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Abstract: Waterborne gastrointestinal (GI) illnesses demonstrate seasonal increases 

associated with water quality and meteorological characteristics. However, few studies 

have been conducted on the association of hydrological parameters, such as streamflow, 

and seasonality of GI illnesses. Streamflow is correlated with biological contamination and 

can be used as proxy for drinking water contamination. We compare seasonal patterns of 

GI illnesses in the elderly (65 years and older) along the Ohio River for a 14-year period 

(1991–2004) to seasonal patterns of streamflow. Focusing on six counties in close 

proximity to the river, we compiled weekly time series of hospitalizations for GI illnesses 

and streamflow data. Seasonal patterns were explored using Poisson annual harmonic 

regression with and without adjustment for streamflow. GI illnesses demonstrated 

significant seasonal patterns with peak timing preceding peak timing of streamflow for all 

six counties. Seasonal patterns of illness remain consistent after adjusting for streamflow. 

This study found that the time of peak GI illness precedes the peak of streamflow, 

suggesting either an indirect relationship or a more direct path whereby pathogens enter 
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water supplies prior to the peak in streamflow. Such findings call for interdisciplinary 

research to better understand associations among streamflow, pathogen loading, and rates 

of gastrointestinal illnesses.  

Keywords: drinking water quality; gastrointestinal infections; hydrology; pathogens; 

seasonality; streamflow  

 

1. Introduction 

Waterborne pathogens are a significant health concern worldwide, with an estimated 88% of 

diarrheal diseases attributable to unsafe water supplies [1]. These food and waterborne pathogens are a 

concern even in the United States, with approximately 76 million cases of illness and 5,000 deaths 

caused by gastrointestinal infections annually [2]. A recent assessment of waterborne disease outbreaks 

in the U.S. demonstrated that 780 of the 833 outbreaks that occurred between 1971 and 2006 were 

associated with drinking water and of these 87.2% occurred in public water supplies [3].  

Disease causing waterborne protozoa, such as Giardia and Cryptosporidium spp., are ubiquitous in 

water supplies and have been detected in both surface water sources and finished, post-treatment, 

drinking water supplies [4–6]. These protozoa were detected in 97% of samples of raw surface waters 

tested in Eastern and Midwestern states in the United States [5] and Cryptosporidium oocysts were 

detected in 34 of 35 samples of river waters in Washington State [7]. These pathogens are not only 

common in the environment, the concentration of the pathogens demonstrate seasonal patterns in 

surface waters [7–10]. 

The waterborne diseases caused by these protozoa in humans also demonstrate seasonal patterns in 

incidence. Increases in cryptosporidiosis incidence are seen during the warm, rainy season in tropical 

climates [11–13]. In temperate climates, increases in incidence of cryptosporidiosis are seen in the 

spring and fall in [14–17]. Fewer studies have explored the seasonal patterns in incidence of giardiasis; 

however similar patterns have been seen. In the tropical climate of southern India, giardiasis 

demonstrated higher rates in months with higher rainfall [18] while the arid climate of Lebanon, 

giardiasis demonstrated consistent rates throughout the year with little seasonal variation [19].  

Increase in diarrheal disease incidence has been shown to be associated with water quality 

parameters, such as turbidity [20–23]. However, limited studies have been conducted on the 

association between rates of gastrointestinal illness and streamflow, or river discharge, which is highly 

correlated with turbidity (|r| > 0.4; p < 0.01) [24]. A study conducted in England and Wales 

demonstrated that the incidence rate of cryptosporidiosis was positively related to the maximum 

average streamflow in that month for months between April and July. Between August and November, 

the cryptosporidiosis incidence rate was also positively associated with maximum river flows but only 

after adjusting for the previous month’s temperature, rainfall, and cryptosporidiosis rate [25].  

Environmental conditions can affect the distribution of these protozoa, and other pathogens, in 

surface drinking water supplies. For example, Cryptosporidium oocysts are transmitted via the feces of 

infected animals, primarily cattle. The manure may be spread on land where the oocysts may survive 

for over a year [26] and may be transferred into rivers waters under the correct conditions, such as 
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being within the 100 year flood plain and including a large enough farm area [27]. Sewage effluent has 

also been recognized as a source of pathogen contamination of surface waters [27,28]. Once the 

pathogens are washed into rivers, specific climatic and soil conditions allow them to survive for 

extended periods of time and be re-suspended at a later time.  

Each river has unique hydrological characteristics, such as streamflow and water temperature, 

which may affect the rates and seasonal patterns of waterborne diseases in communities that rely on 

drinking water from that particular river. While most pathogens are removed from drinking water 

supplies in the treatment process through coagulation, sedimentation, and filtration [29] some 

pathogens, such as Cryptosporidium, are resistant to the disinfectants typically used in drinking water 

treatment [30]. In general, water treatment only reduces pathogen loads rather than completely 

removing pathogens and higher pathogen concentrations are expected in the spring time with increased 

runoff and snowmelt. A study of gastrointestinal outbreaks between 1948 and 1994 in the U.S. 

demonstrated that 51% of outbreaks were preceded by heavy rainfall events [31]. This demonstrates 

that treatment facilities can be overburdened by upstream sewage discharges or increases in 

streamflow due to rainfall. Streamflow, a commonly monitored measure, is highly correlated with 

biological contamination [24], and therefore can be used as a proxy for drinking water contamination 

for which monitoring data is not systematically maintained. 

In this study, we assessed seasonal patterns for gastrointestinal illness in the elderly for counties 

along the Ohio River and compared them to the seasonal patterns of streamflow. The elderly are a 

vulnerable subpopulation for gastrointestinal infections. They often have cardiac, renal, or other 

illnesses which affect their ability to compensate for the fluid shifts seen with gastroenteritis and rates 

of hospitalization for gastroenteritis rise with age [32]. The Ohio River was selected as a case study 

because it serves as a source of drinking water for approximately five million people in 29 public 

drinking water utilities [33]. The most recent assessment of water quality along the Ohio River 

demonstrated that the entire river fully supports public water supply [33]. However based on the Clean 

Water Act Standards, several areas were listed on the 303(d) impairment list due to violations of 

criteria for iron, temperature, and dissolved oxygen [33]. In fact, two-thirds of the river was listed as 

impaired for contact recreation due to the presence of bacteria [33]. Additionally, the Ohio River is 

fairly homogenous in meteorological characteristics, such as temperature and precipitation (Figure 1). 

2. Methods 

2.1. Location Selection  

Cities in close proximity to the Ohio River were selected for this analysis using ArcGIS 9.1 (ESRI, 

Redlands, CA, USA). A 10-mile buffer was created along the river and overlaid with a layer of cities 

with populations greater than 50,000 people. Those cities which fell within the river buffer were 

selected for analysis and we analyzed data for the counties in which each of these cities fell. Figure 1 

shows the 7 cities from 6 counties in the Ohio River watershed that were used for the analysis along 

with annual average temperature, annual cumulative precipitation, and the proportion of public water 

supplied by surface water among these communities.  
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Figure 1. Selected cities and characteristics of the Ohio River watershed. Cities 

(populations >50,000 persons) which fall within a 10-mile buffer of the Ohio River (Panel A). 

Average annual temperature (°C) by county (Panel B) and annual cumulative precipitation 

(mm) by county in the Ohio River watershed (PRISM Data - http://www.prism.oregonstate.edu/) 

(Panel C). Percent of county public water supply from surface water sources in the Ohio 

River watershed (Panel D) (USGS Data, http://water.usgs.gov/watuse/data/2000/index.html). 

 

 

2.2. Outcome Data  

Hospitalization records for persons aged ≥65 years were abstracted for each of the six selected 

counties for a 14-year period (1 January 1991–31 December 2004) from the Centers for Medicare and 

Medicaid Services (CMS). About 96% of all adults aged ≥65 years are CMS beneficiaries, therefore their 

hospitalization charges are reflected in this dataset [34,35]. Each hospitalization record contains 

individual patient information including state of residence, sex, age at admission, dates of admission and 

discharge, and ten ICD-9-CM system diagnosis codes. For this analysis, we considered records with the 

following diagnoses in any of these ten diagnosis codes: cryptosporidiosis (ICD 007.2, 007.4) [36], 

giardiasis (ICD 007.1), other protozoa (ICD 007.8, 007.9), all protozoa (ICD 007.1, 007.2, 007.4, 007.8, 

007.9), viral GI (ICD 008.6), ill-defined GI infections (ICD 008.5, 008.8, 009), GI symptoms (ICD 

558.9, 787) and all GI infections without Clostridium difficile (ICD 001-009 excluding 008.45). We 

removed Clostridium difficle from this outcome as it is primarily a nosocomial infection. Hospitalization 
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records were aggregated according to each patient’s diagnosis code, location of residence, and date of 

admission. Annual rates for each outcome were calculated for each county using the linearly interpolated 

elderly population for 1997 (midpoint of data timeframe) from 1990 and 2000 U.S. Census Data as the 

denominator. We also created a weekly time series of rates for each county for each outcome of interest 

for seasonality assessment.  

2.3. Exposure Data  

We abstracted daily streamflow data for each of the six counties selected along the Ohio River, as 

described above, from publicly available U.S. Geological Survey (USGS) [37] databases for the study 

period (1991–2004). In cases when more than one monitoring station provided data for the entire study 

period the station which was closest to the main river stem (Ohio River), based on latitude and 

longitude coordinates of the station, was chosen. The daily streamflow data was aggregated on a 

weekly level. We did not have any missing data and therefore, no interpolation was needed. 

2.4. Exploratory Assessment of Correlation  

Spearman cross-correlations were calculated for weekly streamflow between the six selected counties 

to assess similarities in seasonal pattern of streamflow along the river. Spearman cross-correlations were 

also calculated between weekly outcome rates and streamflow for each selected county along the Ohio 

River for outcomes with sufficient disease outcome counts; ill-defined GI infections, GI symptoms, and 

all GI infections. We considered time-lagged correlations with weekly GI disease outcome rates lagged 

by a week after peak streamflow for up to twenty four weeks, 6 months, to assess associations with the 

nadir or seasonal minimum in outcome. We also considered the correlation between weekly outcome rate 

and streamflow for the previous week, two weeks previous, three weeks previous, etc. up to twenty five 

weeks previous.  

2.5. Seasonality Assessment  

We assessed seasonal patterns for each outcome and each county selected along the Ohio River 

using Poisson harmonic regression. Seasonality is characterized as systematic, periodic fluctuations 

within the course of a year. It is assessed by several parameters: (1) the time when the seasonal curve 

reaches its maximum; (2) annual maximum value (peak); and (3) annual minimum value (nadir) [16]. 

These seasonal parameters are calculated based on values predicted by the harmonic regression 

(Equation 1): 

 
(1)

where yt is a time-series of rates for a specific outcome, t is time in weeks, ω is frequency (ω = 1/52.25), 

β0 is intercept, β1, and β2 are regression parameters, and εt is the error term. The relative intensity, a 

measure of the shape of the seasonal pattern from peak to nadir, is calculated by dividing the estimated 

seasonal maximum value by the estimated seasonal minimum value.  

This model was used to assess the seasonal peak timing of streamflow, and the seasonal peak timing 

of each outcome, GI symptoms, ill-defined GI infections and all GI infections. The other outcomes of 

tt ttyE   )2cos()2sin(])[ln( 210
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interest which we had defined had a low number of reported counts by county, with many weeks of 

zero counts, for which seasonality cannot be assessed using Poisson harmonic regression. Based on 

exploratory data analysis, we found that each time series, streamflow and all outcomes, demonstrated 

only one seasonal periodic cycle therefore a single harmonic term was used for seasonality assessment.  

Seasonality was also assessed adjusting for weekly average streamflow by county using the Poisson 

harmonic regression equation (Equation 2):  

 
(2)

In this case–xt is the weekly time series for average streamflow for a given location. Adjusting for 

streamflow allows us to take into account any seasonal variation which may be due to streamflow and 

only assess the seasonality of the outcome. The results of the models are presented in terms of peak 

timing with confidence intervals, estimated from regression parameters and relative intensity, or 

amplitude. Details of the derivation of these seasonal curve properties predicted by the Poisson 

harmonic regression are given in the supplemental material (Supplemental Material: Figure A).  

3. Results 

We selected six counties with population centers with more than 50,000 residents within a 10-mile 

buffer of the Ohio River (Figure 1) and compared the seasonal patterns for rates of hospitalization for 

gastrointestinal infections with the seasonal patterns in streamflow in the selected counties. The 

streamflow data for Jefferson Co, KY and Daviess Co, KY were collected from Ohio River monitoring 

stations, which reported higher values for streamflow since it is a larger water body, whereas data for the 

other counties were gathered from tributaries which flowed into the Ohio River. Regardless of where the 

streamflow data were collected, the variability is similar as suggested by the coefficent of variation 

which was close to one for all sites (Table 1).  

Table 1. Descriptive statistics for streamflow (ft3/sec). Weekly mean, standard deviation, 

minimum, maximum and interquartile range over the 14-year period 1991–2004. Counties 

are listed in order based on the flow of the river, east to west. 

 STREAMFLOW (FT
3/SEC) 

 MEAN STD. DEV MIN MAX 
INTERQUARTILE  

RANGE 

COEFFICENT 

OF VARIATION 

Allegheny Co, PA 19,588.48 15,728.91 2,431.43 80,185.71 6,349.29–28,803.57 0.803 

Cabell Co, WV 50.93 82.47 0.22 780.86 4.72–65.21 1.619 

Hamilton Co, OH 1,419.22 1,684.33 81.00 12,822.86 343.64–1,785.93 1.187 

Jefferson Co, KY 124,019.44 108,094.86 8,595.71 620,571.43 37,382.14–183,607.14 0.872 

Daviess Co, KY 135,325.20 112,379.97 9,528.57 627,142.86 45,875.00–193,714.29 0.830 

Vanderburgh Co, IN 31,707.29 30,406.60 2,998.57 205,857.14 10,685.71–42,600.00 0.959 

 

Weekly streamflow between the six selected counties is strongly correlated suggesting that the time 

series for streamflow demonstrate a similar pattern in each county (Supplemental Material: Table A). 

This analysis allowed us to confirm that regardless of where the data were collected (on the Ohio River 

or a tributary) the seasonal patterns in streamflow remain consistent.  

ttt xttyE   3210 )2cos()2sin(])[ln(
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Annual rates were calculated for each outcome of interest (Table 2). As documented elsewhere, 

rates for specific disease outcomes, such as cryptosporidiosis and giardiasis, were low because 

hospitalization and testing for specific pathogens is limited and under-reporting of these infections 

occurs [36]. Disease counts and annual rates were highest for GI symptoms, ill-defined GI infections, 

and all GI infections; thus, these three outcomes were used for correlation and seasonality assessment.  

Table 2. Total cases and annual rate (per 10,000) for each outcome and for each selected 

county in the Ohio River Watershed over the 14-year period 1991–2004. Counties are 

listed in order based on the flow of the river, east to west. Those outcomes in bold provided 

sufficient counts for seasonality assessment. 

COUNTY 

NAME 

ELDERLY 

POPULATION 

(65 + Y.O.) 

CRYPTO-

SPORIDIOSIS * 
GIARDIASIS *

OTHER 

PROTOZOA *
VIRUSES * GI SYMPTOMS * 

ILL DEFINED GI 

INFECTIONS * 

ALL GI  

INFECTIONS *

CASES RATE CASES  RATE CASES RATE CASES RATE CASES RATE CASES RATE CASES RATE 

Allegheny Co,  

PA 
229,290 1 0.00 34 0.11 2 0.01 57 0.18 41,024 127.80 3,156 9.83 4,873 15.18

Cabell Co,  

WV 
15,586 1 0.05 1 0.05 1 0.05 3 0.01 4,879 223.60 291 13.34 392 17.96

Hamilton Co,  

OH 
114,280 1 0.01 22 0.14 1 0.01 15 0.05 26,264 164.16 1,242 7.76 1,850 11.56

Jefferson Co,  

KY 
92,850 0 0.00 9 0.07 1 0.01 7 0.02 24,082 185.26 1,503 11.56 2,016 15.51

Daviess Co,  

KY 
12,283 0 0.00 0 0.00 0 0.00 1 0.00 3,818 222.03 185 10.76 236 13.72

Vanderburgh 

Co, IN 
26,233 0 0.00 2 0.05 2 0.05 10 0.03 7,002 190.65 364 9.91 527 14.35

Total  

(all counties) 
490,522 3 0.00 68 0.10 7 0.01 93 0.14 107,069 155.91 6741 9.82 9,894 14.41

* ICD 9-CM code used for each outcome: cryptosporidiosis (ICD 007.4, 007.2); giardiasis (ICD 007.1); other protozoa 

(ICD 007.8, 007.9); viruses (ICD 008.6); GI symptoms (ICD 558.9, 787); ill-defined GI infections (ICD 008.5, 008.8, 

009); all GI infections (ICD 001-009 W/O 008.45). 

Cross-correlations between streamflow and all three outcomes, GI symptoms, ill-defined GI 

infections, and all GI infections, for each county revealed that in general, high correlations between 

these GI outcomes and streamflow were synchronous. With increasing lag periods the correlation 

weakened (Figure 2). All counties, except Cabell Co, WV and Vanderburgh Co, IN, demonstrated 

significant synchronous (Lag0) correlation values for GI symptoms and ill-defined GI infections. 

These correlations remained significant when considering lagged relationships up to twelve weeks. All 

GI infections exhibited weaker associations and the correlations were only significant in Allegheny 

Co, PA, Jefferson Co, KY and Daviess Co, KY. For all three outcomes of interest the highest 

correlations were seen between 6 and 12 week lags. At a lag of 6 months, 24–25 weeks, the correlation 

becomes negative suggesting that the seasonal pattern for gastrointestinal infections and streamflow 

are similar with peaks and nadirs occurring at roughly the same time.  
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Table 3. Seasonal pattern for streamflow over 14 year-period for counties along the Ohio 

River with estimated peak timing, 95% confidence interval, relative intensity, and source 

of discharge data (main river stem or tributary). Counties are listed in order based on the 

flow of the river, east to west. Seasonal parameters which are significant (p < 0.05) are 

denoted with an asterisk (*). 

COUNTY AND  

SEASONAL PATTERN 

PEAK ESTIMATE  

(95% CI) 

RELATIVE 

INTENSITY 

DATA  

SOURCE 

ALLEGHENY CO, PA 

8.795 (8.793, 8.797) * 

~4th week of February 
3.56 

Allegheny 

River 

(Tributary) 

CABELL CO, WV 

9.758 (9.724, 9.792) * 

~1st week of March 
10.18 

East Fork 

Twelvepole 

Creek 

(Tributary) 

HAMILTON CO, OH 

12.404 (12.402, 12.405) * 

~3rd week of March 
4.88 

Little Miami 

River 

(Tributary) 

JEFFERSON CO, KY 

10.257 (10.256, 10.257) * 

~1st week of March 
5.27 

Ohio River 

(Main Stem) 

DAVIESS CO, KY 

10.480 (10.480, 10.481) * 

~1st week of March 
4.83 

Ohio River 

(Main Stem) 

VANDERBURGH CO, IN 

13.088 (13.088, 13.089) * 

~4th week of March 
3.26 

Wabash River

(Tributary) 
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Table 4. Seasonal pattern for GI symptoms over 14 year-period for counties along the 

Ohio River with estimated peak timing and relative intensity both with and without 

adjustment for streamflow. Counties are listed in order based on the flow of the river, east 

to west. Significant (p < 0.05) seasonal peak estimates are denoted with an asterisk (*). 

 WITHOUT ADJUSTMENT  ADJUSTING FOR STREAMFLOW 
† 

COUNTY AND SEASONAL PATTERN 
PEAK ESTIMATE 

(95% CI) 

RELATIVE 

INTENSITY

PEAK ESTIMATE  

(95% CI) 

RELATIVE 

INTENSITY 

ALLEGHENY CO, PA 

10.13 (9.95, 10.31) *

~1st week of March
1.19 

10.28 (8.01, 12.54) * 

~1st week of March 
1.17 

CABELL CO, WV 

2.90 (2.69, 3.11) * 

~3rd week of January
1.21 

2.66 (1.75, 3.57) * 

~3rd week of January 
1.20 

HAMILTON CO, OH 
8.93 (8.61, 9.24) * 

~4th week of 

February 

1.20 
8.85 (8.28, 9.43) * 

~4th week of February
1.19 

JEFFERSON CO, KY 
6.36 (6.02, 6.70) * 

~2nd week of 

February 

1.22 
6.02 (4.03, 8.01) * 

~2nd week of February
1.20 

DAVIESS CO, KY 

3.39 (3.15, 3.63) * 

~3rd week of January
1.20 

3.19 (1.68, 4.69) * 

~3rd week of January 
1.20 

VANDERBURGH CO, IN 
7.90 (7.38, 8.41) 

~3rd week of 

February 

1.11 
7.55 (6.57, 8.53) 

~3rd week of February
1.11 

† Adjustments were based on weekly average streamflow. 
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Table 5. Seasonal pattern for Ill-defined GI infections over 14 year-period for counties 

along the Ohio River with estimated peak timing and relative intensity both with and 

without adjustment for streamflow. Counties are listed in order based on the flow of the 

river, east to west. Significant (p < 0.05) seasonal peak estimates are denoted with an 

asterisk (*). 

 WITHOUT ADJUSTMENT ADJUSTING FOR STREAMFLOW 
† 

COUNTY AND SEASONAL PATTERN 
PEAK ESTIMATE 

(95% CI) 

RELATIVE 

INTENSITY

PEAK ESTIMATE  

(95% CI) 

RELATIVE 

INTENSITY

ALLEGHENY CO, PA 
6.40 (5.97, 6.83) * 

~2nd week of 

February 

2.44 
6.52 (4.93, 8.11) * 

~2nd week of February 
2.54 

CABELL CO, WV 

5.08 (4.64, 5.51) * 

~1st week of February
2.62 

4.93 (3.97, 5.89) * 

~1st week of February 
2.56 

HAMILTON CO, OH 
6.88 (6.32, 7.44) 

~2nd week of 

February 

1.76 
6.69 (6.29, 7.09) 

~2nd week of February 
1.74 

JEFFERSON CO, KY 

4.96 (4.52, 5.40) * 

~1st week of February
2.57 

5.52 (4.16, 6.87) * 

~1st week of February 
2.80 

DAVIESS CO, KY 

3.69 (3.27, 4.10) * 

~3rd week of January
3.88 

3.79 (2.84, 4.74) * 

~3rd week of January 
3.94 

VANDERBURGH CO, IN 

3.79 (3.51, 4.08) * 

~3rd week of January
2.78 

4.28 (3.90, 4.67) * 

~3rd week of January 
2.86 

† Adjustments were based on weekly average streamflow. 
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Table 6. Seasonal pattern for All GI infections over 14 year-period for counties along the 

Ohio River with estimated peak timing and relative intensity both with and without 

adjustment for streamflow. Counties are listed in order based on the flow of the river, east 

to west. Significant (p < 0.05) seasonal peak estimates are denoted with an asterisk (*). 

 WITHOUT ADJUSTMENT ADJUSTING FOR STREAMFLOW 
† 

COUNTY AND SEASONAL PATTERN 
PEAK ESTIMATE  

(95% CI) 

RELATIVE 

INTENSITY

PEAK ESTIMATE  

(95% CI) 

RELATIVE 

INTENSITY

ALLEGHENY CO, PA 

8.04 (7.36, 8.71) * 

~3rd week of February 
1.63 

8.10 (5.87, 10.33) * 

~3rd week of February
1.75 

CABELL CO, WV 

4.79 (4.70, 4.89) * 

~1st week of February 
1.90 

4.69 (3.45, 5.92) * 

~1st week of February
1.87 

HAMILTON CO, OH 

9.38 (8.24, 10.51) 

~4th week of February 
1.44 

9.39 (8.61, 10.17) 

~4th week of February
1.44 

JEFFERSON CO, KY 

5.67 (5.49, 5.85) * 

~1st week of February 
1.82 

6.47 (4.60, 8.33) * 

~2nd week of 

February 

2.04 

DAVIESS CO, KY 

3.13 (2.99, 3.27) * 

~3rd week of January 
2.61 

3.16 (2.03, 4.29) * 

~3rd week of January
2.61 

VANDERBURGH CO, IN 

4.02 (3.55, 4.49) * 

~4th week of January 
1.76 

5.00 (4.49, 5.51) * 

~1st week of February
1.84 

† Adjustments were based on weekly average streamflow. 

4. Discussion 

Rivers have distinct characteristics which can affect the rate and seasonal pattern of waterborne 

diseases. In this paper, we compare the seasonal patterns of streamflow and various outcomes of 

gastrointestinal illness along the Ohio River. We demonstrated that both GI illnesses and streamflow 
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exhibit strong seasonal patterns in the selected counties. For all outcomes the peak timing of disease 

preceded the peak timing seen in streamflow. We also demonstrate that the peak timing of GI illnesses 

did not change after adjustment for streamflow. This is the first study of its kind to address the 

seasonal patterns of disease outcomes along a river accounting for streamflow. Previous studies have 

primarily focused on one study location and measured the hydrological parameters of interest as part of 

the study itself [23] or had data from the water utility [21,22]. In this study we consider the entire river 

and utilize publicly available data to assess seasonal relationships.  

The calculated rates of gastrointestinal illness in the elderly were similar to those seen in other 

studies [38–40]. It has been demonstrated that rural private supplies have a higher risk of 

contamination compared to public water supplies [41]. Our findings also demonstrated the highest 

rates for all gastrointestinal outcomes in the one of the least populated counties selected, Cabell Co, WV.  

Our finding of peak timing of GI illness preceding the peak timing in streamflow may be because 

the level of pathogens in the water is diluted due to increased streamflow. Pathogens are thought to be 

flushed by rainfall and resulting runoff into surface waters [27,42]; however, research has 

demonstrated that the pathogen concentrations are lower during periods of higher streamflow due to 

dilution [43]. We did not observe this dilution effect when we considered the lagged cross-correlations 

up to six months. Alternatively, it is possible that pathogen concentration is higher preceding peak 

streamflow. Data on pathogen concentrations have demonstrated peak concentrations in the spring 

prior to peak streamflow [5]. The first flush phenomenon suggests this is possible as the majority, up 

to 90 percent, of pollutants are carried in the first 25 mm of runoff from a storm [44]. The data on 

gastrointestinal outbreaks is consistent with the concept of a first flush of pathogens and an increased 

likelihood of pathogens passing through treatment facilities as the majority of outbreaks are seen after 

severe precipitation events [31]. 

Additionally, pathogen concentrations are dependent on human and, to a degree, animal disease 

which demonstrate seasonal patterns as well [45]. For example, cryptosporidiosis concentrations are 

higher on the land during the spring months due to increased fecal contamination from new born 

calves which have higher concentrations of the pathogen [46]. Studies have also demonstrated a surge 

of pathogens with early snowmelt and runoff at the beginning of the rainy season with decreasing 

concentrations through the rainy season [10,47]. These variations in land use and topography may help 

explain our finding of a late peak for GI symptoms in the upper-most river site of Allegheny Co, PA. 

Future analyses will need to account for additional parameters which can affect runoff into surface 

waters, such as land use and land cover.  

For this analysis, we used broad outcome categories which do not specify a particular waterborne 

pathogen therefore we may not have been able to detect a relationship between peak timing of 

streamflow and GI illness. Since testing for specific pathogens is not commonly practiced [36,48], 

reporting for these diseases is limited. Marjowicz et al., for example, estimated that for each case in 

Ontario, Canada of a reportable gastrointestinal disease, there were between 105 and 1,389 cases 

(median 285) which went unreported, primarily because of a lack of testing [49]. With low counts of 

hospitalizations, we were not able to use pathogen specific outcomes and used broader outcome 

categories for seasonality assessment. These broad outcome categories include pathogens which have 

different incubation periods and seasonal patterns. The incubation period for viruses, such as norovirus 

and rotavirus, is only 24–28 hours whereas, the incubation period for protozoa, such as Cryptosporidium 
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and Giardia, is typically much longer, averaging 7 days. Therefore, using these broad outcome 

categories that include multiple pathogens can mask the relationship with streamflow. Additionally, these 

different pathogens demonstrate differing seasonal patterns. Viral infections typically demonstrate higher 

incidence in colder, drier times of the year [50–52]. Our recent findings also demonstrate that the broad 

outcome categories for GI infections may be dominated by untested viral infections and therefore 

demonstrate peaks at colder times of the year [48]. A limitation of this study is that we are not able to 

tease apart GI illness due to non-waterborne transmission, such as food borne transmission. Future 

research should consider alternative modeling methods, such as a zero-inflated Poisson distribution, to 

assess seasonal patterns of the more specific disease outcomes with low counts.  

Another limitation of the study was the lack of availability of hydrological data. Although the USGS 

has monitoring stations located throughout the United States the data collection has been irregular and 

sporadic over time. We considered examining several water quality parameters, such as turbidity, for this 

analysis however, only streamflow data were available for all counties of interest for the entire time 

period. While streamflow is highly correlated with water quality parameters [24] including turbidity, it is 

not a direct measure of microbiological water quality. Available streamflow data were not gathered from 

main Ohio River; but for four of the six counties only data from tributaries were available. Under the 

Clean Water Act, states are required to ensure that their water use for public water supplies protects the 

fish, wildlife and recreational uses of the water bodies [53]. Under this broad mandate, states regulate 

and monitor streamflow levels [53] which is why this parameter was the only one available for all 

counties for the length of this study. The local water utilities are required to monitor finished water 

supplies for water quality however; they are only required to report violations to the public and the 

Environmental Protection Agency (EPA). Therefore, in order to consider other hydrological parameters, 

such as turbidity, in this type of a long term time-series study would require the cooperation of local 

water utilities for all locations of interest. To compound the problem, government funding for monitoring 

of health and environmental measures has been reduced consistently over recent years and therefore, data 

collection has been reduced in almost all government agencies [54].  

We selected counties with population centers (i.e., large cities) which are in close proximity to the 

Ohio River as it was assumed they are more likely to use surface waters for public water supplies, as 

rural towns typically use ground water. However, upon further investigation, we found that the selected 

counties do not rely completely on surface water sources. We gathered water source information for each 

county and, according to information provided by the municipalities, most of the counties use surface or 

mixed (both ground and surface water) water supplies (5 of 6 counties along the Ohio River). Previous 

studies have shown varying seasonal patterns and rates for GI illnesses by water source [14] suggesting 

that the pathogen transmission and/or concentrations differ by water source. However, when assessing 

548 reported gastrointestinal outbreaks researchers found a similar relationship between gastrointestinal 

illness and rainfall regardless of water source [31]. This finding is expected as disease transmission from 

within one population center to adjoining ones does not stop based on political boundary. Additionally, it 

has been established that one community can act as the initial site of infection with secondary 

transmission to adjacent communities and that community level characteristics, such as socio-

demographic factors, are associated with rates of gastrointestinal illness [40]. Future research should 

strengthen this model by adjusting for community level characteristics, such type of water supply, 

percent of elderly population, and socio-demographic variables. The strength of our study is that utilizing 
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publically available data, we are able to see a consistent pattern across all six counties when it would be 

expected that our results would be biased towards the null. Further interdisciplinary research is required 

to understand the transit time and residence time for various pathogens within ground water and surface 

water systems and how this can impact the seasonal patterns of the pathogens and the resulting GI 

illness. Rigorous modeling of streamflow, which capitalizes on advancements in hydrology modeling, 

will greatly add to the understanding of the associations between streamflow and gastrointestinal illness. 

5. Conclusions 

In this paper, we assess seasonal patterns of gastrointestinal illnesses in the elderly along the Ohio 

River and compare peak timing of illness to the peak timing of streamflow. We demonstrate that after 

adjusting for streamflow, the seasonal patterns of GI illness remain consistent. The peak timing of GI 

illness systematically precedes the peak timing of streamflow. Few studies have been conducted on the 

association between seasonality of hydrological parameters and GI illnesses. In the United States, 

hydrological data are incomplete for long time periods which limited these analyses. Given the limited 

availability of hydrological data, a study utilizing modeled hydrological parameters would allow for 

better understanding of the seasonal association in streamflow and gastrointestinal illness. Further 

research should investigate the timing of the first flush of runoff and associations with peak timing in 

GI illness since the first flush is expected to carry the majority of pathogens. Our findings suggest that 

pathogen loading from the land or other sources into watersheds precedes the time of peak flow 

resulting in the earlier peak in GI illness. However, it is necessary to conduct more interdisciplinary 

research to fully understand the hydrological associations with seasonal patterns of waterborne disease.  
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Table A. Spearman cross-correlations of weekly time series of streamflow by county. 

 Allegheny Co,  

PA 

Cabell Co,  

WV 

Hamilton Co,  

OH 

Jefferson Co,  

KY 

Daviess Co, 

KY 

Vanderburgh Co, 

IN 

Allegheny Co, PA 1.000 0.645 * 0.619 * 0.819 * 0.812 * 0.556 * 

Cabell Co, WV  1.000 0.689 * 0.853 * 0.846 * 0.529 * 

Hamilton Co, OH   1.000 0.821 * 0.824 * 0.708 * 

Jefferson Co, KY    1.000 0.994 * 0.681 * 

Daviess Co, KY     1.000 0.697 * 

Vanderburgh Co, IN      1.000 

* Correlation is significant at the 0.01 level (2-tailed). 
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