. To
reduce the category information lost in the low-level features

and reduce the noisy and irrelevant responses, we adapt the
2D GAU module to 3D GAU module in our decoder stage,
which combines low-level features and high-level features
for image recovery.

The 3D GAU module is depicted in Figure 4. Low-level
features are weighted by high-level features to select precise
resolution details since the high-level features have abundant
category information. On the high-level path, the 3D global
average pooling operation extracts the category information
contained in channels, generating the weights W1. Then the
weights W1 are regarded as the attention weights from the
high-level features, which will be multiplied with low-level
features F1 after a convolution (kernel: [1, 1, 1], stride: [1, 1,
1], channels: CL) with batch normalization and ReLU
nonlinearity operations, generating F3. The high-level

GAU 3D Global Attention Upsample
module

3D Spatial SE module

Conv3d+BN+ReLU

maxpool3d

1 32 32

64

128 128 128

128

GAU

32 32 1

encoder decoder

64 64

GAU

GAU

1×32×64×64

32×32×64×64

32×16×32×32

64×16×32×32

64×8×16×16

128×8×16×16128×4×8×8

C×D×H×W Conv3d

L1

L2

L3

L4

Figure 2: The architecture of the proposed network. The network structure is divided into two parts: encoder and decoder. Between the
encoder and the decoder, we use the 3D spatial squeeze and excitation modules and 3D global attention upsample modules to replace the
original skip connections used in 3D U-Net. The number on each feature block represents the channel, the size of the feature blocks in
different colors are marked at the bottom, in C×D×H× W format, and C, D, H, and W represent the channel, depth, height, and width,
respectively.
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Figure 3: 3D spatial SE module.
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feature map F2 is upsampled to F4. This upsampling process
is achieved by a 3D transposed convolution (kernel: [1, 4, 4],
stride: [1, 2, 2], channels: CL) and a batch normalization.
Finally, the F3 and the F4 will be element-wisely added up,
generating the final output F5.

3.4. Arrangement of Attention Modules. The role of channel
attention mechanism and spatial attention mechanism is
complementary. These two types of attention mechanisms
are usually used in combination [41]. We initially per-
formed an element-wise summation of the output of 3D
spatial SE module and 3D GAUmodule (the architecture is
depicted in Figure 5(a)). In this way, the two modules are
placed in a parallel manner, but the experimental results
were less effective. Inspired by CBAM [42], we tried the
method of sequentially cascading two attention modules
(Figures 5(b) and 5(c)). It was found that the sequential
manner arrangement gives a better result than a parallel
manner arrangement. And the experimental results indi-
cate that the spatial first order is slightly better than the
channel first order. In low-level features, 3D spatial SE
module improves the feature expression ability of the
network, and the output features are further guided and
modified by high-level features channelwise through 3D
GAUmodules. In this way, the detailed information such as
the boundary of the semicircular canal can be captured
more accurately. The detailed experimental results of the
different arrangement of attention modules are shown in
Section 5.2.

3.5. Loss Function. In the training stage, we use the Dice
similarity coefficient (DSC) loss function to constraint the
network. The DSC loss function is shown in

L(G, P) � 1 −
2 × 

n
i pigi


n
i pi + 

n
i gi

, (3)

where P and G represent predicted value and the ground
truth, respectively, and n is the number of voxels; pi and qi

denote the number of voxels in the ith voxel in predicted data
and ground truth, respectively.

3.6. Implemental Details. Our proposed network is imple-
mented using the Pytorch package. Due to its efficiency, all
the training and experiments were run on a standard
workstation equipped with 16GB of memory, an Intel(R)
Core(TM) i5-10400F CPU working at 2.9GHz, and a single
NVIDIA RTX2060S GPU with 8GBmemory.The size of the
raw CT image is 512× 512× 64. Due to the limitation of the
GPU memory, we have to crop the volume into small
patches as input to the network. To ensure a sufficient
number of positive samples, we randomly crop the volume
into 64× 64× 32 while ensuring that the cropped volume
contains a part of semicircular canal. The batch size is set to
8; optimizer Adam is employed to speed training conver-
gence. To reduce overfitting, we apply a weight decay of
0.0005 and a momentum of 0.97. The learning rate is set to
1× e−4, and dice loss is the loss function.The training process
is monitored by the validation accuracy.

3.7. Inference. Due to the memory limitations, we crop
patches of size 64× 64× 32 as input to the network. To
evaluate the performance of the model, each volume of the
validation set or test set is sequentially cropped and eval-
uated to predict the entire image. As shown in Figure 6, we
use 28 pixels as the step size for sliding in the X- and Y-axis
while the step size is set to 8 in Z-axis. The volumes are
cropped and evaluated after each slide. Due to sliding, there
are overlapping areas where voxels will be evaluated re-
peatedly, and the repeated evaluation results of a specific
voxel will be added up. We use a matrix to record the
number of times each voxel is evaluated during the sliding
process. The final evaluation result is divided by this matrix
to get an average evaluation result. After the sigmoid

Low-level Features

3D Global Average Pooling Upsampling

+X

F1

F4

F5

W1

W2

Multiply Element-wise

(CL × D× HL ×WL)
Output Features

(CL × D× HL ×WL)

(CL × D × HL ×WL)

Conv1×1×1+ BN + ReLU

(CH×1×1×1)

(CL×1×1×1)
(CL ×D×HL ×WL)

(CH ×D×HH×WH)
High-level Features

Conv3×3×3+ BN

F2

F3

HL

WL

D

CL
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Figure 4: 3D global attention upsample module.
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function is processed, the threshold method is used to obtain
the binarized prediction results.

4. Experimental Results and Dataset

4.1.Dataset. We collected 39 cases of raw semicircular canal
CT images, which are voxel-level manually annotated by
clinically experienced doctors. The age and gender distri-
bution of the dataset samples are shown in Figure 7. The
private information of the patients is encrypted. The size of
each raw semicircular canal CT image is 512× 512× 64

voxels, the spacing of CT volumes in X, Y, and Z direction is
1mm. The manual annotated CT images are used to train
and objectively test our segmentation network. In 39 an-
notated cases, 26 cases are used as the training set and 7 cases
are used as the validation set, and the other 6 cases are used
as the test set. Some CT slices are shown in Figure 8. The
three pictures in the left column, respectively, represent the
37th, 39th, and 41th original slices, while the three pictures
in the right column are the corresponding ground truth (the
regions of semicircular canals have been marked in blue).
The two enlarged images in the middle represent the en-
largement of the original image and the corresponding
ground truth of the 39th slice.

4.2. Evaluation Metrics. We employed Dice similarity co-
efficient (DSC [%]), Average Hausdorff Distance (AVD
[mm]), and Average Symmetric Surface Distance (ASD
[mm]) to evaluate our proposed method in this paper. P and
G, respectively, represent predicted value and the ground
truth in the following descriptions.

DSC value indicates the overlapped voxels between the
predicted results and the ground truth. And its mathematical
definition is as shown in

DSC(P, G) �
2|P∩G|

|P| +|G|
, (4)

where | · | denotes the number of labeled voxels. The larger
the value of DSC, the higher the degree of overlap between
the segmentation prediction and the ground truth.

Hausdorff Distance (HD) is also an evaluation index and
it is frequently used in image segmentation. The Average

Low-level Features

High-level Features

3D GAU

Output Features

3D Spatial SE

+

Element-wise

(a)

Low-level Features

High-level Features

3D Spatial SE 3D GAU

Output Features

(b)

Low-level Features

High-level Features

3D GAU 3D Spatial SE

Output Features

(c)

Figure 5: Three different arrangements of attention modules. (a) Spatial and channel attention in parallel manner. (b) Spatial first order of
sequential manner. (c) Channel first order of sequential manner.

512

512

64

…
64

64

24
8

8

32

28

…
28

2836

36
28

X

Y

Z

A
B

C

D

Figure 6: The inference method. The feature block with a size of
512× 512× 64 represents the original image; the smaller block A
with the size of 64× 64× 32 represents the feature block that is
input into the network for evaluation. B, C, and D, respectively,
represent the sliding mode in the X-, Y-, and Z-axis directions, and
the sliding steps are 28, 28, and 8, respectively.

Computational Intelligence and Neuroscience 7



Hausdorff Distance (AVD) is the Hausdorff Distance av-
eraged over all points, which is more stable and less sensitive
than HD. Its definition can be formulated as

AVD(P, G) � max(d(P, G), d(G, P)), (5)

where d(P, G) is directed Average Hausdorff Distance that is
given by

d(P, G) �
1
N


p∈P

min
g∈G

‖p − g‖, (6)

where N is the number of voxels in P.
ASD is a surface-based metric to measure the average

surface distance between symmetrical positions of two three-
dimensional objects, which is R, and the Euclidean distance
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Figure 7: The age and gender distribution of the dataset samples. The abscissa numbers represent the age interval; the numbers on the
ordinate indicate the corresponding number of people. Females are marked in orange and males are marked in blue.
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Figure 8: CTslices of our dataset. (a1), (a2), and (a3) represent the 37th, 39th, and 41st slices of a sample in our dataset. (b1), (b2), and (b3) are
the corresponding labels; the areas where the semicircular canals are located are marked in blue. (a2’) and (b2’) are enlarged pictures of (a2)
and (b2).
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to the closest surface voxel from the ground truth G is
calculated, and vice versa. Let S (R) denote the set of surface
voxels of R; the shortest distance of an arbitrary voxel v to S
(R) is defined as

d(v, S(R)) � minsR∈S(R) v − sR

����
����, (7)

where ‖ · ‖ denotes the Euclidean distance. Based on this, the
ASD could be defined as follows:

ASD(R, G) �
1

|S(R)| +|S(G)|

× 
SR∈S(R)

d SR, S(G)( ⎛⎝

+ 
SG∈S(G)

d SG, S(R)( ⎞⎠,

(8)

for ASD values, the smaller the better.

4.3. Experimental Results. We evaluated the model on the
test dataset which contains 6 samples, and the results are
shown in Table 1. It can be seen that our network has a good
performance on the test dataset. Most samples reach a dice
coefficient over 90%. However, the segmentation result of
sample 4 is not ideal. As a matter of fact, in sample 4, the
superior semicircular canal part of the left semicircular canal
is less segmented in the prediction. The specific analysis is
discussed in Section 5.4.

The visualization results are shown in Figure 9. The
ground truth image is on the left, while the predicted image
is on the right. The ground truth and predictions corre-
sponding to the same semicircular canal are, respectively,
marked with Gi and Pi (i � 1, 2, . . . , 6). For the convenience
of presentation, we only show one of each pair of semi-
circular canals.

5. Discussion

Ablation experiments are conducted to evaluate the effec-
tiveness of the 3D spatial SE module and the 3D GAU
module in the proposed network. We first add the 3D spatial
SE module and 3D GAU module to 3D U-Net separately to
verify the effectiveness of them and then use them at the
same time to verify that the combination of the two can
make the network perform better. And in 5.2, we compare
three different ways of arranging the channel and spatial
attention submodules and discuss why we choose the spatial
first-order sequential arrangement. For further comparison,
we train models using other state-of-the-art deep learning
architectures with the same training settings on our dataset.
The experimental results show that our method achieves
better performance.

5.1. Ablation Experiments. The results of the ablation ex-
periments are shown in Table 2. The well-known 3D U-Net
is used as the benchmark. We replace the decoder stage of

3D U-Net with 3D GAU modules, and we call it 3D GAU
U-Net. We introduced 3D spatial SE modules to each layer
of the encoder and named it 3D sSE U-Net. Finally, we
simultaneously introduce the 3D GAU modules and the 3D
spatial SE modules in 3D U-Net as our network. Experi-
mental results show that our proposed network has the best
performance.

Comparing the segmentation performance of the 3D
U-Net with 3D GAU U-Net, we find that when the 3D GAU
modules are introduced, the DSC value increases from 91.6%
to 91.9%, the AVD value drops by 0.301mm, and the ASD
value drops by 1.30mm.This result proves that the 3D GAU
module is able to improve the segmentation accuracy.

To capture the spatial dependencies among positions of
the feature maps from the encoder, we add the 3D spatial SE
attention module in the network and this operation is
proved to be beneficial for our segmentation task. According
to Table 2, the DSC value of 3D sSE U-Net increases by about
0.6% to the 3D U-Net, and the AVD and ASD values de-
crease by 0.822mm and 3.44mm, respectively. The results
above indicate that the 3D spatial SE attention module helps
to enlarge the receptive field and brings benefits to the
segmentation results.

We combine the 3D GAU module with the 3D spatial SE
attention module and find out that this combination can
achieve the best result: the DSC value is increased to 92.5%; the
AVD and ASD achieve 0.217mm and 0.639mm, respectively.
This experiment proves the effectiveness of our improvements.

We use the box chart to calculate the distribution of the
segmentation results of 6-test data with different methods.
Figure 10 indicates that our method achieves relatively
higher mean DSC value, and the variation is within the
acceptable range. The AVD and ASD values of our method
results are lower with small variations. The 3D sSE U-Net
with 3D spatial SE module has the competitive performance
to our network, but our network combines the advantages of
spatial and channel attention mechanism, which not only
improves the average segmentation accuracy, but also re-
duces the variance, making the model more robust.

5.2. Combining Methods of Channel and Spatial Attention
Modules. In this experiment, we compared three different
ways of arranging spatial attention modules and channel
attention modules: channel first-order sequential arrange-
ment, spatial first-order sequential arrangement, and parallel
use of both attention modules. Table 3 summarizes the ex-
perimental results on different attention arranging methods.

Table 1: The evaluation results of the network.

Samples DSC (%) AVD ASD
Sample 1 95.05 0.0528 0.0443
Sample 2 92.64 0.0999 0.0589
Sample 3 95.11 0.0595 0.0585
Sample 4 86.21 0.8142 3.0773
Sample 5 95.03 0.1266 0.5376
Sample 6 90.97 0.1515 0.0625
Mean 92.50 0.2174 0.6399
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As shown in Table 3, arranging the attention modules in
sequential manner achieved better performance than in
parallel manner. Theoretically, there is a huge difference
between the outputs of the channel attentionmodule and the
spatial attention module; thus in parallel manner arrange-
ment mode the simple direct summation of the two output
features will mix different information and adversely affect
the training process. According to the experiment results,
the spatial first order is slightly better than channel first
order, and we adopt the better one as our method.

5.3. Comparison with Other Networks. In this section, the
proposed network architecture is compared with several
state-of-the-art deep-learning-based architectures. We
perform V-Net [21], Residual Symmetric U-Net [22],
DenseVoxNet [23], and VoxResNet [19] on our dataset with
the same training settings as our method. The experimental
results are shown in Table 4. The dice coefficient of V-Net is
86.3%, which is the lowest among the networks. Residual
Symmetric U-Net reaches the dice score of 91.7% which is
close to our result, but the AVD and ASD results are worse.
DenseVoxNet and VoxResNet, respectively, achieved 88.3%
and 89.4% dice coefficient, and both networks perform well
on big organs, while they are less effective on the small organ
task. It shows that our network achieves state-of-the-art
performance in the task.

5.4. Limitations and Future Work. Although our network
can achieve good segmentation results on most samples, the
dice coefficient of sample 4 in Table 1 is less than 90%, which
is far from satisfactory. Figure 11(a) is the left and
Figure 11(b) is the right semicircular canal of sample 4. It
shows in Figure 11(a) that the superior semicircular canal
part of the left semicircular canal is completely missing. In
other parts, there are also some differences between ground
truth and predictions. There are several reasons that may
account for this. Our network was trained on a training
cohort with an age range from 17 to 70. However, in the test
dataset, sample 4 is from a nine-year-old child, whose
semicircular canal is about 30% smaller than other adult
samples; thus it is difficult to segment sample 4 with the same
CNN settings. The diameter of the superior semicircular
canal is less than 8 pixels in the image. After three times of
pooling, that is, 8 times of downsampling, its information
merges with the background. Due to the loss of this in-
formation, the network cannot restore the shape of the
superior semicircular canal during the decoder stage. An-
other possible reason is that the semicircular canals of
children are not fully developed, so their morphological
differences from adults may lead to the inaccurate seg-
mentation in some details. Nevertheless, our network has
better segmentation performance on sample 4 than other
state-of-the-art networks, the results of sample 4 are listed in
Table 5; it shows that the segmentation dice coefficient of our

(G6)

(G5)

(G4)

(P6)

(P5)

(P4)(G1)

(G3)

(G2)

(P3)

(P2)

(P1)

Figure 9:The segmentation results of the test dataset. G1, G2, . . . , G6 represent the ground truth of the 6 samples in the test set, while P1, P2,
. . ., P6 are the corresponding predictions. All of the semicircular canals are the right semicircular canal.

Table 2: The results of the ablation experiments.

Scenarios DSC (%) AVD ASD
3D U-Net 91.6 1.130 4.130
3D GAU U-Net 91.9 0.829 2.830
3D sSE U-Net 92.2 0.308 0.944
Our network 92.5 0.217 0.639
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Figure 10: Ablation experiment statistics box diagram of semicircular canals on the test dataset. (a)TheDSC results of fourmethods. (b)The
AVD results of four methods. (c) The ASD results of four methods. The compartments between the boxes represent the upper quartile and
the lower quartile data distribution intervals.The green triangle, black plus sign, and the orange line represent themean, outlier, andmedian,
respectively.

Table 3: The results of different arrangements of attention modules.

Description DSC (%) AVD ASD
3D U-Net + channel + spatial 91.9 0.444 1.515
3D U-Net + spatial + channel 92.5 0.217 0.639
3D U-Net + channel and spatial in parallel 91.3 1.145 4.675

Table 4: The results of comparison with other networks.

Network DSC (%) AVD ASD
V-Net 86.3 5.014 12.00
Residual Symmetric U-Net 91.7 1.828 5.439
DenseVoxNet 88.3 0.595 2.345
VoxResNet 89.4 1.626 5.956
Our network 92.5 0.217 0.639

(G4 left) (P4 left)

(a)

(G4 right) (P4 right)

(b)

Figure 11: The comparison of ground truth and prediction of sample 4. (a) The left semicircular canal of sample 4, where (G4 left) is the
ground truth and (P4 left) is the corresponding prediction. (b)The right semicircular canal of sample 4, where (G4 right) is the ground truth
and (P4 right) is the corresponding prediction. The difference between the ground truth and the prediction is marked with the red circle.
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network for sample 4 is at least 2.8% higher than other
networks.

In the future, we will enlarge our training set by col-
lecting data from different age groups. Meanwhile, we will
design an extra branch to adapt the original network to
smaller size samples, which would improve the robustness
and generalization of the network. And our proposed net-
work will be applied in other segmentation tasks in the
future.

6. Conclusions

This paper proposes an improved 3D U-Net with attention
mechanism, which can segment semicircular canal in CT
volumes effectively. The network makes extensive use of the
volumetric data information, improves the feature utiliza-
tion, and reduces the information loss by replacing the skip
connections of 3D U-Net with spatial and channel attention
modules in a spatial first-order manner. The performance of
the proposed CNN network achieved a mean DSC of 92.5%,
a mean AVD of 0.217mm, and a mean ASD of 0.639mm on
the test set. The experimental results indicate that the
proposed method achieves better results than some state-of-
the-art methods. The accurate segmentation of semicircular
canal helps to promote the artificial intelligence-assisted
diagnosis of ear diseases, inner ear surgical planning, and
customized reduction treatment of otolithiasis.
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