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Using the Newcomb–Benford 
law to study the association 
between a country’s COVID‑19 
reporting accuracy and its 
development
Vadim S. Balashov1*, Yuxing Yan2 & Xiaodi Zhu3

The COVID-19 pandemic has spurred controversies related to whether countries manipulate reported 
data for political gains. We study the association between accuracy of reported COVID-19 data and 
developmental indicators. We use the Newcomb–Benford law (NBL) to gauge data accuracy. We 
run an OLS regression of an index constructed from developmental indicators (democracy level, 
gross domestic product per capita, healthcare expenditures, and universal healthcare coverage) on 
goodness-of-fit measures to the NBL. We find that countries with higher values of the developmental 
index are less likely to deviate from the Newcomb-Benford law. The relationship holds for the 
cumulative number of reported deaths and total cases but is more pronounced for the death toll. The 
findings are robust for second-digit tests and for a sub-sample of countries with regional data. The 
NBL provides a first screening for potential data manipulation during pandemics. Our study indicates 
that data from autocratic regimes and less developed countries should be treated with more caution. 
The paper further highlights the importance of independent surveillance data verification projects.

On March 11, 2020, the World Health Organization (WHO) declared the novel coronavirus disease 2019 
(COVID-19) a pandemic. With tens of millions of confirmed cases and millions of deaths, this pandemic has 
spurred a great number of controversies, including many related to the accuracy of the data countries report. 
Mass media organizations around the globe argue that many countries have continued to manipulate the data 
for political or other gains1–8.

In this paper, we study the association between the accuracy of COVID-19 data reported by countries and 
their macroeconomic and political indicators. Our results show that countries that are more functional democ-
racies, have higher income, and stronger healthcare systems report more accurate data. The relationship exists 
for the cumulative number of confirmed cases and for the cumulative number of reported deaths; however, the 
results are more pronounced for the number of deaths.

To gauge data accuracy, we use compliance with the Newcomb–Benford law (NBL), which is an observation 
that in many naturally occurring collections of numbers the first digit is not uniformly distributed. The numeral 
“1” will be the leading digit around one-third of the time; the numeral “2” will be the leading digit 18% of the 
time; and each subsequent numeral, “3” through “9,” will be the leading digit with decreasing frequency. One 
property of the NBL is that manipulated or fraudulent data deviate significantly from the theoretical NBL dis-
tribution. Due to the ease of its application and straightforward approach, the law has been extensively used to 
detect fraud and data manipulations. It has been applied to accounting, finance, macroeconomic, and forensic 
data to test for data manipulation and fraud. We apply the NBL to COVID-19 data for 185 countries affected by 
the pandemic. For each country, we first identify the period of exponential growth when the data are expected 
to obey the NBL. After the country’s data reach a plateau, the number of cases stabilizes, and the data are not 
expected to obey the NBL. During the growth period for each country, we calculate goodness-of-fit measures to 
estimate compliance with the NBL and use these measures as proxies for data accuracy.

We then study the relationship between our proxies for accuracy of data and indicators of the strength of the 
economy, democratic institutions, and healthcare systems. Specifically, we use the regression analysis to find the 
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association between goodness-of-fit measures and an index constructed from four developmental indicators: the 
Economist Intelligence Unit Democracy Index, the gross domestic product per capita, healthcare expenditures as 
percentage of GDP, and the Universal Health Coverage Index.

Our main hypothesis is that countries with weaker democracies, and weaker economic and healthcare sys-
tems will have lower data accuracy as measured by the NBL goodness-of-fit statistic. Our results in many tests 
support the hypothesis. We find that our goodness-of-fit measures (which measure deviations from the theo-
retical distribution as given by the NBL) are negatively correlated with the developmental index and each of the 
macroeconomic indicators (Democracy Index, GDP, healthcare expenditures, and UHC). The results are true 
for the cumulative number of cases and the cumulative number of reported deaths. We find no results for the 
number of cured cases or conducted tests. We also find the result is more pronounced for the reported number 
of deaths than for the number of confirmed cases. We also find that deviations from the NBL are higher for the 
death toll. This indicates that, on average, autocratic regimes and poorer countries are more prone to misreport 
death tolls than the total number of citizens infected.

We conduct a series of robustness tests and find that our results are not driven by the specific period in which 
we calculate the goodness-of-fit measures, by small countries, by countries with a small number of cases or 
deaths, or by countries with extreme deviations from the NBL. We also show that the same relationship between 
proxies for accuracy of data and the developmental index is observed when we apply the NBL to second digits. 
One concern of our study is that the proxies for data accuracy are calculated based on limited sample sizes for 
individual countries. To resolve this potential problem, we confirm our findings for the sub-sample of 50 coun-
tries that provide regional data (at a state or province level). Regional data increase the sample size from which 
we calculate our statistics substantially and heighten the precision of our accuracy measures.

There is substantial body of literature assessing the tendency of misreporting COVID-19 surveillance pan-
demic data by countries using different statistical techniques, such as case fatality rates, excess mortality rates, 
the variance of reported data, the clustering of data, and even trends in search engines9–13. The inherent problem 
with these methods is their reliance on uniform approaches to measuring confirmed cases and COVID-19-related 
deaths across countries. Even though countries are expected to follow the same guidelines provided by the WHO 
when reporting cases, many variations exist (and sometimes appear in states and regions within a country) in 
how they collect and report data. Any comparisons of raw numbers-like the total number of confirmed cases, 
the number of deaths, and mortality rates-among countries may be driven by the difference in the number of 
tests conducted, the strength of the healthcare system, demographic composition, and reporting standards. Cor-
rect comparisons would require controlling for all those hard-to-observe variables. One helpful property of the 
NBL is its tolerance to different data generating processes between countries and, in contrast, its sensitivity to 
human intervention and manipulation of data in otherwise naturally occurring processes. This means that we 
can apply the test even if countries differ in how they measure COVID-19 cases and related deaths. The test is 
also free of country-specific differences, including public policies used to stop the pandemic, like quarantines, 
social distancing, testing, and availability of treatment.

There are some caveats with using the NBL. The NBL is an empirical observation. Departures from something 
only empirically observed should be treated with caution and do not by default mean causation. The test does not 
provide a conclusive evidence of intentional data falsification by a country’s government. In applications, the NBL 
is usually used as a first filter for detecting fraud. Deviations from the NBL simply mean that further investiga-
tion is needed to identify causes of such anomalies, which can be deliberate or not. Our results simply indicate 
that data from autocracies and poorer countries should be trusted less and are of lower accuracy. It should also 
be noted that the NBL test is not directional. However, it is unreasonable to believe that the government would 
willingly manipulate data to inflate the number of cases or deaths. Neither does the divergence from the NBL 
provide us specifics on how the data are being manipulated. We cannot ex ante predict which first digits will be 
over- or under-inflated. For example, if the country’s true number of cases is in the 2000s and the government 
tries to falsify data to look smaller and reports high 1900s, the first digit “one” will be over-represented in this 
country’s statistics. However, if the country’s numbers are in the 1000s and the governments falsifies data into 
the 900s, then the first digit “one” will be under-represented.

We stress that our paper is also not aimed to answer whether particular country’s data do not conform with 
the NBL. We indicate that such tests are problematic because they largely depend on the sample size and selected 
cutoff values for significance. We calculate goodness-of-fit measures for all countries, we then compare countries 
cross-sectionally and study the association of deviations from the NBL and the developmental indices.

Our paper contributes to the literature in several ways. First, our paper uses the NBL to assess the accuracy 
of COVID-19 reported data. Second, our study shows which data, if any, countries are more likely to misreport. 
To the extent that misreporting data is associated with deliberate data manipulation, our data are consistent with 
governments tending to downplay the news with the highest negative impact, i.e., the death toll, to the highest 
degree. To a slightly lower degree, countries tend to manipulate the total number of confirmed cases. We find no 
indication, on average, of systematic data errors for the number of conducted COVID-19 tests and the number 
of cured cases. Finally, we are the first study to document the cross-sectional link between macroeconomic and 
political regime indicators and the tendency to misreport data during pandemics. We show that authoritarian 
regimes and countries with low GDP per capita are more likely to deviate from the NBL. Overall, this study 
provides additional evidence of the link between developmental indicators and data accuracy that is often taken 
for granted.

Our study has broad implications. First, we provide evidence that the data supplied during pandemics may 
be of low quality, especially from autocracies and poorer countries, and we suggest that caution should be used 
when interpreting and using the data. Second, the study highlights the importance of initiatives to externally 
verify data provided by governments, including independent surveillance data verification projects. An example 
of such a project for economic data would be the Billion Prices Project (BPP) by Alberto Cavallo and Roberto 
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Rigobon at MIT Sloan and Harvard Business School. Finally, we provide new evidence on the applicability of 
the NBL to detect data errors during pandemics.

Literature review and hypotheses development
Studies have long posed questions about whether more developed countries provide more reliable data to the pub-
lic than less developed countries in both theoretical and empirical settings. Extant studies show in other settings 
that countries with weaker democracies are more likely to manipulate data14–18 and have lower transparency19–27. 
These studies find that it is authoritarian regimes that are more vulnerable to negative information and have 
more incentives to distort and manipulate information that undermines their image. In addition, such regimes 
usually have control over mass media organizations and therefore have more capabilities to exercise control. 
Autocrats use data manipulation to improve their public image and prolong their stay in office. Rozenas and 
Stukal27 propose that autocrats are more likely to manipulate data for which it is more difficult for citizens to 
obtain hard external information benchmarks. COVID-19 provides a unique setting to test a related hypothesis. 
Pandemic surveillance data are hard to acquire independently by citizens because they lack access to the neces-
sary large-scale data collection and medical facilities. At the same time, the news that the disease is raging and 
is widespread under authoritarian rule would be an indicator of the inefficiency or failure of the government. 
The death toll is even more damaging to the image of the autocrat, who sees such news as a threat and tries to 
downplay the scale of the problem.

Not all errors in data are deliberate and result from fraud. Data accuracy has been shown to be linked to the 
strength of the economy of a country. Hollyer et al.24 maintain that GDP per capita is a measure of the “ability of 
the governments to collect and disseminate high-quality statistical data.” In a similar vein, Judge and Schechter28 
analyze the quality of survey data using the NBL and find that survey data in developing countries is of poor qual-
ity while data from developed countries is of better quality. We therefore formulate the following two hypotheses:

Hypothesis 1: More developed countries are less likely to misreport pandemic surveillance data.
Hypothesis 2: The link between developmental indicators and data accuracy is more pronounced for the reported 

death toll.
To gauge data accuracy, we use compliance with the NBL. We are not the only paper to use the NBL to test 

the validity of reported data during COVID-1929–33. However, many papers usually select one or a few countries 
and apply the NBL to test if there is any evidence of manipulation in a given country’s data. The authors claim 
that significant deviations from the NBL indicate data manipulation. They then use the cutoff values from the 
chi-squared or similar distributions and give a “yes-or-no” type of answer to their binary research question. These 
test statistics and inference results greatly depend on the sample size and selected cutoff values34. With large 
enough sample sizes, the null hypothesis of compliance with the NBL will be rejected in almost every case. Some 
studies estimate their test statistic at the country level, some studies estimate it at a regional or state level, and 
some studies use county-level data. At the same time, different studies use different cutoff values when deeming 
a distribution as “not-conforming” to the NBL. This leads to contradictory findings among these studies even 
when looking at the same country. We avoid these “yes-or-no” tests. Instead, we employ the same approach for all 
countries to calculate the test statistic. We use this test statistic as comparative levels of conformance and study 
the link between deviations from the NBL and the developmental index. Our study does not make any conclu-
sions based on individual test statistics and in regards to individual countries’ misreporting. Instead, we make 
any inferences from the NBL test only in comparison. To our best knowledge, this is the first paper to examine 
the cross-section of deviations from the NBL across countries and compare them based on the developmental 
index when analyzing data errors during pandemics.

Not many studies apply the NBL in an international setting, though there are several notable exceptions. Nye 
and Moul35 indicate that international macroeconomic data generally conforms the NBL. They find, however, 
that for non-OECD (African) countries, the data do not conform with the law, which raises questions about data 
quality and manipulation in these countries. Gonzalez-Garcia36 uses a similar approach to test the annual IMF 
data, but finds no connection between independent assessments of data quality and adherence to the first-digit 
NBL in different country groups. Michalski and Stoltz37 provide a theoretical model and empirical findings that 
some countries strategically manipulate their economic data for short-term government gains. We contribute 
to this body of literature by applying the NBL to the pandemic data in the international setting and providing 
additional evidence that some types of countries are more likely to misreport not only macroeconomic data but 
also surveillance data during pandemics.

Newcomb–Benford law of anomalous numbers
In many naturally occurring processes, the resulting data have the leading significant digit that is not uniformly 
distributed. The distribution is monotonically decreasing, with “1” being the most common first digit, and “9” 
being the least common. The law was formally stated by Newcomb38 and Benford39. A set of numbers is said to 
follow the NBL if the first digit d occurs with probability P(d) = log10(1+ 1

d ). The law can be extended to digits 
beyond the first. In general, for the nth digit, n ≥ 2 , the probability is given by P(d) =

∑10n−1−1
k=10n−2 log10(1+ 1

10k+d ). 
This gives the following probabilities for observing the first and second digits: 

Digit 0 1 2 3 4 5 6 7 8 9

First – 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%

Second 12.0% 11.4% 10.9% 10.4% 10.0% 9.7% 9.3% 9.0% 8.8% 8.5%

The NBL accurately describes many real-life sets of numerical data, including lengths of rivers, stock prices, 
street addresses, accounting data, populations, physical constants, and regression coefficients40. Data generated 
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from many distributions and integer sequences have been shown to closely obey the NBL, including Fibonacci 
numbers, powers of numbers, exponential growth, many ratio distributions, and the F-distribution with low 
degrees of freedom41–45.

Not all distributions generate data that follow the law. For example, uniform distribution, normal distribution, 
and square roots of numbers do not obey it. For the data to obey the NBL, several criteria should be satisfied40,46,47: 
(a) data span several orders of magnitude and are relatively uniform over such orders; (b) the mean is greater 
than the median, with a positive skewness; (c) naturally occurring processes, the data which are the result of 
multiplicative fluctuations, and data that is not influenced by human intervention.

The last requirement, i.e., the fact that human intervention usually generates data that violates the NBL, has led 
to its usefulness in detecting fraud and data manipulation. Studies have shown that when humans intervene with 
the data generating process that is expected to comply with the NBL, compliance stops. For example, Diekmann40 
and Horton et al.48 show that when scientific data are fabricated, they do not conform with the NBL. Cantu and 
Saiegh49 and Breunig and Goerres50 reveal the same effect for electoral data. Kaiser51 uncovers how discrepancies 
from the target NBL distribution can be used to test reliability among survey data sets.

Overall, the NBL has been used to detect fraud in: (a) scientific studies28, 40, 48, 52, (b) accounting46, 48, 53–56, 
(c) macroeconomic data35–37, 57–61, (d) forensic analysis62, (e) tax evasion63, 64, (f) toxic release inventory65, (g) 
reported data during pandemics29, 30, 66, 67.

Another useful property of the data obeying the NBL is that it is scale invariant, i.e., it is independent of 
the measurement units. This makes it a powerful tool when testing data from different sources (i.e., countries, 
companies). The NBL is also not the same as the imprecision (or variance) of the data. The data may well be very 
noisy but still is expected to conform with the law. For example, if a country’s data are collected with error, the 
first digit should still adhere to the NBL, as long as the error term is random with zero mean. In our application, 
it means that countries may differ in the way they count COVID-19 cases or deaths, but as long as the data for 
each country is expected to obey the NBL, we can test the data for the goodness-of-fit to the NBL.

Data and variables
Goodness‑of‑fit measures.  To measure how well the data comply with the NBL, we use several goodness-
of-fit measures. The most intuitive and commonly used is the chi-squared statistic:

where Od and Ed are observed and expected by the NBL frequencies for digit d, respectively. Chi-squared, how-
ever, has several problems: it has low statistical power when used with small sample sizes and enormous power 
with large sample sizes. An alternative measure of goodness-of-fit proposed in extant studies is a modified version 
of the Kuiper68 test proposed by Stephens69 and Giles70 that is less dependent on the sample size N:

where Fo(x) is the observed cumulative distribution function (CDF) of leading digits and Fe(x) is the CDF of the 
data that comply with the NBL. In addition, we calculate the M-statistic proposed by Leemis et al.44:

and the D-statistic proposed by Cho and Gaines47:

where od and ed are the proportions of observations with d as the first digit and proportions expected by the 
NBL, respectively. The latter two measures have the advantage of being less sensitive to sample size. For our main 
analysis, we choose to report the results for the D-statistic, which is the Euclidean distance from the NBL in the 
nine-dimensional space. All our results hold for the other three goodness-of-fit measures.

Sample description and developmental indicators.  We first collect daily data from John Hopkins 
University for the cumulative number of confirmed cases, the cumulative number of cured cases, and the cumu-
lative number of deaths between January 22, 2020 and June 10, 2020. We also obtain the number of conducted 
tests from Our World in Data (https://​ourwo​rldin​data.​org/​coron​avirus-​testi​ng). Studies have shown that natu-
rally occurring processes comply well with the NBL when the data grow exponentially or close to it41, 44. Sam-
bridge and Jackson29 analyze reports from all countries affected by COVID-19 and conclude that the numbers 
tend to obey the NBL for infections and deaths prior to countries leveling out. Once the data reach the plateau, 
they are no longer expected to obey the NBL. Hence, for the data to comply with the NBL, we select the growth 
part using the following approach. Because data show weekly seasonality, we first compute seven-day moving 

(1)Chi − sq. =
9

∑

d=1

(Od − Ed)
2

Ed
,

(2)Kuiper =(D+ + D−)

[√
N + 0.155+

0.24
√
N

]

, and

(3)D+ = sup
−∞<x<+∞

[Fo(x)− Fe(x)] and D− = sup
−∞<x<+∞

[Fe(x)− Fo(x)],

(4)M = 9
max
d=1

|od − ed |

(5)D =

√

√

√

√

9
∑

d=1

(od − ed)2

https://ourworldindata.org/coronavirus-testing
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averages (MA) for the new daily number of confirmed cases. Then, for each country, we identify the date with the 
highest MA number of new daily confirmed cases. For our main analyses, we use data before the obtained cutoff 
for each country. In unreported tests, we also use modified approaches. We find the maximum ratio MA(number 
of new daily cases)/(Days since the first case for the country) and MA(number of new daily cases)/(Days since 
the latest nonzero case for the country). The results are robust to alternative definitions of the cutoff date. We 
use moving averages only to detect the end of the growth part. For all our tests, we use actual reported data for 
confirmed and cured cases, death tolls, and the number of conducted tests. To determine the sample size N for 
each test, we use the corresponding number of days with non-zero data between January 22, 2020 and the cutoff 
date for the growth part for each country.

For developmental indicators, we select the following proxies for democratic and economic development 
widely used in the literature: the Economist Intelligence Unit Democracy Index (EIU) and gross domestic prod-
uct per capita. Because our setup has been created during the pandemic and the testing is done on surveillance 
data, we use two other proxies for each country’s ability to collect and report reliable health-related data: health 
expenditures as a percentage of GDP, and the Universal Health Coverage Index. We download countries’ democ-
racy indices from the Economist Intelligence Unit for 2019. We collect the gross domestic product (GDP) per 
capita, healthcare expenditures as percentage of GDP ( HE_GDP ), and Universal Health Coverage Index (UHC) 
for 2017 from the World Bank (https://​data.​world​bank.​org/). At the time we collected the data, many countries 
still did not have the World Bank data available for 2018 or 2019. 2017 is the latest year for which the data are 
available for all countries. We also acquire 2019 population data for each country from Worldometer (https://​
www.​world​omete​rs.​info/).

From the four macroeconomic indicators (EIU, ln(GDP), HE_GDP , UHC), we construct a single develop-
mental index in the following way. Based on each of the four indicators, we first assign each country to a quartile 
rank (from 0 to 3: 0 for the lowest, 3 for the highest quartile). The developmental index for each country is the 
sum of quartile ranks for the four indicators. The minimum value of the index is 0, the maximum value is 12. A 
total of 185 countries with available data were affected by COVID-19 (see Suppl. Information).

For each country, we then compute goodness-of-fit statistic using formulae (1)–(5). Using D-values for the 185 
countries, we can plot the empirically observed distribution of the D-statistic and compare it to the theoretical 
distribution of the NBL. To plot the theoretical NBL distribution of D-values, we run 5,000 simulations with the 
sample size of 80, where first digits are randomly drawn from a discrete distribution with the NBL probabilities. 
Figure 1 plots the CDF of D-values for the theoretical NBL, the empirical number of confirmed cases, and the 
empirical number of deaths. We see that the empirical distribution is skewed to higher values compared to the 
theoretical one, and more so for the death toll. The 95th percentile for the number of confirmed cases is 0.46, 
and for the death toll is 0.75. Both values are much larger than either the 95th percentile value of 0.19 implied by 
Benford’s (1938) original data, or our simulated value of 0.15, or the reported by Goodman34 value of 0.25. This 
indicates that some countries deviate significantly from the NBL, especially when reporting deaths.

Using the conservative cutoff value of 0.25 for D proposed by Goodman34, we find that we cannot reject the 
NBL distribution for the entire world population for the aggregate cumulative number of confirmed cases and 
deaths. For individual countries, however, we find that 51 countries do not conform to the NBL when report-
ing the number of confirmed cases; and 86 countries do not conform to the NBL when reporting the number 
of deaths. In our analyses, however, we avoid country-specific conclusions based on goodness-of-fit measures 
that are largely dependent on a sample size and cutoff values, we aim to compare countries cross-sectionally.

Table 1 provides descriptive statistics for the major variables in our analyses. Observe that the corresponding 
mean goodness-of-fit measures for the number of deaths are higher than for the number of confirmed cases. This 
is consistent with countries, ceteris paribus, being more prone to misreport data on death rates.

Figure 2 provides intuition for the main findings in our paper and plots values of the D goodness-of-fit meas-
ure for the four quartiles of the developmental index. The figure shows a general trend for the data to deviate 
less from the Newcomb-Benford distribution as we move from the smallest quartile to the largest. The trend is 
more pronounced for the death toll. Figure 2 also shows that the range of D-values for the two smallest quartiles 
is much wider than for the two largest quartiles. We confirm our findings with t-tests for the difference in means 

Figure 1.   CDF plot for the D-statistic. The CDF plots for the D-statistic for the theoretical NBL, the empirical 
number of confirmed cases, and the empirical number of deaths based on 185 countries.

https://data.worldbank.org/
https://www.worldometers.info/
https://www.worldometers.info/
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of D-values between the highest and the lowest quartile of the developmental index. In a univariate setting, this 
is consistent with our two hypotheses.

We also find that the four major economic indicators used to construct the index are highly correlated, with 
correlation coefficients ranging between 0.37 and 0.85 (Table 2). In unreported tests we put all economic indi-
cators together in one equation on the right-hand-side and test for collinearity. The result shows the Condition 
Number is over 46, indicative of serious collinearity. The four goodness-of-fit measures are also highly correlated 
with each other, as are the total number of confirmed cases and the country’s population.

Table 1.   Descriptive statistics. The table presents the mean values of the goodness-of-fit measures (Chi-
square, Kuiper, M, D) for the cumulative number of confirmed and death cases, the developmental index and 
its components (EIU, ln(GDP), HE_GDP , UHC), and other variables. The unit of observation is a country. The 
number of observations vary due to missing values. 3 indicates significance of the difference in means between 
confirmed and death cases at the 1% level.

Variables Obs Mean Min Med Max Std.

Chi-sq. conf. 185 19.55 1.40 13.60 129.38 20.22

Kuiper conf. 185 1.48 0.39 1.37 4.70 0.73

M conf. 185 0.16 0.03 0.12 0.90 0.11

D conf. 185 0.21 0.04 0.18 0.99 0.13

Chi-sq. death 157 27.233 1.71 15.67 261.49 36.10

Kuiper death 157 1.673 0.32 1.40 5.31 1.04

M death 157 0.243 0.04 0.19 0.82 0.18

D death 157 0.313 0.07 0.26 0.90 0.11

Developmental index 155 6.05 0.00 6.00 12.00 3.66

EIU 164 54.83 13.20 56.45 98.70 21.91

ln(GDP) 178 8.68 5.68 8.66 12.03 1.44

HE_GDP 174 6.44 1.18 6.23 17.06 2.57

UHC 175 64.44 25.00 69.00 89.00 15.68

No. of days conf. 185 61.24 1.00 61.00 136.00 30.61

No. of days death 185 33.04 0.00 23.00 124.00 28.77

ln(Population) 184 15.89 10.43 16.10 22.78 2.07

Figure 2.   D-statistic and quartiles of the developmental index. The figure presents the boxplots of the D 
goodness-of-fit measure for the cumulative number of confirmed and death cases for the four quartiles of the 
developmental index. The unit of observation is a country. Smallest, Q2, Q3 and Largest represent the values 
partitioned by the 25%, 50%, and 75% quartiles of the developmental index. The boxplots represent 25%, 50%, 
and 75% quartiles of D. The dots represent the mean values. *** and ** indicate significance of the difference in 
means between the Smallest and the Largest quartile at the 1% and 5% level, respectively.
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Results
Goodness‑of‑fit and developmental index.  We start with the simple ordinary least squares (OLS) 
regression model where our goodness-of-fit measure appears on the left-hand-side and the developmental index 
is on the right-hand-side:

where i denotes a country, and Index i  is the developmental index constructed from the four economic indica-
tors: EIU, ln(GDP), HE_GDP , and UHC. We also run regressions separately for each economic indicator and 
find that our results are qualitatively the same. Higher values of the goodness-of-fit measures indicate greater 
deviation from the NBL. If more developed countries are less likely to deviate from the NBL, we expect the 
coefficient β1 to be negative.

How well the data for each country are expected to obey the NBL depends on the span. For example, countries 
with higher populations and more confirmed cases or deaths are expected to follow the NBL more closely. To 
control for that, we include the natural logarithm of the country’s total population. Alternatively, we include the 
very correlated number of confirmed cases (or deaths). We find that the results are qualitatively and quantita-
tively the same when we used alternative control variables (untabulated). Even though the D-statistic is more 
independent of the sample size, goodness-of-fit measures may still be affected by the sizes of the samples used 
to estimate them. To control for the sample size effect, we include Number_of_Daysi , which is the number of 
days with nonzero confirmed cases (or the number of days with nonzero deaths) between January 22, 2020 and 
the cutoff date for the growth part for each country.

The results of estimating Eq. (6) are presented in Table 3, Panel A. Column (1) provides estimates for the 
cumulative number of confirmed cases. The coefficient in front of the developmental index is negative and 
significant. Column (2) provides estimates for the cumulative number of deaths. The coefficient is again nega-
tive and significant. The magnitude of the coefficient for the number of deaths is much higher than that for the 
number of confirmed cases. We find that the coefficients for the developmental index are statistically different 
from each other between columns (1) and (2) at the 1% significance level.

We interpret the data as being consistent with the argument that more democratic and more developed coun-
tries are less likely to deviate from the NBL when reporting pandemic data. We also conclude that the relationship 
is more pronounced for the total number of deaths than for the number of confirmed cases. As predicted, the 
control variable ln(Population)i is negative in all regressions.

The results are also economically significant: an increase of one standard deviation in the developmental 
index, on average, results in a 0.25 increase of the standard deviation in the goodness-of-fit measure. This value 
is roughly the same for the number of confirmed cases and for the number of deaths. Finally, we conduct the 
same tests for the cumulative number of cured cases and the number of COVID-19 tests conducted. On average, 
we cannot reject the null hypothesis that countries’ data deviate from the NBL on cured cases or the number of 
conducted tests. The regression results are also not significant, indicating no systematic cross-sectional differ-
ences between countries.

Overall, we conclude that countries are most prone to misreport mortality data, slightly less so the number 
of confirmed cases, and that there is no evidence of systematic data falsification of cured cases or the number of 
tests. The cross-sectional difference between countries is also the strongest for the death toll, weaker for the total 
number of confirmed cases, and is insignificant for the number of cured cases and tests.

(6)
Goodness-of -fiti =β0 + β1Indexi + β2 ln(Population)i+

+ β3Number_of_Daysi + εi ,

Table 2.   Correlation matrix. This table presents the correlation matrix with Pearson correlation coefficients of 
the major variables. ***,**, and * denote significance at the 1%, 5% and 10% levels, respectively.

Variables (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Chi-sq. conf. (1) 0.89∗∗∗ 0.74∗∗∗ 0.78∗∗∗ 0.34∗∗∗ 0.39∗∗∗ 0.41∗∗∗ 0.38∗∗∗ − 0.19∗∗ − 0.03 − 0.20∗∗ − 0.13 − 0.19∗∗ − 0.13

Kuiper Conf. (2) 0.79∗∗∗ 0.80∗∗∗ 0.33∗∗∗ 0.34∗∗∗ 0.31∗∗∗ 0.29∗∗∗ − 0.17∗ − 0.01 − 0.21∗∗ − 0.09 − 0.16∗ − 0.10

M conf. (3) 0.95∗∗∗ 0.27∗∗∗ 0.29∗∗∗ 0.48∗∗∗ 0.47∗∗∗ 0.00 0.09 − 0.04 0.03 − 0.01 − 0.19∗∗

D conf. (4) 0.28∗∗∗ 0.34∗∗∗ 0.55∗∗∗ 0.53∗∗∗ − 0.06 0.03 − 0.13 0.02 − 0.09 − 0.25∗∗∗

Chi-sq. death (5) 0.85∗∗∗ 0.47∗∗∗ 0.50∗∗∗ − 0.33∗∗∗ − 0.21∗∗ − 0.28∗∗∗ − 0.26∗∗∗ − 0.31∗∗∗ − 0.09

Kuiper death (6) 0.65∗∗∗ 0.66∗∗∗ − 0.42∗∗∗ − 0.27∗∗∗ − 0.37∗∗∗ − 0.32∗∗∗ − 0.39∗∗∗ − 0.16∗

M death (7) 0.98∗∗∗ − 0.17∗∗ − 0.09 − 0.21∗∗ − 0.08 − 0.19∗∗ − 0.42∗∗∗

D death (8) − 0.20∗∗ − 0.11 − 0.25∗∗∗ − 0.11 − 0.22∗∗ − 0.44∗∗∗

Developmental index (9) 0.80∗∗∗ 0.85∗∗∗ 0.68∗∗∗ 0.87∗∗∗ − 0.13

EIU (10) 0.64∗∗∗ 0.47∗∗∗ 0.59∗∗∗ − 0.11

ln(GDP) (11) 0.37∗∗∗ 0.85∗∗∗ − 0.15∗

HE_GDP (12) 0.46∗∗∗ − 0.05

UHC (13) − 0.07

ln(Population) (14)
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Robustness analyses.  One limitation of our analysis above is that it depends on the cutoff date for the 
growth part of the data. We try several different approaches. First, we use the same, “global,” cutoff value for all 
countries, which is 80 days since January 22, 2020 (or April 11, 2020). We pick 80 days because it corresponds 
to the second tercile of cutoff dates in our sample. Anything much sooner will result in too small sample sizes 
for many countries, especially for the ones that were affected by the pandemic later than others. Anything much 
later, and too many countries will have already reached their plateaus, and are not expected to obey the New-
comb-Benford law anymore. Alternatively, we try the same cutoff number of days since the first case for each 
country. Again, we pick the second tercile, which is 45 days since the first case for the country. The unreported 
results are largely consistent with our previous findings.

Another concern is that our data might be driven by countries with few cases or few data points. To test for 
that, we exclude countries with lower than 200 (500 and 1,000) total number of confirmed cases. We then exclude 
countries with fewer than 30 (40) days of nonzero cases. We also tried excluding countries with the highest 1% 
(5%) goodness-of-fit measures. In unreported tests we find that the results are robust in all cases. We conclude 
that our results are not driven by the specific pick of the cutoff date, by small countries, countries with a small 
number of cases, or by extreme deviations from the NBL.

Regional data.  Testing for compliance with the NBL requires sufficient data. For many countries in our 
analysis, the goodness-of-fit measures are calculated based on relatively small samples sizes between 40 and 140 
days. Even though we control for the sample size and conduct robustness checks, making inferences from results 
based on such small sample sizes might be problematic. The sample size may increase significantly for a country 
if it reports data at a regional (state, territory, or provinces) level. Each reported value at the regional level can 
then be used to estimate goodness-of-fit measures, instead of using the country-level data. The method has the 
upside that the goodness-of-fit measures are estimated with a greater precision, though the downside is the lack 
of countries that collect regional data.

Fifty out of 185 countries in our sample collect regional-level data. Regional data are from the COVID-19 
Coronavirus Map (https://​covid​19.​health/). We check for data consistency between the two data sources and 
find the high degree of agreement. For these countries, we re-estimate the goodness-of-fit measures and re-run 
Eq. (6). The results are reported in Table 3, Panel B. For the cumulative number of cases, the coefficient in front 
of the developmental index is negative and marginally significant. For the cumulative number of deaths, the 
coefficient is negative and significant, even with the much smaller number of countries for this test. Again, the 
coefficient is statistically higher for the death toll than for the number of confirmed cases. The results are consist-
ent with our earlier finding: more developed countries are less likely to misreport data, and the relationship is 
more pronounced for the number of deaths. We further conclude that our findings are not driven by the errors 
in the goodness-of-fit measure.

Table 3.   First digit tests. The table presents the results of estimating Eq. 6 using OLS. The dependent variable 
is the D goodness-of-fit measure for first digits. The unit of observation is a country. Panel A shows the results 
for the whole dataset with 185 countries for the cumulative number of confirmed cases and death cases; panel 
B shows the results for 50 countries with regional data. To avoid small coefficients, we divide the development 
index and ln(Population) by 100 and No. of Days by 1000 for all models. Sample sizes vary due to missing 
values. P-values for a one-tailed t-test are in parentheses. ***, **, and * denote significance at the 1%, 5% and 
10% levels, respectively.

Variable

Confirmed cases Death cases

(1) (2)

Panel A. 185 countries

Developmental index −0.56∗∗∗

( 0.00)
−1.83∗∗∗

( 0.00)

ln(Population) −1.38∗∗∗

( 0.00)
−4.25∗∗∗

( 0.00)

No. of days −0.78∗∗∗

( 0.00)
−2.30∗∗∗

( 0.00)

Sample size 154 139

Adj.R2 13.92% 34.07%

Panel B. 50 countries with regional data

Developmental index −0.39∗

( 0.07)
−2.38∗∗

( 0.02)

ln(Population) −0.25

( 0.32)
−2.77∗

( 0.10)

No. of days −0.02∗∗∗

( 0.00)
−0.13∗∗∗

( 0.00)

Sample size 49 29

Adj.R2 13.77% 24.68%

https://covid19.health/
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Second digit tests.  The NBL can be extended to digits beyond the first57, 61. Beyond the second digit, the 
theoretical distribution quickly converges to uniform. Diekmann40 notes that, when fabricating data, test sub-
jects also naturally lean toward smaller first digits, resulting in Benford-like distributions of fabricated data. 
He suggests that in some cases the second-digit test may provide a clearer assessment of data manipulation. 
Therefore, we repeat our tests but use the second-digit goodness-of-fit measures instead of the leading digit. Our 
sample size drops somewhat, especially for the number of deaths, because the test requires values higher than 
ten. The results are presented in Table 4, again, with two panels: Panel A uses the original 185 countries, and 
Panel B uses the 50 countries with regional data. Column (1) provides results for the confirmed number of cases, 
and column (2) provides results for the number of deaths. In both panels, both columns, all coefficients in front 
of the developmental index are negative and significant. Again, the magnitude of the coefficients for the death 
toll is higher. We conclude that second-digit test results accord with our main findings.

Discussion
In this paper, we investigate the relationship between the accuracy of reported data and macroeconomic indi-
cators for a set of 185 countries affected by the COVID-19 pandemic. We use the deviation from the New-
comb–Benford law of anomalous numbers as a proxy for data accuracy. For approximately one-third of countries, 
we document some evidence of deviations from the NBL, especially for the death toll. We find the negative 
relationship between the NBL goodness-of-fit measures and the index constructed from the four economic indi-
cators. We also find that the relationship is stronger for the number of deaths than for the number of confirmed 
cases. Overall, we conclude that democratic regimes and more economically developed countries provide more 
accurate data during pandemics. We also show that the relationship holds in alternative specifications, for 50 
countries that report regional data, and for second-digit tests.

Many studies in macroeconomic, accounting, finance, and forensic analysis demonstrate that human inter-
vention and data manipulation create data sets that violate the NBL. Yet, the interpretations of our findings do 
not necessarily assume that deviations from the NBL are indicative of data manipulation. Several limitations 
to our study should be mentioned. Caution should be used when applying the NBL. Deviations from the NBL 
should be only treated as first filters. The aim of this paper is not to provide evidence whether a particular country 
manipulates data. Such claims require further investigations. We note that there is possibility that the divergence 
from the expected NBL distribution is not deliberate and is due to patterns of dependence between individual 
COVID-19 cases or structural breaks in the data. We only show that data from less developed countries is of 
lower accuracy and should be taken with caution.

Our paper highlights the importance of independent projects to verify data supplied by the governments. The 
paper also leads to a question about whether falsifying data during pandemics is a short- or long-lived strategy for 
governments. Further research is needed that would combine different methods that test for data manipulation, 

Table 4.   Second digit tests. The table presents the results of estimating Eq. (6) using OLS.  The dependent 
variable is the D goodness-of-fit measure for second digits. The unit of observation is a country. Panel A shows 
the results for the whole dataset with 185 countries for the cumulative number of confirmed cases and death 
cases; panel B shows the results for 50 countries with regional data. To avoid small coefficients, we divide the 
development index and ln(Population) by 100 and No. of days by 1000 for all models. Sample sizes vary due to 
missing values. P-values for a one-tailed t-test are in parentheses. ***, **, and * denote significance at the 1%, 
5% and 10% levels, respectively.

Variable

Confirmed cases Death cases

(1) (2)

Panel A. 185 countries

Developmental index −0.72∗∗∗

( 0.00)
−0.86∗∗

( 0.02)

ln(Population) −1.38∗∗∗

( 0.01)
−1.99∗∗

( 0.04)

No. of days −2.62∗∗∗

( 0.00)
−5.37∗∗∗

( 0.00)

Sample size 151 110

Adj.R2 36.86% 46.99%

Panel B. 50 countries with regional data

Variable (1) (2)

Developmental index −0.35∗

(0.05)
−1.30∗∗∗

(0.00)

ln(Population) 0.35
(0.20)

−1.25

(0.11)

No. of days −0.01∗

(0.08)
−0.10∗∗∗

(0.00)

Sample size 49 26

Adj.R2 2.89% 39.78%
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including the Newcomb-Benford law, biostatistics, moments of distributions, excess mortality rates, and social 
media data. Even more important is research related to methods that can prevent data manipulation and fraud 
during pandemics.
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