

Evolutionary Changes in the Interaction of miRNA With mRNA of Candidate Genes for Parkinson's Disease

Saltanat Kamenova¹, Assel Aralbayeva², Aida Kondybayeva¹, Aigul Akimniyazova^{1,3}, Anna Pyrkova³ and Anatoliy Ivashchenko^{3*}

¹ Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan, ² Department of Neurology, Kazakh Medical University, Almaty, Kazakhstan, ³ Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan

OPEN ACCESS

Edited by:

Elvira Galieva, Novosibirsk State University, Russia

Reviewed by:

Changwei Shao, Chinese Academy of Fishery Sciences, China Mikhail P. Ponomarenko, Institute of Cytology and Genetics (RAS), Russia

*Correspondence:

Anatoliy Ivashchenko a.iavashchenko@gmail.com; a_ivashchenko@mail.ru

Specialty section:

This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics

> Received: 29 December 2020 Accepted: 11 March 2021 Published: 30 March 2021

Citation:

Kamenova S, Aralbayeva A, Kondybayeva A, Akimniyazova A, Pyrkova A and Ivashchenko A (2021) Evolutionary Changes in the Interaction of miRNA With mRNA of Candidate Genes for Parkinson's Disease. Front. Genet. 12:647288. doi: 10.3389/fgene.2021.647288 Parkinson's disease (PD) exhibits the second-highest rate of mortality among neurodegenerative diseases. PD is difficult to diagnose and treat due to its polygenic nature. In recent years, numerous studies have established a correlation between this disease and miRNA expression; however, it remains necessary to determine the guantitative characteristics of the interactions between miRNAs and their target genes. In this study, using novel bioinformatics approaches, the quantitative characteristics of the interactions between miRNAs and the mRNAs of candidate PD genes were established. Of the 6,756 miRNAs studied, more than one hundred efficiently bound to mRNA of 61 candidate PD genes. The miRNA binding sites (BS) were located in the 5'-untranslated region (5'UTR), coding sequence (CDS) and 3'-untranslated region (3'UTR) of the mRNAs. In the mRNAs of many genes, the locations of miRNA BS with overlapping nucleotide sequences (clusters) were identified. Such clusters substantially reduced the proportion of nucleotide sequences of miRNA BS in the 5'UTRs, CDSs, and 3'UTRs. The organization of miRNA BS into clusters leads to competition among miRNAs to bind mRNAs. Differences in the binding characteristics of miRNAs to the mRNAs of genes expressed at different rates were identified. Single miRNA BS, polysites for the binding for one miRNA, and multiple BS for two or more miRNAs in one mRNA were identified. Evolutionary changes in the BS of miRNAs and their clusters in 5'UTRs, CDSs and 3'UTRs of mRNA of orthologous candidate PD genes were established. Based on the quantitative characteristics of the interactions between miRNAs and mRNAs candidate PD genes, several associations recommended as markers for the diagnosis of PD.

Keywords: gene, phylogeny, Parkinson's disease, miRNA, mRNA, association, marker

INTRODUCTION

Parkinson's disease (PD) is a neurodegenerative disease with a high mortality rate (Sadlon et al., 2019; Zhang et al., 2019; Zhao and Wang, 2019; Salamon et al., 2020). The development of the disease occurs over several years, which raises the possibility that diagnostic methods may be developed to facilitate subsequent therapy. Unfortunately, at present, there are no effective methods

1

for the early diagnosis of this disease, which significantly reduces the effects of treatment (Arshad et al., 2017; Patil et al., 2019). The difficulty of diagnosing PD is attributable to the many genes that participate in the development of this disease (candidate genes), the expression of which changes with the development of several types of neurodegenerative diseases (Behbahanipour et al., 2019). To date, several dozen candidate PD genes have been identified, and their roles in PD must be investigated. Some of these genes are candidate genes for Alzheimer's disease, PD, dementia, Huntington's disease, frontotemporal dementia, and other neurodegenerative diseases (Brennan et al., 2019; Dong et al., 2020; Yan et al., 2020). Several dozen genes encode proteins containing polyglutamine, the number of which ranges from 30 to 100 or more (Cao et al., 2017). It is believed that both the type of neurodegenerative disease and its severity are associated with the number of glutamine residues (Chen et al., 2018). Previous studies have attempted to link single nucleotide polymorphisms with the probability of PD and other neurodegenerative diseases (D'Anca et al., 2019; Hu et al., 2019; Kakati et al., 2019). Several candidate genes for neurodegenerative diseases contain miRNA binding sites (BS) encoding oligopeptides (Niyazova et al., 2015; Kondybayeva et al., 2018) that are believed to be responsible for the development of Alzheimer's disease, PD, dementia, and Huntington's disease. Therefore, it is necessary to establish which miRNAs can interact in such mRNA regions. In recent years, there has been an increased interest in miRNAs, which can selectively alter gene expression and, to varying degrees, regulate it in different tissues (Jurjević et al., 2017; Marques et al., 2017; Starhof et al., 2019; Uwatoko et al., 2019; Chen et al., 2020; Fejes et al., 2020; Nie et al., 2020; Ozdilek and Demircan, 2020; Ravanidis et al., 2020). Considering the possibility that miRNAs may be synthesized in one tissue and subsequently transferred through the bloodstream to other tissues, the issue of their regulation of the expression of candidate disease genes is complex (Ravanidis et al., 2020; Thomas et al., 2020; Wang et al., 2020; Xie et al., 2020). The human genome encodes more than seven thousand miRNAs, some of which can interact with mRNAs of several genes (Ivashchenko et al., 2014a,b,c; Nivazova et al., 2015; Atambayeva et al., 2017), and some genes are the potential targets of many miRNAs (Kondybayeva et al., 2018, 2020; Aisina et al., 2019; Mukushkina et al., 2020), which also makes it difficult to identify selective markers of the disease. The use of well-known bioinformatic approaches did not lead to the identification of reliable miRNA markers of diseases. In this work, we studied the quantitative characteristics of the interactions of known miRNAs with the mRNAs of candidate PD genes. Quantitative characteristics are a necessary and important parameter for assessing the effectiveness of the interactions between miRNAs and mRNAs. The competition among miRNAs to suppress the expression of one gene by positioning their BS with overlapping nucleotide sequences in regions of the mRNAs called clusters has been demonstrated (Aisina et al., 2019; Mukushkina et al., 2020). Additionally, it should be noted that approximately half of the miRNAs are derived from the introns of the host genes, while the rest of the miRNAs are encoded in intergenic regions (Berillo et al., 2013). Consequently, the host gene can be a source of miRNA and, at the same time, a target of miRNA.

Since miRNA can be quickly transferred between tissues through the bloodstream, this characteristic considerably complicates the establishment of the origin of miRNA circulating in the blood (Chen et al., 2018; Rosas-Hernandez et al., 2018; Brennan et al., 2019; Ramaswamy et al., 2020). Therefore, it is necessary to reveal the quantitative characteristics of the interactions of all known miRNAs with candidate genes and subsequently investigate the most effective associations of miRNAs and potential target genes. This approach eliminates many artifacts and enables us to increase the reliability of establishing effective associations of miRNAs and candidate genes.

The expression of candidate genes depends on several factors, including miRNAs that regulate gene expression at the posttranscriptional stage (Leggio et al., 2017; Lu et al., 2017; Martinez and Peplow, 2017; Quinlan et al., 2017; Li et al., 2018; Liu et al., 2019; Patil et al., 2019; Qin et al., 2019). It has been established that some miRNAs can interact with several or even hundreds of genes (Atambayeva et al., 2017), and the reverse situation is also observed: one gene can be the target of many miRNAs (Niyazova et al., 2015; Kondybayeva et al., 2018; Aisina et al., 2019). These properties greatly complicate the identification of miRNA associations and genes that can serve as markers of diseases. Many researchers have studied the changes in the concentrations of several miRNAs or the manipulation of the expression levels of several genes related to PD, and based on these studies, correlations were established between the expression levels of miRNAs and genes (Recabarren and Alarcón, 2017; Ren et al., 2019). Correlation does not allow establishing a direct dependence between miRNA and potential target genes. Consequently, the identification of such correlations does not enable us to establish specific relationships between miRNAs and target genes. Therefore, after over two decades of studying miRNA, no method has been developed for diagnosing various diseases using miRNA. Given the above circumstances, using the MirTarget program, we searched for associations of known human miRNAs with candidate PD genes. To confirm the reliability of these associations, it is necessary to show their presence in orthologous genes.

It is necessary to examine the expression of candidate genes in tissues affected by diseases. The level of miRNA expression in tissues with potential target genes and the possibility of delivering miRNA via blood to such tissues must be determined. Many studies have shown that miRNAs can circulate in the blood as components of exosomes and can enter almost any cell (Singh and Sen, 2017; Viswambharan et al., 2017; Wang et al., 2017; Rostamian Delavar et al., 2018; Titze-de-Almeida and Titze-de-Almeida, 2018; Tolosa et al., 2018; Yang et al., 2019; Ozdilek and Demircan, 2020; Wang and Zhang, 2020). Even in one tissue, the transfer of miRNA by diffusion was less effective than the transfer of miRNAs through the bloodstream to organ tissues. Bioinformatic approaches have been employed to identify associations between miRNAs and candidate genes (Zhang et al., 2019; Zhao and Wang, 2019). Such approaches enable us to study a substantial number of options for the interactions of known human miRNAs with all human proteinencoding genes. In this paper, we searched for miRNAs that bind to candidate PD genes to establish effective associations between miRNAs and genes that may be employed for the diagnosis of PD.

MATERIALS AND METHODS

The nucleotide (nt) sequences of candidate genes of PD were downloaded from the NCBI¹. These specific candidate genes are shown in Supplementary Table 1. The nucleotide sequences of 2,565 miRNAs (old miRNAs) were obtained from miRBase, and 3,707 miRNAs (new miRNAs) were obtained from a previous study (Londin et al., 2015). The reads per kilobase million (RPKM) value (Mortazavi et al., 2008) was provided in the Human Protein Atlas data². Orthologous genes of the following objects were used in the work: Bos mutus (bta), Bubalus bubalis (bbu), Callithrix jacchus (cja), Capra hircus (chi), Delphinapterus leucas (dle), Felis catus (fca), Gorilla gorilla (ggo), Homo sapiens (hsa), Macaca fascicularis (mfa), Macaca mulatta (mml), Macaca nemestrina (mne), Mus musculus (mmu), Nomascus leucogenys (nle), Odobenus rosmarus divergens (ord), Orcinus orca (oor), Ovis aries (oar), Pongo abelii (pab), Papio anubis (pab), Pan paniscus (ppa), Panthera pardus (ppr), Pan troglodytes (ptr), Saimiri boliviensis (sbo), and Sus scrofa (ssc). The miRNA BS in the 5'-untranslated region (5'UTR), coding sequence (CDS), and 3'-untranslated region (3'UTR) of several genes were predicted using the MirTarget program (Ivashchenko et al., 2014b, 2016). This program defines the following features of miRNA binding to mRNAs: (a) the start of the initiation of miRNA binding to mRNAs; (b) the localization of miRNA BSs in the 5'UTRs, CDSs and 3'UTRs of mRNAs; (c) the free energy of the interaction between miRNAs and mRNAs (ΔG , kJ/mole); and (d) the schemes of nucleotide interactions between miRNAs and mRNAs. The ratio $\Delta G/\Delta Gm$ (%) was determined for each site (Δ Gm equals the free energy of miRNA binding with its fully complementary nucleotide sequence). The miRNA BSs located in mRNAs had $\Delta G/\Delta Gm$ ratios of 90% or more. The $\Delta G/\Delta Gm$ ratios were determined on the assumption that the members of one miRNA family generally differed by no more than one to three nucleotides, and along with a miRNA length of 22 nt, the $\Delta G/\Delta Gm$ value was determined to be 90% (20 nt/22 nt = 90%) \pm 96% (21 nt/22 nt = 96%). With a larger difference in the number of mismatched nucleotides, the probability of two or more miRNAs binding to one site increases, despite the natural ability of miRNAs to interact selectively with the mRNAs of the target gene. The MirTarget program identifies the positions of the BSs on the mRNA, beginning with the first nucleotide of the mRNA's 5'UTR. The MirTarget program identifies hydrogen bonds between adenine (A) and uracil (U), guanine (G) and cytosine (C), G and U, A and C. The distance between A and C was 1.04 nanometers; the distance between G and C and between A and U was 1.03 nanometers; and the distance between G and U was 1.02 nanometers (Leontis et al., 2002). The numbers of hydrogen bonds in the G-C, A-U, G-U, and A-C interactions were 3, 2, 1, and 1, respectively (Kool, 2001; Lemieux and Major, 2002; Leontis et al., 2002; Garg and Heinemann, 2018). Taking into account the formation of non-canonical pairs significantly increases the reliability of establishing the interaction of miRNAs with mRNAs. The MirTarget program determines single miRNA BSs in mRNAs and miRNA BSs in clusters (arranged in series with overlapping nucleotide sequences of the same or several miRNAs). In this study, we suppose that the miRNA BSs in mRNAs were organized into clusters, which can be used as effective PD markers.

RESULTS

An analysis of the interactions between miRNAs and mRNAs was performed with candidate PD genes with an RPKM expression, considering the location of miRNA BSs in the 5'UTRs, CDSs and 3'UTRs. This approach enabled us to determine which miRNAs bound to different mRNA sites and which miRNAs preferred to interact with genes with different expression levels, since the results of the interactions between miRNAs and mRNAs are dependent on the ratio of the miRNA and mRNA concentrations. For example, the strong interaction of miRNAs with mRNAs slightly inhibits translation at miRNA concentrations that are tens of times lower than the mRNA concentrations. Conversely, the average interaction of miRNA with mRNA at substantially higher concentrations of miRNA over mRNA leads to significant suppression of translation. It is important to quantify the interactions between miRNAs and mRNAs to comparatively evaluate competition among miRNAs when they bind to mRNA.

Characteristics of the Interactions Between miRNAs and the 5'UTRs of mRNAs of Candidate PD Genes

Table 1 shows the data on the characteristics of the interactions between miRNAs and the mRNAs of the GSK3B, PPARGC1A, ZFAND4, and CCNY genes, depicting the cluster organization of the BSs of many miRNAs. The GSK3B gene serves as the potential target of 22 miRNAs, which distinguishes it from other candidate PD genes. The cluster of 22 miRNA BSs was located between the third and thirty-nine nucleotides (Table 1). The beginnings of these BSs were located over three nucleotides, which corresponded to their connection with the reading frame. In the mRNA of the MANF and other genes, paired miRNA BSs were also located over three nucleotides (Supplementary Table 2). The total length of the 22 BSs of GSK3B mRNA, considering multiple BSs, was 624 nt, which was 16 times greater than the length of the cluster. Gene GSK3B has BS for ID00296.3p-miR, ID00756.3p-miR, ID01804.3p-miR, ID02064.5p-miR with ΔG value more than -130 kJ/mole. ID01804.3p-miR, ID00457.3pmiR, ID00061.3p-miR, ID03151.3p-miR, ID02064.5p-miR, and miR-3960 have two BS, which significantly increased the effect of these miRNAs on the expression of the GSK3B gene.

Orthologous genes can be used as evidence of the reality of miRNA BS with the potential target gene mRNA. **Figure 1** shows the nucleotide sequences of the BS of several miRNAs included in the mRNA cluster orthologs of the *GSK3B* gene. The obtained results show that the nucleotide sequences of the

¹http://www.ncbi.nlm.nih.gov

²https://www.proteinatlas.org/ENSG00000150093-ITGB1/tissue/

TABLE 1 | Characteristics of miRNA interactions with 5'UTR mRNAs of candidate PD genes.

Gene; RPKM	miRNA	Start of site, nt	Δ G, kJ/mole	ΔG/ΔGm, %	Length, nt
GSK3B; 8.3	ID02187.5p-miR	3	-123	89	23
	ID03229.5p-miR	4	-123	92	22
	ID01804.3p-miR	5, 12	-134	91	23
	ID00756.3p-miR	8	-123	89	23
	ID01041.5p-miR	8	-132	90	24
	ID02294.5p-miR	8	-127	87	24
	ID00457.3p-miB	8. 11	-123129	91.95	22
	ID03367 5p-miB	11	-119	95	20
	ID00061 3p-miR	8.11	_125÷ _136	01 <u>+</u> 08	22
		0	120. 100	99	25
		9	- 100	96	20
		9	-127	00	24
	IDU3151.3p-miR	9, 12	-115	93	20
	ID03229.5p-miR	10	-123	92	22
	ID01702.3p-miR	13	-140	93	24
	ID02064.5p-miR	10, 13	-129, -136	90, 94	23
	ID01873.3p-miR	11	-123	94	21
	miR-3960	11, 14	-115	92	20
	ID02522.3p-miR	12	-127	91	23
	ID02499.3p-miR	13	-119	92	21
	ID02429.3p-miR	14	-125	92	23
	ID01652.3p-miR	15	-125	89	23
	ID02538.3p-miR	15	-121	90	22
PPARGC1A; 2.5	ID00470.5p-miR	18÷47 (5)	-108÷ -110	89÷91	23
	[1.5] miR-574-5p	20÷31 (5)	-108 ÷ -113	89–93	23
	ID02299.5p-miR	30	-98	92	21
	ID02732.3p-miR	36, 42	-121	89	23
	ID03332.3p-miR	71	-134	90	24
	ID01310.3p-miR	135÷144 (4)	-121÷ -123	92÷94	22
	ID03332.3p-miR	143, 146	-134 -140	90, 94	24
	ID02761.3p-miR	149	-132	89	24
<i>ZFAND</i> 4; 0.5	ID03418.3p-miR	109	-123	87	23
	ID00296.3p-miR	112	-134	85	25
	ID03206.5p-miR	114	-115	92	20
	ID01190.5p-miR	114	-136	89	24
	ID00030.3p-miR	114	-125	94	22
	ID02294.5p-miR	114	-125	86	24
	ID01574.5p-miR	116	-121	86	23
	ID01804.3p-miR	118	- 125	80	23
	IDU1702.3p-miR	811	- 129	80	24
	ID03307.5p-IIIR	109	-113	90	20
CCN/V: 10.7	ID03073.3p-MIR	120	- 129	94	23
00/07, 19.7		1	- 100	93	24
		1	-123	94	21
	ID00230.3P-111IN	4 A	- 140 - 197	80 69	20
	ID01641 3n-miR	4 Λ	-134	80	24
	ID01106 5n-miR	7	_132	80	24
	ID01879.5n-miR	, 8	_129	95	24 99
	ID02229.3n-miR	q	_121	92	22
	ID02499.3n-miR	q	_123	95	21
	ID03027 3n-miR	11	-121	85	24
				50	<u> </u>

In Table 1 and below, the number of miRNA binding sites is indicated in oval brackets. The value of miRNAs RPKM is indicated in square brackets.

clusters decrease from 33 nt in the hsa-mRNA of the *GSK3B* gene to 22 nt in the ptr-mRNA. Therefore, starting from ptr-mRNA, the cluster contains miRNAs BS of 21 nt or more, which can bind miRNAs of orthologous genes. Note that changes in the nucleotide composition of BS occur according to the principle of replacement of purine for purine (A \leftrightarrow G), or pyrimidine for pyrimidine (U \leftrightarrow C). With such substitutions, non-canonical G-U and A-C pairs are formed, or the canonical G-C and A-U pairs are formed (**Figure 1**). Clusters of miRNA BS in the mRNA of all objects are located between the conserved oligonucleotides UGCGGG and CCGAG. All cluster regions in orthologous genes of *GSK3B* include the same pentanucleotide CGGGC.

Figure 2 shows the location of the miRNA BS within the cluster, which demonstrate competition between miRNAs when they bind in the mRNA cluster of the *GSK3B* gene. Binding of any of the miRNAs in the cluster interferes with the binding of other miRNAs.

The efficiency of miRNA binding in a cluster is shown on schemes in **Figure 3**. Due to the formation of non-canonical A-C and G-U pairs, the structure of the miRNA-mRNA complex has a double-stranded helix without the formation of "bubbles," which increases the free binding energy of RNA strands due to stacking interactions.

The mRNA of the *PPARGC1A* gene contains two clusters of miRNA BSs, from 18 to 70 nt and from 135 to 172 nt (**Table 1**). Both clusters contain the BSs of several miRNAs with multiple BSs; that is, several of their BSs for one miRNA are located sequentially over two to three nucleotides. For example, the start of the miR-574-5p and ID00470.5p-miR have five and eight BSs, respectively, that are located over two nucleotides. In the second cluster for ID01310.3p-miR and ID0332.3p-miR four and five BSs respectively. Gene *PPARGC1A* has two BSs for ID0332.3p-miR and one for ID02761.3p-miR with a Δ G value greater than -130 kJ/mole. The association of the *PPARGC1A* gene with these miRNAs can be used as a marker for the diagnosis of PD.

With weak gene expression (value RPKM is 10), it is highly probable that several miRNAs can strongly suppress the synthesis of the corresponding proteins and have a decisive influence on the manifestation of their function. In addition, the presence of multiple BSs for the miRNAs ID00470.5p-miR, miR-574-5p, and ID01310.3p-miR in the mRNA of certain genes, such as *PPARGC1A*, significantly increases the probability that their expression will be suppressed.

There are clusters of miRNA BS in the mRNA of orthologous genes of monkeys (**Figure 4**). The first cluster, 53 nt long, is highly conserved (**Figure 4A**), while the second cluster differs from species to species (**Figure 4B**).

In the first and second clusters, the flanking oligonucleotides from 5-end (GCUCUGC and UUGAGAA) and 3-end (GGCACAG and GCAUCC) are conserved.

There was a cluster in the mRNA of the *ZFAND4* gene containing the BSs for 11 miRNAs (**Table 1** and **Figure 5**). The nucleotide sequences of clusters of mRNA BSs orthologous gene and flanking sequences were highly conserved. Gene *ZFAND4* has miRNA BS for ID00296.3p-miR, ID01190.5p-miR with a Δ G value of more than -130 kJ/mole (**Table 1**). This association is recommended for use in PD diagnosis.

The miRNA BSs in the mRNA of some genes formed clusters in which these sites featured partially overlapping nucleotides. The mRNA of the *CCNY* gene contained two clusters (**Table 1**). The first cluster from 1 to 30 nt included the BSs of nine miRNAs with a total length equal to 206 nt, which was 6.9 times greater than the length of the cluster. The organization of the miRNA BSs into clusters has the following consequences. The length of the 5'UTR is 180 nt, and the BSs of nine miRNAs with a length of 206 nt cannot be sequentially located in the 5'UTR without nucleotide overlap. Therefore, compaction of the miRNA BSs is necessary. However, the compaction of the BSs leads to competition between miRNAs for binding to a 30nt region in which only one miRNA can bind. In this case, miRNA predominantly binds the mRNA with the highest free interaction energy. For example, ID01041.5p-miR, ID00296.3pmiR, ID01702.3p-miR, ID01641.3p-miR, and ID01106.5p-miR preferably bind to the mRNA of the CCNY gene. In addition, it must be considered that the concentration of each miRNA can differ by a factor of several tens, and as a result, the quantitative characteristics of the interactions of mRNAs with different miRNAs in combination with their concentrations determines the duration of the miRNA complex with mRNA. For this reason, it is necessary to control the concentration of all miRNAs and mRNAs, which results in the miRNA determining the primary inhibition of translation. The second cluster of BSs for ID02971.3p-miR, ID02128.5p-miR, and ID01976.5p-miR in the mRNA of the CCNY gene had a smaller compaction of 1.4fold. However, in this case, competition also was observed among the three miRNAs for binding to mRNA.

Given in **Figure 6**, the nucleotide sequences of clusters of BS in the mRNA of the orthologous *CCNY* genes are flanked by conserved oligonucleotides UGGCG and CCGGC.

Of the 15 candidate genes with RPKM values less than 10, eleven genes each had a miRNA BSs in the 5'UTR (**Supplementary Table 2**). The *KANSL1* gene was the potential target of two miRNAs, and the *CRHR1* and *ERBB2* genes were the potential targets of three miRNAs. In the mRNA of the *LRP10* gene, the ID03064.3p-miR and ID01106.5p-miR BSs formed a cluster. The mRNA of the *LRP10* gene contains a cluster from 406 to 434 nt, 28 nt long (**Figure 7**). The flanking pentanucleotides GCGCC and CCGGC are the same in all objects.

In the mRNA of the *MANF* gene, two miRNAs had sites in the cluster from 56 to 97 nt (**Supplementary Table 2**). The total length of the BSs of two miRNAs was 69 nt, which was 1.7 times greater than the length of the cluster. Therefore, when organizing BSs into clusters, the sites were compacted to reduce the length of the 5'UTR. Another consequence of this compaction is the emergence of competition among miRNAs for binding to mRNA, since only one miRNAs can interact with a 41-nt-long cluster.

The *RAB5A* gene is the potential target of six miRNAs, the BSs of which form three clusters (**Supplementary Table 2**). ID03445.3p-miR has two BSs with overlapping nucleotide sequences, which increases the likelihood of its interaction with the mRNA of the *RAB5A* gene. Compared with other miRNAs, the association of ID02930.3p-miR has a large free energy of interaction with the mRNA of the mRNA of the *RAB5A* gene and can be recommended as a marker for PD diagnosis.

Nucleotide Sequences of mRNAs regions	Object
UGCGGGCUUGUGCCGCCGCCGCCGCCGCCGCCGGCCGAG	hsa
UGCGGGCUUGUGCCGCCGCCGCCGCCGCCGCCGCCGAG	ggo
UGCGGGCUUGUGCCGCCGC <mark>U</mark> GCCGCCGCCGCCCGGGCCGAG	pab
UGCGGGCUUGUGCCGCCGCC <mark>U</mark> GCCGCCGCCGCCCGGGCCGAG	mml
UGCGGGCUUGUGCCGCCGCCGCCGCCGCCGCCGCCGAG	rbi
UGCGGGCUUGUGC <mark>U</mark> GCCGCCGCCGCCGCCGCCCGGGCCGAG	csa
UGCGGGCUUGUG <mark>U</mark> CGCCGCCG <mark>U</mark> CGCCGCCGCCCGGGCCGAG	mmu
UGCGGGCUUGUGCCGCCGCCG <mark>U</mark> CGCCGCCCGGGCCGAG	cpo
UGCGGGCUUGUGCCGCCGCCGCCCGGGCCGAG	rro
UGCGGGCUUGUGCCGCCGCCGCCCGGGCCGAG	ppa
UGCGGGCUUGUGCCGCCGCCGCCCGGGCCGAG	ptr

FIGURE 1 | Nucleotide sequences of 5'UTR regions of mRNAs of orthologous GSK3B genes containing clusters of miRNAs binding sites.

Nucleotide sequences of mRNA region	miRNAs
CUUGUGCCGCCGCCGCCGCCGCCGCCGGG	cluster hsa-mRNA
CUUGUGCCGCCGCCGCCG	ID02187.5p-miR
CUUGUGCCGCCGCCGCCG	ID03229.5p-miR
UUGUGCCGCCGCCGCCGCCG	ID01804.3p-miR
GUGCCGCCGCCGCCGCCGCCG	ID02294.5p-miR
GUGCCGCCGCCGCCGCC	ID03367.5p-miR
GUGCCGCCGCCGCCGCCGCCGC	ID01041.5p-miR
UGCCGCCGCCGCCGCCGCCG	ID00296.3p-miR
UGCCGCCGCCGCCGCCGCCGC	ID01641.3p-miR
UGCCGCCGCCGCCGCCG	ID03151.3p-miR
UGCCGCCGCCGCCGCCGCCG	ID00756.3p-miR
CCGCCGCCGCCGCCGCCGCCGCC	ID00061.3p-miR
CCGCCGCCGCCGCCGCC	miR-3960
CGCCGCCGCCGCCGCCGC	ID01873.3p-miR
CGCCGCCGCCGCCGCCGCCCCG	ID02522.3p-miR
GCCGCCGCCGCCGCCGCCCCG	ID02064.5p-miR
GCCGCCGCCGCCGCCGCCGC	ID01702.3p-miR
GCCGCCGCCGCCGCCGCC	ID02499.3p-miR
CCGCCGCCGCCGCCGCCCCG	ID00457.3p-miR
CGCCGCCGCCGCCGCCGC	ID02538.3p-miR
CGCCGCCGCCGCCGCCGCGGG	ID01652.3p-miR

FIGURE 2 | Schemes of the location of miRNAs binding sites in the cluster located in the 5'UTR of the mRNA of the candidate hsa-GSK3B gene of Parkinson's disease.

miRNA, position of the miRNA binding site	miRNA, position of the miRNA binding site
ID02187.5p-miR,4	ID03229.5p-miR,4
5'-GCCG C CGCCGCCGCCGCCGC-3'	5'-GCUUGUGCCGCCGCCGCCGCCG-3'
3 ' -CCU CA U U GGCGGCGGCGGCGGCG-5 '	3'-CUACCACGGCGGCGGCGGCGGC-5'
ID01804.3p-miR,5	ID02294.5p-miR,8
5'- U GCCGCCGCCGCCGCCGCCGCCG-3'	5'-G U GCCGCCGC C GCCGC C GCCGCCG-3'
I I IIIIIIIIIIIIIIIIIII	
3 ' -G CCCCGGCGGCGGCGGCGGCGGC-5 '	3'-CGCCGAGGCGACGGCGACGGCGGC-5'
ID00756.3p-miR,8	ID01641.3p-miR,9
5'-UGCCGCCGCCGCCGCCGCCG-3'	5'- U GCCGCCGCCGCCGCCGCCGC-3'
	I
3 ' - CAGGCAUCAGCGGCGGCGGCGGC-5 '	3 ' -G GGGUGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
ID00296.3p-miR,9	ID03151.3p-miR,9
5'- U GCCGCCGCCGCCGCCGCCGCC-3'	5'-U G CCGCCGCCGCCGCCG-3'
1 1 1 1 1 1 1 1 1 1	
3'- G GGGUGGGGGGGGGGGGGGGGGGGG-5'	3'-A U GGGGGGGGGGGGGGGGGGGG-5'
ID01702.3p-miR,12	ID01873.3p-miR,12
5'-CGCCGCCGCCGCCGCCGCCG-3'	5'-CGCCGCCGCCGCCGCCGC-3'
3 '-GGGGCGGCGGCGGCGGCGGGA-5 '	3'-GCC A GGGCGGCGGCGGCGGCG-5'-5'
ID02064.5p-miR,13	ID00457.3p-miR,14
5'-GCCGCCGCCGCCGCCG C CCG-3'	5'-CCGCCGCCGCCGCCGCCGCCG-3'
3'-CGGCGGCGGCGGCGGCGGGAGGC-5'	3'-CUCGGCGGCGGCGGCGGCGGGA-5'
ID02499.3p-miR,14	ID02538.3p-miR,15
5'-CCGCCGCCGCCGCC G CCGCCC-3'	5'-CGCCGCCGCCGCCGCCGCCGG-3'
3'-GGCGGCGGCGGCGG U GCUGGG-5'	3'-GCGGCGGCGACGGCGGGGAGGCU-5'

FIGURE 3 | Schemes of miRNA interaction in cluster 5'UTR mRNA of the candidate GSK3B gene for Parkinson's disease.

Α	
Nucleotide sequences	Objects
GCUCUGCGCGCACACACCACACACGCACACGCACACACGCGCGCGCACACGCGCGCACAG	hsa
GCUCUGCGCGCACACACACACACGCACACGCGCACACACGCGCGCACACACGCGCGCACAC	pab
GCUCUGCGCGCACACACCUCACACACGCCACACGCGCACACACGCGCGCACACGCGCGCACAG	pan
GCUCUGCGCGCACACACCUCACACACGCCACACACGCGCGCACACACGCGCGCACACAGCCGGCACAG	mml
GCUCUGCGCGCACACACCUCACACACGCGCACACACGCGCGCACACACGCGCGCACACAGCCGGCACACAGCCGCGCACACAGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCACACAGCGCGCGCGCGCACACAGC	mne
B Nucleotide sequences Objects	
UUGAGAAGGCGGCAGCGGCGGCGGCGGCGGCGGCGGCGGCGG	
UUGAGAAGGCGGCAGCGGCGGCGGCGGCGGCGGCGGCGGCGG	
Organaageegeegeegeegeegeegeegeegeegeegeegeege	

FIGURE 4 | Nucleotide sequences of 5'UTR regions of mRNAs of orthologous *PPARGC1A* genes containing the first cluster (A) and the second cluster (B) of miRNAs binding sites.

Nucleotide sequences	Objects
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	hsa
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	ppa
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	pab
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	ggo
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	ptr
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	pan
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	mml
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	mfa
GAGCCGCUGAGCCCAGCCGCCGCCGCCGCCGCCGCCGGCCG	nle

FIGURE 5 | Nucleotide sequences of 5'UTR regions of mRNAs of orthologous ZFAND4 genes containing a cluster of miRNAs binding sites.

Nucleotide sequences	Objects
UGGCGAGGCCCGCCGCCGCCGCCGCUGCUGACCCGGCGGCCGGC	hsa
UGGCGAGGCCCGCCGCCGCCGCCGCUGACCCGGCGGCCGGC	ptr
UGGCGAGGCCCCGCCGCCGCCGCCGCUGACCCGGCGGCCGGC	ggo
UGGCGAGGCCCCGCCGCCGCCGCCGCUGCUGACCCGGCCGG	ppa
UGGCGAGGCCCCGCCGCCGCCGCCGCUGCUGACCCGGCCGG	mml
UGGCGAGGCCCCGCCGCCGCCGCCGCUGCUGACCCGGCCGG	mne
UGGCGAGGCCCGCCGCCGCCGCCGCUGCUGACCCGGCGGCCGGC	lne

FIGURE 6 | Nucleotide sequences of 5'UTR regions of mRNAs of orthologous CCNY genes containing clusters of miRNAs binding sites.

Nucleotide sequencesObjectsGCGCCCCAGUGCCGAGACCCGGGGGCUUCAGGAGCCGGChsaGCGCCCCAGUGCCGAGACCCGGGGCUUCGGGAGCCGGCptrGCGCCCCAGUGCCGAGACCUGGGGCUUCGGGAGCCGGCsboGCGCCCCAGUGCCCAGACCCUGGGGCUUCGGGAGCCGGCcja

FIGURE 7 | Nucleotide sequences of 5'UTR regions of mRNAs of orthologous LRP10 genes containing clusters of miRNAs binding sites.

In 20 genes with low expression levels, 14 miRNA and mRNA associations were identified (**Table 1** and **Supplementary Table 2**). Six miRNA and mRNA associations were identified in 15 genes with high expression in the 5'UTR mRNA. Fourteen associations between miRNAs [ID00061.3p-miR, ID01296.3p-miR, ID01041.5p-miR, ID01106.5p-miR, ID0190.5p-miR, ID01702.3p-miR, ID01804.3p-miR, ID02064.5p-miR, ID02761.3p-miR, ID03047.3p-miR, ID03064.3p-miR (two sites), and ID03332.3p-miR] and the 5'UTRs of mRNAs of candidate PD target genes (*ERBB2, GSK3B, LRCH1, LRP10, PPARGC1A, ZFAND4*, and *CCNY*) have free energy interactions of more than -130 kJ/mole (**Table 1** and **Supplementary Table 2**) and are recommended as markers for PD.

Of the 15 candidate genes, seven had one BS for different miRNAs (**Table 1** and **Supplementary Table 2**). Each of the *CTNNB1, MANF, MAPT, RTN1*, and *VSNL1* genes were targets of two miRNAs (**Supplementary Table 2**).

A small number of BSs with the formation of clusters (**Supplementary Table 2**) is characteristic of most genes with high expression in addition to those shown in **Table 1**. Only in the mRNA of the *CDK5R1*, *MART*, and *VSNL1* genes were the clusters of two miRNA BSs identified. The free energy of the interactions of these miRNAs with mRNAs of candidate PD genes was a Δ G value below -130 kJ/mole. In 13 genes with high expression, there were no such associations (**Supplementary Table 2**).

Characteristics of the Interactions Between miRNAs and the CDSs of mRNAs of Candidate PD Genes

In the CDSs of the mRNAs of six genes, there was one BS, and in the mRNAs of nine genes, there were two BSs (**Supplementary Table 3**). Only in the mRNAs of the *AXIN1*, *CD5*, and *ERBB2*

genes were clusters of BSs for two miRNAs detected. The *FOXO1* gene was the potential target of seven miRNAs, the BSs of which were distributed across two clusters (**Table 2**). From 655 to 695 nt, there were five BSs with a total length of 137 nt, which was 3.3 times greater than the length of this cluster. The value of the free energy of the interactions between the miRNAs and mRNAs for the three associations of miRNAs and mRNAs of *FOXO1* was above -130 kJ/mole.

The nucleotide sequences of mRNAs binding site clusters of orthologous *FOXO1* genes are highly conserved (**Figure 7**). The high GC-content of miRNAs BS determines the high free energy of miRNAs binding to mRNAs of the *FOXO1* gene. The oligonucleotides flanking the clusters are conserved.

Clusters of miRNA BSs were identified only in the mRNAs of the orthologous *APOE* genes. The nucleotide sequences of the cluster and the oligonucleotides flanking them were conserved (**Table 2** and **Figure 8**). The protein regions encoded by BS of ID01030.3p-miR and ID03261.3p-miR in mRNA orthologous *APOE* genes were conserved, respectively (**Supplementary Figure 1**).

The miRNA BS in the mRNA of 11 orthologous *FOXO1* genes of some mammals formed clusters encoding longer oligonucleotides (**Figure 9**). However, the flanking amino acid sequences from the C-terminus were identical and from the N-terminus differed by one amino acid (**Supplementary Figure 2**).

The clusters of miRNAs BS in mRNAs of the *FOXO1* gene encoded the same oligopeptides AAAVAAAAAAA, with the exception of the nle-mRNAs of the *FOXO1* gene (**Supplementary Figure 2**). The amino acid sequences flanking the oligopeptides encoded by the cluster of BS were completely conserved.

The miRNA BS in the mRNA of 11 orthologous *FOXO1* genes of some mammals formed clusters encoding longer oligonucleotides (**Supplementary Figure 3**). However, the flanking amino acid sequences from the C-terminus were identical and from the N-terminus differed by one amino acid.

Among the associations of miRNAs and mRNA of *FOXO1*, ID02761.3p-miR, ID03332.3p-miR, ID01804.3p-miR stand out, which are recommended as markers of PD as interacting with a Δ G value of more than -130 kJ/mole (**Table 2**).

The mRNA of the *SETD1A* gene contained 17 miRNA BSs (**Table 2**). ID03324.3p-miR and ID01641.3p-miR each had two BSs in different clusters. The cluster of BSs from 4,877 to 4,928 nt was four times less than the total length of miRNA BSs, which was 205 nt (**Figure 10**). Highly conserved nucleotide sequences of cluster encode conserved amino acids in orthologous proteins (**Supplementary Figure 4**). Six associations between miRNAs (ID00296.3p-miR, ID01641.3p-miR, ID01702.3p-miR target genes *SETD1A* have a free energy of the miRNA interaction with the CDS of more than -130 kJ/mole (**Table 2**) and are recommended as markers for PD. In 34 genes with low expression, only two genes with clusters of BSs had six associations with a Δ G value higher than -130 kJ/mole.

Each mRNA of the *ATN1* and *ATP13A2* genes had BSs for seven miRNAs (**Supplementary Table 3**). Only in the mRNA of the *ATP13A2* gene was a cluster of two BSs for ID01157.5p-miR and ID01377.3p-miR identified. Therefore, in the CDSs

of mRNAs of the candidate PD genes, there were no clusters of BSs of more than two miRNAs. BS of ID01047.3p-miR is conserved in the mRNA of *ATN1* orthologous genes (**Figure 11**). Corresponding amino acid sequences were conserved along with flanking oligopeptides (**Supplementary Figure 5**). Of the 16 genes with high expression in the protein-encoding region, no miRNA BSs with free interaction energies higher than -130 kJ/mole were found.

Characteristics of miRNA Interactions With 3'UTRs of mRNAs of Candidate PD Genes

Each of the mRNAs of ten candidate genes bound to only one miRNA (**Supplementary Table 4**). The mRNAs of the *LRP10*, *PRKN*, *RBBP5*, and *SLC14A1* genes were potential targets for two or three miRNAs, containing a cluster of miR-5095 and miR-619-5p BSs located six nucleotides apart (**Table 3** and **Supplementary Table 4**). The mRNA of the *GSK3B* gene, in addition to the miRNA BSs in the 5'UTR, contained miRNA BSs in the 3'UTR (**Table 3**), which made up the cluster of BSs for miR-466, ID01030.3p-miR, and ID00436.3p-miR, and together with ID01727.5p-miR, these miRNAs could bind to the mRNA of the *PPARGC1A* gene (**Table 3**).

The data shown in **Figure 12** indicate a difference in the size of the cluster of miRNAs BS in the 3'UTR of mRNA of *GSK3B* orthologous genes. At the same time, the flanking oligonucleotides remain highly conserved. These results prove the emergence of a connection between miRNA and mRNA of target genes many millions of years ago. The organization of miRNA BS into clusters also has a long history. The existing changes in the nucleotide composition of BS occur according to the principle of replacement of purine for purine (A \leftrightarrow G), or pyrimidine for pyrimidine (U \leftrightarrow C). Such substitutions result in non-canonical pairs G-U and A-C. MirTarget takes these interactions into account and predicts the formation of these pairs.

Note that the preservation of the oligonucleotide composition of the cluster-flanking BS in the 3'UTR of orthologous genes during evolution is probably necessary to preserve the interactions of miRNAs with mRNAs. Note that the flanking nucleotides contain the same CUUGGU hexanucleotides (**Supplementary Figure 7**).

The *LRP10* gene is the potential target of nine miRNAs. The miR-5095 and miR-619-5p BSs form a cluster, and the beginnings of their BSs differed by six nucleotides. This relationship between miR-5095 and miR-619-5p BSs is not accidental, since the identical arrangement of their BSs was determined in the mRNAs of the *PRKN* (**Supplementary Table 4**), *RBBP5*, and *SLC14A1* genes (**Table 3** and **Figure 13**).

In addition, the difference between the miR-5096 and miR-619-5p BSs was the same (74 nt) in the mRNAs of the *PDP2*, *RBBP5*, and *SLC14A1* genes. The beginnings of the miR-5585-3p and miR-1285-5p BSs differed by 99 nt in the mRNAs of the *LRP10* and *PDP2* genes. The miR-619-5p bound to the mRNA of the *PRKN* gene fully complementarily among the 201 genes that are the target of this miRNA (Atambayeva et al., 2017). Candidate TABLE 2 | Characteristics of the interactions between miRNAs and CDS mRNAs of candidate PD genes.

Gene; RPKM	miRNA	Start of site, nt	∆G, kJ/mole	∆G/∆Gm, %	Length, nt
APOE; 269.2	ID03402.5p-miR	758	-121	95	22
	ID03398.5p-miR	881	-115	93	20
	ID03261.5p-miR	883	-115	93	20
FOXO1; 2.5	ID03332.3p-miR	655, 658	-136, -140	91, 94	24
	ID02761.3p-miR	661	-132	89	24
	ID02611.3p-miR	660	-125	91	22
	ID00171.3p-miR	666	-117	93	20
	ID01804.3p-miR	672	-136	93	23
	ID01057.5p-miR	745	-123	91	23
	ID02429.3p-miR	749	-123	91	23
SETD1A; 4.5	miR-6824-5p	2,062	-113	90	22
	[0.2] miR-1207-5p	2,064	-115	93	21
	ID00850.3p-miR	2,495	-117	90	22
	ID01321.5p-miR	2,498	-113	91	21
	[19.1] miR-762	4,098	-125	92	22
	miR-6891-3p	4,759	-106	93	21
	ID03324.3p-miR	4,764, 4,788	-115	90	22
	ID03238.3p-miR	4,769	-117	90	23
	ID01545.3p-miR	4,776	-113	93	21
	ID02538.3p-miR	4,877	-121	90	22
	ID01641.3p-miR	4,894, 4,900	-132, -140	89, 94	24
	ID01323.3p-miR	4,898	-123	91	22
	miR-3960	4,899	-115	92	20
	ID00296.3p-miR	4,900	-140	89	25
	ID01702.3p-miR	4,900	-134	89	24
	ID01959.3p-miR	4,905	-117	92	21
	ID00962.3p-miR	4,905	-117	89	23

Nucleotide sequencesObjectsAGGCCUGGGGCGAGCGGCUGCGCGCGCGCGGATGGAGhsaAGGCCUGGGGCGAGCGGCUGCGCGCGCGGGATGGAGggoAGGCCUGGGGCGAGCGGCUGCGCGCGCGCGGATGGAGppaAGGCCUGGGGCGAGCGGCUGCGCGCGCGGATGGAGpabAGGCCUGGGGCGAGCGGCUGCGCGCGCGCGGATGGAGpabAGGCCUGGGGCGAGCGGCUGCGCGCGCGCGGATGGAGnleAGGCCUGGGGCGAGCGGCUGCGCGCGCGCGCGCGATGGAGnle

FIGURE 8 | Nucleotide sequences of the CDSs mRNAs regions of orthologous APOE genes containing binding sites of ID01030.3p-miR and ID03261.3p-miR.

PD genes that are targets of miRNAs that bind to the 3'UTRs of mRNAs significantly differ from other candidate genes in the number of BSs for miR-619-5p, miR-5095, miR-5096, miR-5585-3p, and miR-1285-5p. Another feature of candidate PD genes is the association of the *GSK3B* and *PPARGC1A* genes with miR-466, ID00436.3p-miR, ID01030.3p-miR, and ID01727.5p-miR, the BSs of which form one cluster (**Table 3**). The interactions between miRNAs and the 3'UTRs of mRNAs occur with less free energy than those between miRNAs and the 5'UTRs and CDSs of mRNAs because these miRNAs have reduced GC contents. For

example, only ID02732.3p-miR was associated with the mRNA of the *PRKN* gene, exhibiting a Δ G value of -132 kJ/mole.

The cluster of miR-5095 and miR-619-5p BS in the mRNA of the *SLC14A1* gene is conserved in part of miR-619-5p binding (GGCUCACACCUGUAAUCCCAGC) and is variable in the six nucleotide segment that binds to miR-5095 (**Figure 13**). Flanking nucleotides from the 3-end of the cluster are the same for all objects (ACUUUGGG) and coincide with the flanking nucleotides of the 3-end of the cluster in the mRNA of the *PRKN* gene of most objects (**Figure 14**).

Nucleotide sequences CUCCGUGGCGGCGGCGGCGGCGGCGGCGGCGCGCGCGCG	Objects hsa ptr ggo pab csa mml
CUCCGUGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG	mml rro nle

FIGURE 9 | Nucleotide sequences of CDS regions of mRNAs of orthologous FOXO1 genes containing clusters of miRNAs binding sites.

Nucleotide sequences

Objects

FIGURE 10 | Nucleotide sequences of the CDSs mRNAs regions of orthologous SETD1A genes containing clusters of miRNAs BSs.

Nucleotide sequences

CGACAUGGGGGCCUGGCUCUGCAGCCUGGCCCACCU hsa CGACAUGGGGGGCCUGGCUCUGCAGCCUGGCCCACCU ptr CGACAUGGGGGCCUGGCUCUGCAGCCUGGCCCACCU ppa CGACAUGGGGGCCUGGCUCUGCAGCCUGGCCCACCU qqo CGACAUGGGGGCCUGGCUCUGCAGCCUGGCCCACCU mfa CGACAUGGGGGCCUGGCUCUGCAGCCUGGCCCACCU mml CGACAUGGGGGGCCUGGCUCUGCAGCCUGGCCCACCU mne CGACAUGGGGGGCCUGGCUCUGCAGCCUGGCCCACCU nle CGACAUGGGGGCCUGGCUCUGCAGCCUGGCCCACCU rro CGACAUGGGGGCCUGGCUCUGCAGCCUGGCCCACCU csa

FIGURE 11 | Nucleotide sequences of the CDSs mRNAs regions of orthologous ATN1 genes containing the ID01047.3p-miR BSs.

The schemes of miRNA and mRNA nucleotide interactions are a clear illustration of the effectiveness of the MirTarget program in establishing miRNA BSs in mRNA of candidate PD genes (Supplementary Figure 6). These schemes demonstrate the important role of non-canonical U and G, A and C pairs in maintaining the double-stranded structure of the miRNA-mRNA complex while maintaining the stacking interaction between

miRNA and mRNA nucleotides, which gives their complex increased stability.

Objects

In 21 genes with high and low expression, no miRNAmiRNA associations with a ΔG value of more than -130 kJ/mole were found. However, miRNA associations with multiple BSs in the mRNA of candidate target genes can be proposed as associations for diagnostics. These miRNAs and the target gene

may include miR-574-5p, ID00470.5p-miR, and *VSNL1* (Table 3 and Figure 15).

Of the large family of miR-1273a,c,d,e,f,g-5p or -3p (Ivashchenko et al., 2014a) only a few candidate genes have been targeted by some miR-1273 (Table 3). A cluster of BS miR-1273a, miR-1273c, and miR-1273g-3p with an efficiency of their binding $\Delta G/\Delta Gm$ of more than 90% was detected in the mRNA of the hsa-PDP2 gene. For mRNA of ptr-PDP2, ppa-PDP2, and ggo-PDP2 orthologous genes, the $\Delta G/\Delta Gm$ value was 85% or more. mRNA of orthologous genes pab-PDP2, mfa-PDP2, mml-PDP2, mne-PDP2, mmu-PDP2, rno-PDP2 interacted with miR-1273a, miR-1273c, and miR-1273g-3p with a $\Delta G/\Delta Gm$ value of less than 80%, which indicates a weak interaction of these miRNA and mRNA. Diagrams of the corresponding associations for hsa, ggo, ppa, ptr are shown in Supplementary Figure 8 and demonstrate the interaction of miRNA and mRNA without bubbles. Note that in the clusters of BS, purine for purine and pyrimidine for pyrimidine is replaced, which insignificantly affects the free energy of interaction between miRNA and mRNA. Oligonucleotides before and after the cluster of BS miR-1273a, miR-1273c, and miR-1273g-3p were conserved (Table 3), which reflects the need to maintain the position of the cluster of BS for these miRNAs. Based on the results presented, the association of miR-1273a, miR-1273c, miR-1273g-3p, and the PDP2 gene can be proposed as a marker for the diagnosis of PD.

The mRNA of the CCNY gene, in addition to the 5'UTR BSs, had BSs for six miRNAs in the 3'UTR (Supplementary Table 4). The miR-1273a, ID03224.5p-miR, and miR-1273g-3p BSs formed a cluster 45 nt long with a total length of 69 nt BSs. The mRNA of the DIRAS1 gene had two clusters of miRNA BSs that started at 929 and at 3,443 nt. This placement of clusters led to the competition of miRNA in each of the clusters for binding to the mRNA of the DIRAS1 gene (Supplementary Table 4). Consequently, the highly expressed CCNY, DIRAS1, and VSNL1 genes have clusters of miRNA BSs in their mRNAs. In the mRNA of the WDR82 gene, a cluster of miR-5095 and miR-619-5p BSs was detected with a difference of six nucleotides in the start sites of the BSs. Candidate PD genes with high expression levels did not have miRNA BSs with free energy greater than -130 kJ/mole in the 3'UTRs of their mRNAs (Table 3 and Supplementary Table 4).

Note that genes expressed with RPKM values from 0.1 to 10 had an average RPKM value of 3.5 ± 2.9 and the host genes of intronic miRNAs had an average RPKM value of 4.6 ± 2.8 (**Supplementary Table 5**). The correlation coefficient between the RPKM values of the host genes and 51 target genes of their miRNA was equal to 0.26, that is, there was no strong relationship between the expression of miRNA and potential target genes.

The expression of miRNA and the expression of their target genes were comparable, which indicates the need to maintain close concentrations of miRNA and corresponding mRNA in the norm.

For target genes with a high RPKM value of 43.1–322.5 (average value 116.8), the RPKM value of miRNA host genes varied in the range 1.2–22.4 (average value 7.8). Therefore, these miRNAs normally only slightly alter the expression of target

genes, since the expected miRNA concentration will be about 15 times less than the mRNA concentration. However, in pathology, the concentration of miRNA can increase tens of times, or the expression of the gene can decrease many times, and then their significant interaction will occur. This analysis should be taken into account when interpreting the experimental results of determining the concentrations of miRNA and mRNA target genes that make up the association for the diagnosis of the disease. Most of the miRNAs that act on candidate genes for PD are new miRNAs. Unfortunately, we have no information about which of them are of intronic origin. However, the significant similarity between the properties of old and new miRNAs (Aisina et al., 2019; Kondybayeva et al., 2020; Mukushkina et al., 2020) allows us to hope that the relationships revealed in this work between the expression of old miRNAs and their potential target genes are also characteristic of new miRNAs.

DISCUSSION

Our studies have shown that for many known PD candidate genes, their mRNAs are effectively targeted by miRNAs. The *in silico* characteristics of the interactions between miRNAs and mRNAs can be used in calculating the inhibition efficiency of the translation process at different ratios of miRNA and mRNA concentrations. Thus, using the kinetic equations of the analysis of the interaction of the inhibitor and the enzyme, we can interpret the effect of miRNA by changing the ratio of the mRNA and miRNA concentrations.

The correlations established in many published reports between the changes in the concentration of one or several miRNAs and the changes in the expression of putative target genes involved in the development of PD are not very reliable. This lack of reliability is observed because in most studies of PD and other diseases, the concentration of miRNA was not controlled simultaneous to the expression of the putative target genes. The results of their interactions strongly depend on the ratio of the miRNA concentrations and mRNA concentrations of the target genes. For example, even with strong binding of miRNA to mRNA, the suppression of gene expression is negligible if the concentration of miRNA is significantly lower than the concentration of mRNA. Conversely, with an average interaction of miRNA with mRNA and an excess of the miRNA concentration over the mRNA concentration, strong translation inhibition is observed. Therefore, in the tables, we also present low characteristics of the binding of miRNAs to mRNAs of candidate genes. These associations of miRNAs and genes can be markers with increasing concentrations of miRNAs relative to mRNAs. Considering the competition between miRNAs upon binding to mRNAs, the problem of establishing an effective miRNA for a particular gene becomes even more complicated, since the expression of several or even tens of miRNAs and genes needs to be controlled. Bioinformatics approaches make it possible to select from several thousand miRNAs that are likely to interact with candidate PD genes, which significantly reduces the material costs of searching for miRNAs and target gene associations.

TABLE 3 | Characteristics of the interactions between miRNAs and the 3'UTR mRNAs of candidate PD genes.

Gene; RPKM	miRNA	Start of site, nt	∆G, kJ/mole	ΔG/ΔGm, %	Length, nt
GSK3B; 8.3	ID01030.3p-miR	4,705÷4,719 (4)	-108÷ -113	89÷93	23
	miR-466	4,709÷4,721 (6)	-104÷-106	89÷91	23
	ID00436.3p-miR	4,713÷4,723 (3)	-104	89	23
	ID01727.5p-miR	4,722	-106	91	23
LRP10; 7.8	(1.6) miR-5096	3,237	-104	92	21
	ID02175.3p-miR	3,353	-110	91	22
	[3.6] miR-5585-3p	3,305	-115	98	22
	[5.3] miR-1285-5p	3,404	-102	91	21
	[4.3] miR-619-5p	3,497	-110	91	22
	[19.7] miR-4452	3,544	-108	94	23
	[8.3] miR-5095	3,788	-106	91	21
	[4.3] miR-619-5p	3.794	-115	95	22
	ID00913.5p-miB	3.814	-117	92	23
PDP2:12	ID00047 3p-miB	3 220	-110	93	21
	[1.6] miB-5096	3.920	-108	96	21
	[4.3] miR-619-5p	3,980	-113	93	22
	[3 6] miR-5585-3n	3 987	-106	91	22
	[5.3] miR-1285-5p	4.086	-102	91	21
	[0.0] Mill 1200 0p	4,000	-102	Q1	21
	[0 2] miB-1273a	4,639	110	90	25
	[0.2] miP 1273a	4,035	-119	90	20
	[0.0] miP 12730	4,041	-110	91	22
		4,001	-100	91	21
	miD 2150	5,495	-104	91	21
		5,001	-100	91	22
	[4.3] MIR-019-5p	5,803	-113	93	22
	[4.3] MIR-019-5p	0,900	-110	91	22
	[4.3] MIR-619-5p	0,173	-119	98	22
	[1.6] MIR-5096	6,247	- 108	96	21
	[4.3] miR-619-5p	6,308	-117	96	22
	ID01836.5p-miR	6,398	-113	90	23
	[1.6] miR-5096	6,413	-102	91	21
PPARGC1A; 2.5	miR-466	3,321, 3,337	-106	91	23
	ID00436.3p-miR	3,323÷3,339 (3)	-104÷-108	89÷93	23
	ID01030.3p-miR	3,325	-115	95	23
	ID01727.5p-miR	3,338	-104	89	23
RBBP5; 3.9	(8.3) miR-5095	3,065	-108	93	21
	[4.3] miR-619-5p	3,071	-113	93	22
	[1.6] miR-5096	3,145	-106	94	21
	ID03006.5p-miR	4,015	-121	89	24
	[4.3] miR-619-5p	4,030	-115	95	22
	[1.6] MIR-5096	4,104	-106	94	21
	ID02175 3n-miR	4,103	-100 -113	91	22
	ID01237 3n-miB	4,220	-117	90	24
SI C14A1: 8.5	(8.3) miB-5095	2 771	-110	95	24
0207 // //, 0.0	[4.3] miR-619-5p	2,777	-119	98	22
	[1.6] miR-5096	2,851	-102	91	21
	[4.3] miR-619-5p	3,215	-115	95	22
	ID01836.5p-miR	3,003	-113	90	23
VSNL1; 206.5	(1.5) miR-574-5p	1,021÷1,045 (13)	-108 ÷ -113	89–93	23
	ID00470.5p-miR	1,023÷1,045 (12)	-108	89	23

Nucleotide sequences UUCAUUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	Objects mml
UUCAUUGUGUGUGCGUGUGCGCCAUGCGUGCGUGCGUGUGUGU	mne
UUCAUUGUGUGUGCG <mark>C</mark> GUGCG <mark>U</mark> GUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	mfa
UUCAUUGUGUGUGC <mark>A</mark> UGUGCGCGUG <mark>C</mark> GUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	pan
UUCAUUGUGC <mark>A</mark> UGCGUGUGCGCGCG <mark>C</mark> GC <mark>A</mark> UGUGUGCGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	hmo
UUCAUUGUGC <mark>A</mark> UGCGUGUGCGCGCG <mark>C</mark> G <mark>CA</mark> UGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUG	nle
UUCAUUGUGUGUGCGUGUGCG <mark>U</mark> GUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGGGGCUGA	rro
UUCAUUGUGUGUGC <mark>A</mark> UGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUG	ggo
UUCAUUGUGUG <mark>C</mark> GU <mark>GUGUGCAU</mark> GUGUGC <mark>AU</mark> GUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUG	cja
UUCAUUGUGUGUGC <mark>A</mark> UGUG <mark>U</mark> GCGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	hsa
UUCAUUGUGUGUGC <mark>A</mark> UGUG <mark>U</mark> G <mark>U</mark> G <mark>U</mark> GUGUGUGUGUGUGUGUGUGUGUGU	ppa
UUCAUUGUGUGUGCGUGUG <mark>U</mark> GUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	ptr

FIGURE 12 Nucleotide sequences of 3'UTR regions of mRNAs of orthologous GSK3B genes containing clusters of miRNAs BSs.

Nucleotide sequences	Objects
CGUUCAGGGACUGGCUCACACCUGUAAUCCCAGCACUUUGGG	hsa
CGUUCAGAGACUGGCUCACACCUGUAAUCCCAGCACUUUGGG	ggo
CGUUCAG <mark>A</mark> GACUGGCUCACACCUGUAAUCCCAGCACUUUGGG	ppa
GCUGAGGGUGGUGGCUCACACCUGUAAUCCCAGCACUUUGGG	nle
GCUGAG <mark>UGUGGCUCACACCUGUAAUCCCAGC</mark> ACUUUGGG	pan

FIGURE 13 | Nucleotide sequences of 3'UTR regions of mRNAs of orthologous SLC14A1 genes containing clusters of miR-5095 and miR-619-5p BSs.

Nucleotide sequences	Objects
GCUGGGC <mark>A</mark> CGGUGGCUCAUGCCUGUAAUCCCAGCACUUUGGG	pan
GCUGGGCGCGGUGGCUCAUGCCUGUAAUCCCAGCACUUUGGG	ptr
GCUGGGC <mark>A</mark> CGGUGGCUCAUGCCUGUAAUCCCAGCACUUUGGG	mne
GCUGGGCGCGCUGUCAUGCCUGUAAUCCCAGCACUUUGGG	mfa
GCCGGGCGCGGUGGCUCAUGCCUGUAAUCCCAGCACUUUGGG	ppa
GGUGGGCGCGGUGGCUCAUGCCUGUAAUCCCAGCACUUUGGG	ggo
GCUGGGCG <mark>U</mark> GGUGGCUCAUGCCUGUAAUCCCAGCACUUCCUG	hsa
GCUGGGCG <mark>U</mark> GGUGGCUCAUGCCUGUAAUCCCAGCACUUCCUG	mml

FIGURE 14 Nucleotide sequences of 3'UTR regions of mRNAs of orthologous PRKN genes containing clusters of binding sites miR-5095 and miR-619-5p.

Based on the results obtained in this study, the following generalizations can be made. Not all of the more than 200 candidate PD genes were targets of miRNA. Out of 6,756 miRNAs, only 150 miRNAs were identified that efficiently bound to the mRNA of 61 candidate PD genes. The miRNA BSs were located in the 5'UTRs, CDSs and 3'UTRs of the mRNAs of candidate PD genes. Each of more than half of the candidate genes was the potential target of one miRNA. The mRNAs of the remaining genes could bind two or more miRNAs. The BSs of most miRNAs were located along the entire length of the mRNA without overlapping nucleotide sequences. In the mRNA of some genes, miRNA BSs located in overlapping nucleotide sequences

(clusters) were detected. Such clusters reduced by several times the proportion of nucleotide sequences of miRNA BSs in the 5'UTRs, CDSs and 3'UTRs. The miRNAs with BSs in the cluster compete with one another, and only one of these miRNAs can bind to mRNA. The miRNA with a large free energy of interaction with the mRNA and present in a higher concentration compared to other miRNAs has the advantage for binding. The start of the miR-619-5p and miR-5095 BSs are located over six nucleotides, thereby forming a cluster. As a rule, the free energy of the interaction of the mRNA with miR-619-5p is greater than that with miR-5095 (**Table 3** and **Supplementary Table 3**). However, if the concentration of miR-5095 is two to three times higher than

Nucleotide sequences		Objects
GCUAUUCACACACACCACACACACACACACACACACACAC	AUAUU	csa
GCUAUUCACACACACACACACACACACACACACACACACA	AUAUU	ptr
GCUAUUCACACACACACACACACACACACACACACACACA	AUAUU	hsa
GCUAUUCACACAUACACACACACACACACACACACACACA	AUAUU	cja
GCUAUUCAUACACACACACACACACACACACACACACACA	AUAUU	rro
GCUAUUCACACACACACACACACACACACACACACACACA	AUAUU	ggo
GCUAUUCACACACACACACACACCACACACACACACACAC	AUAUU	pan
GCUAUUCACACACACACACACACACACACACACACACACA	AUAUU	pab
GCUAUUCACACACACACACACCCCACACCACACACACACA	AUAUU	mfa
GCUAUUCACACACCCCACACACCACACACACACACACACA	AUAUU	mne
GCUAUUCACACACACACACACACACACACACACACACACA	AUAUU	nle
GCUAUUCACACACACACCCCACACCCCACACACACACACA	AUAUU	mml
GCUAUUCACACACACACACACACACACACACACACACACA	AUAUU	ppa

FIGURE 15 | Nucleotide sequences of 3'UTR regions of mRNAs of orthologous VSNL1 genes containing clusters of miRNAs binding sites.

the concentration of miR-619, then it is more likely to suppress translation. If the cluster contains the BSs of many miRNAs, then more complex calculations are required to establish the miRNAs with the greatest influence on the translation process.

In the CDSs of mRNAs of almost all low and highly expressed genes, there were miRNA BSs that were not repeated in other genes (Table 2 and Supplementary Table 3). In other words, these associations of miRNA and candidate PD target genes are specific, which gives them preference for use in diagnosis. A feature of some PD candidate genes is the presence of clusters containing BSs for the same set of miRNAs in their mRNAs (Tables 1, 3 and Supplementary Table 4). Differences in the binding characteristics of miRNAs to the mRNAs of genes expressed at different rates have been established. Multiple BSs of miR-466, ID01030.3p-miR, ID00436.3p-miR, and ID01727.5pmiR were located in the 3'UTRs of the mRNAs of the PPARGC1A and GSK3B genes with low expression (Table 3). The miR-5095 and miR-619-5p BSs formed a cluster, and the beginnings of their BSs differed by six nucleotides. This connection of miR-5095 and miR-619-5p BSs is not random, since it is observed in the mRNA of the LRP10, PDP2, PRKN, RBBP5, SLC14A1, and WDR82 genes (Table 3 and Supplementary Table 4). In addition, the difference between the miR-5096 and miR-619-5p BSs (74 nt) was the same in the mRNAs of the PDP2, RBBP5, and SLC14A1 genes. The start of the miR-5585-3p and miR-1285-5p BSs differed by 99 nt in the mRNA of the LRP10 and PDP2 genes. miR-619-5p binds to the mRNA of the PRKN gene completely complementarily among 201 genes that are the potential target of this miRNA (Atambayeva et al., 2017). Candidate PD genes that are targets of miRNAs that bind in 3'UTRs of mRNAs significantly differed from other candidate genes by the number of miR-619-5p, miR-5095, miR-5096, miR-5585-3p, and miR-1285-5p BSs (Table 3 and **Supplementary Table 4**; Ivashchenko et al., 2014a).

In the 5'UTRs of the mRNAs of genes, miRNA BSs were more frequently organized into clusters (**Table 1**). The identified features of the interactions between miRNAs and the mRNAs of candidate PD genes should be taken into account when selecting miRNA associations and potential target genes for diagnosing the disease.

Based on the quantitative characteristics of the interactions between miRNAs and mRNAs, the associations of miRNAs and candidate genes with a high free energy of interaction were identified, which are recommended as markers for the diagnosis of PD. For the diagnosis of diseases, it is preferable to use miRNA associations with BS in the 5'UTRs of candidate genes, since the free energy of interaction between miRNAs and mRNAs has a higher value than in CDSs and 3'UTRs (Tables 1-3). Let us consider examples of the association of miRNAs and genes on which the development of PD can depend to a greater extent. Clusters of ID00296.3p-miR and ID01702.3p-miR BSs were detected in the mRNAs of the GSK3B, SETD1A, and CCNY genes. Therefore, it is necessary to control the expression of both miRNAs and the three genes to evaluate the role of these associations in the development of the disease. This approach is necessary in elucidating the role of other associations of miRNAs and genes in the development of PD. For example, the association of several miRNAs (ID01041.5p-miR, ID00457.3pmiR, ID03367.5p-miR, and ID02770.5p-miR) and the GSK3B gene shows the need to control the binding of these miRNAs in two clusters in the mRNA of the GSK3B gene (Table 1). In addition to the two considered examples of miRNAs and gene associations, other associations will be considered below, which generally demonstrate the need to control a large number of miRNAs and candidate gene expression levels. There is no other approach to determine which miRNAs out of the currently known 6,266 miRNAs can regulate the development of PD. The bioinformatics approach enables only dozens of effective associations to be selected from many millions of associations between miRNAs and mRNAs.

In the 5'UTR of the mRNA of the *PPARGC1A* gene, there was a cluster of ID00470.5p-miR and miR-574-5p BSs, each of which had five sequentially located BSs (**Table 1**). In the 3'UTR of the mRNA of the *VSNL1* gene, these miRNAs had more than ten multiple BSs (**Table 3**). Therefore, these miRNAs can have a greater effect on the expression of these genes than miRNAs with one BS. With point mutations of nucleotides (e.g., single nucleotide polymorphisms) in a cluster with multiple BSs, the effectiveness of these miRNAs does not change substantially.

Analysis of the role of the expression of candidate genes in the form of potential miRNA targets leads to the following conclusions. It is expected that for the regulation of highly expressed genes, comparably high concentrations of miRNAs are required; otherwise, if the miRNAs are present at lower concentrations than the mRNAs, they will not significantly regulate the translation process. Based on the above considerations, the concentrations of miRNA and mRNA should be comparable. Therefore, there is a conserved relationship between the nucleotide sequences of miRNAs and miRNA BSs in the mRNA (Davis et al., 2005; Wang et al., 2016; Yurikova et al., 2019). While recommending the association of miRNAs and potential target genes for disease diagnosis, we emphasize that miRNA and mRNA concentrations must be simultaneously recorded. Without these quantitative indicators, it is difficult to draw conclusions regarding the significance of the data obtained.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

REFERENCES

- Aisina, D., Niyazova, R., Atambayeva, S., and Ivashchenko, A. (2019). Prediction of clusters of miRNA binding sites in mRNA candidate genes of breast cancer subtypes. *PeerJ* 7:e8049. doi: 10.7717/peerj.8049
- Arshad, A. R., Sulaiman, S. A., Saperi, A. A., Jamal, R., Ibrahim, M. N., and Murad, N. A. (2017). MicroRNAs and target genes as biomarkers for the diagnosis of early onset of Parkinson disease. *Front. Mol. Neurosci.* 10:352. doi: 10.3389/fnmol.2017.00352
- Atambayeva, S., Niyazova, R., Ivashchenko, A., Pyrkova, A., Pinsky, I., Akimniyazova, A., et al. (2017). The binding sites of miR-619-5p in the mRNAs of human and orthologous genes. *BMC Genomics* 18:428. doi: 10.1186/s12864-017-3811-6
- Behbahanipour, M., Peymani, M., Salari, M., Hashemi, M. S., Nasr-Esfahani, M. H., and Ghaedi, K. (2019). Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson's disease: integrating interaction data to uncover the possible triggering age-related mechanisms. *Sci. Rep.* 9:13759. doi: 10.1038/s41598-019-50256-3
- Berillo, O., Régnier, M., and Ivashchenko, A. (2013). Binding of intronic miRNAs to the mRNAs of host genes encoding intronic miRNAs and proteins that participate in tumourigenesis. *Comput. Biol. Med.* 43, 1374–1381. doi: 10.1016/ j.compbiomed.2013.07.011
- Brennan, S., Keon, M., Liu, B., Su, Z., and Saksena, N. K. (2019). Panoramic visualization of circulating MicroRNAs across neurodegenerative diseases in humans. *Mol. Neurobiol.* 56, 7380–7407. doi: 10.1007/s12035-019-1615-1
- Cao, X. Y., Lu, J. M., Zhao, Z. Q., Li, M. C., Lu, T., An, X. S., et al. (2017). MicroRNA biomarkers of Parkinson's disease in serum exosome-like microvesicles. *Neurosci. Lett.* 644, 94–99. doi: 10.1016/j.neulet.2017.02.045
- Chen, L., Yang, J., Lü, J., Cao, S., Zhao, Q., and Yu, Z. (2018). Identification of aberrant circulating miRNAs in Parkinson's disease plasma samples. *Brain Behav.* 8:e00941. doi: 10.1002/brb3.941
- Chen, Y., Zheng, J., Su, L., Chen, F., Zhu, R., Chen, X., et al. (2020). Increased salivary microRNAs that regulate DJ-1 gene expression as potential markers for Parkinson's disease. *Front. Aging Neurosci.* 12:210. doi: 10.3389/fnagi.2020. 00210
- D'Anca, M., Fenoglio, C., Serpente, M., Arosio, B., Cesari, M., Scarpini, E. A., et al. (2019). Exosome determinants of physiological aging and age-related

AUTHOR CONTRIBUTIONS

AI and AAr conceived of the study, drafted the manuscript, and gave final approval of the version to be published. SK and AK conceived of the study and drafted the manuscript. AAk analyzed the effect of miR-619-5p and miR-5095 on genes, conceived of the study, and drafted the manuscript. All authors made substantial contributions to acquisition of data, to interpretation and modification of the data, were involved in subsequent rounds of revisions, and read and approved the final manuscript.

FUNDING

The work was carried out with the financial support of the Ministry of Education and Science of the Republic of Kazakhstan within the framework of the grant no. AP05132460.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene. 2021.647288/full#supplementary-material

neurodegenerative diseases. Front. Aging Neurosci. 11:232. doi: 10.3389/fnagi. 2019.00232

- Davis, E., Caiment, F., Tordoir, X., Cavaillé, J., Ferguson-Smith, A., Cockett, N., et al. (2005). RNAi-mediated allelic trans-interaction at the imprinted Rtll/Peg11 locus. *Curr. Biol.* 15, 743–749. doi: 10.1016/j.cub.2005. 02.060
- Dong, X., Zheng, D., and Nao, J. (2020). Circulating exosome microRNAs as diagnostic biomarkers of dementia. *Front. Aging Neurosci.* 12:580199. doi: 10. 3389/fnagi.2020.580199
- Fejes, Z., Erdei, J., Pócsi, M., Takai, J., Jeney, V., Nagy, A., et al. (2020). Elevated proinflammatory cell-free MicroRNA levels in cerebrospinal fluid of premature infants after intraventricular hemorrhage. *Int. J. Mol. Sci.* 21:6870. doi: 10.3390/ ijms21186870
- Garg, A., and Heinemann, U. (2018). A novel form of RNA double helix based on G·U and C·A+ wobble base pairing. *RNA* 24, 209–218. doi: 10.1261/rna.064048. 117
- Hu, Y. B., Zhang, Y. F., Wang, H., Ren, R. J., Cui, H. L., Huang, W. Y., et al. (2019). miR-425 deficiency promotes necroptosis and dopaminergic neurodegeneration in Parkinson's disease. *Cell Death Dis.* 10:589. doi: 10.1038/ s41419-019-1809-5
- Ivashchenko, A., Berillo, O., Pyrkova, A., and Niyazova, R. (2014a). Binding sites of miR-1273 family on the mRNA of target genes. *Biomed Res. Int.* 2014;620530. doi: 10.1155/2014/620530
- Ivashchenko, A., Berillo, O., Pyrkova, A., Niyazova, R., and Atambayeva, S. (2014b). miR-3960 binding sites with mRNA of human genes. *Bioinformation* 10, 423–427. doi: 10.6026/97320630010423
- Ivashchenko, A., Berillo, O., Pyrkova, A., Niyazova, R., and Atambayeva, S. (2014c). The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes. *Biomed Res. Int.* 2014;720715. doi: 10.1155/2014/720715
- Ivashchenko, A. T., Pyrkova, A. Y., Niyazova, R. Y., Alybayeva, A., and Baskakov, K. (2016). Prediction of miRNA binding sites in mRNA. *Bioinformation* 12, 237–240. doi: 10.6026/97320630012237
- Jurjević, I., Miyajima, M., Ogino, I., Akiba, C., Nakajima, M., Kondo, A., et al. (2017). Decreased expression of hsa-miR-4274 in cerebrospinal fluid of normal pressure hydrocephalus mimics with Parkinsonian syndromes. J. Alzheimers Dis. 56, 317–325. doi: 10.3233/JAD-160848

- Kakati, T., Bhattacharyya, D. K., Barah, P., and Kalita, J. K. (2019). Comparison of methods for differential co-expression analysis for disease biomarker prediction. *Comput. Biol. Med.* 113:103380. doi: 10.1016/j.compbiomed.2019. 103380
- Kondybayeva, À, Akimniyazova, A., Kamenova, S., Duchshanova, G., Aisina, D., Goncharova, A., et al. (2020). Prediction of miRNA interaction with mRNA of stroke candidate genes. *Neurol. Sci.* 41, 799–808. doi: 10.1007/s10072-019-04158-x
- Kondybayeva, ÀÌ, Akimniyazova, ÀN., Kamenova, S. U., and Ivashchenko, ÀÒ (2018). The characteristics of miRNA binding sites in mRNA of ZFHX3 gene and its orthologs. Vavilov J. Genet. Breed. 22, 438–444. doi: 10.18699/VJ18.380
- Kool, E. T. (2001). Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22. doi: 10.1146/annurev. biophys.30.1.1
- Leggio, L., Vivarelli, S., L'Episcopo, F., Tirolo, C., Caniglia, S., Testa, N., et al. (2017). microRNAs in Parkinson's disease: from pathogenesis to novel diagnostic and therapeutic approaches. *Int. J. Mol. Sci.* 18:2698. doi: 10.3390/ijms18122698
- Lemieux, S., and Major, F. (2002). RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire. *Nucleic Acids Res.* 30, 4250–4263. doi: 10.1093/nar/gkf540
- Leontis, N. B., Stombaugh, J., and Westhof, E. (2002). The non-Watson-Crick base pairs and their associated isostericity matrices. *Nucleic Acids Res.* 30, 3497–3531. doi: 10.1093/nar/gkf481
- Li, L., Xu, J., Wu, M., and Hu, J. M. (2018). Protective role of microRNA-221 in Parkinson's disease. *Bratisl. Lek. Listy* 119, 22–27. doi: 10.4149/BLL_2018_005
- Liu, W., Li, L., Liu, S., Wang, Z., Kuang, H., Xia, Y., et al. (2019). MicroRNA expression profiling screen miR-3557/324-targeted CaMK/mTOR in the rat striatum of Parkinson's disease in regular aerobic exercise. *Biomed Res. Int.* 2019:7654798. doi: 10.1155/2019/7654798
- Londin, E., Loher, P., Telonis, A. G., Quann, K., Clark, P., Jing, Y., et al. (2015). Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. *Proc. Natl. Acad. Sci. U.S.A.* 112, 1106–1115. doi: 10.1073/pnas.1420955112
- Lu, J., Xu, Y., Quan, Z., Chen, Z., Sun, Z., and Qing, H. (2017). Dysregulated microRNAs in neural system: implication in pathogenesis and biomarker development in Parkinson's disease. *Neuroscience* 365, 70–82. doi: 10.1016/j. neuroscience.2017.09.033
- Marques, T. M., Kuiperij, H. B., Bruinsma, I. B., van Rumund, A., Aerts, M. B., Esselink, R. A. J., et al. (2017). MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson's disease and multiple system atrophy. *Mol. Neurobiol.* 54, 7736–7745. doi: 10.1007/s12035-016-0253-0
- Martinez, B., and Peplow, P. V. (2017). MicroRNAs in Parkinson's disease and emerging therapeutic targets. *Neural Regen. Res.* 12, 1945–1959. doi: 10.4103/ 1673-5374.221147
- Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628. doi: 10.1038/nmeth.1226
- Mukushkina, D., Aisina, D., Pyrkova, A., Ryskulova, A., Labeit, S., and Ivashchenko, A. (2020). In silico prediction of miRNA interactions with candidate atherosclerosis gene mRNAs. *Front. Genet.* 11:605054. doi: 10.3389/ fgene.2020.605054
- Nie, C., Sun, Y., Zhen, H., Guo, M., Ye, J., Liu, Z., et al. (2020). Differential expression of plasma exo-miRNA in neurodegenerative diseases by nextgeneration sequencing. *Front. Neurosci.* 14:438. doi: 10.3389/fnins.2020.00438
- Niyazova, R., Berillo, O., Atambayeva, S., Pyrkova, A., Alybaeva, A., and Ivashchenko, A. (2015). miR-1322 binding sites in paralogous and orthologous genes. *Biomed Res. Int.* 2015, 1–7. doi: 10.1155/2015/962637
- Ozdilek, B., and Demircan, B. (2020). Serum microRNA expression levels in Turkish patients with Parkinson's disease. *Int. J. Neurosci.* 130, 1–9. doi: 10. 1080/00207454.2020.1784165
- Patil, K. S., Basak, I., Dalen, I., Hoedt, E., Lange, J., Lunde, K. A., et al. (2019). Combinatory microRNA serum signatures as classifiers of Parkinson's disease. *Parkinsonism Relat. Disord.* 64, 202–210. doi: 10.1016/j.parkreldis.2019.04.010
- Qin, L. X., Tan, J. Q., Zhang, H. N., Tang, J. G., Jiang, B., Shen, X. M., et al. (2019). Preliminary study of hsa-miR-626 change in the cerebrospinal fluid of Parkinson's disease patients. *J. Clin. Neurosci.* 70, 198–201. doi: 10.1016/j.jocn. 2019.08.082

- Quinlan, S., Kenny, A., Medina, M., Engel, T., and Jimenez-Mateos, E. M. (2017). MicroRNAs in neurodegenerative diseases. *Int. Rev. Cell Mol. Biol.* 334, 309– 343. doi: 10.1016/bs.ircmb.2017.04.002
- Ramaswamy, P., Yadav, R., Pal, P. K., and Christopher, R. (2020). Clinical application of circulating microRNAs in Parkinson's disease: the challenges and opportunities as diagnostic biomarker. *Ann. Indian Acad. Neurol.* 23, 84–97. doi: 10.4103/aian.AIAN_440_19
- Ravanidis, S., Bougea, A., Papagiannakis, N., Koros, C., Simitsi, A. M., Pachi, I., et al. (2020). Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. *Ann. Clin. Transl. Neurol.* 7, 1594–1607. doi: 10.1002/acn3.51146
- Recabarren, D., and Alarcón, M. (2017). Gene networks in neurodegenerative disorders. Life Sci. 183, 83–97. doi: 10.1016/j.lfs.2017.06.009
- Ren, Y., Li, H., Xie, W., Wei, N., and Liu, M. (2019). MicroRNA-195 triggers neuroinflammation in Parkinson's disease in a Rho-associated kinase 1dependent manner. *Mol. Med. Rep.* 19, 5153–5161. doi: 10.3892/mmr.2019. 10176
- Rosas-Hernandez, H., Chigurupati, S., Raymick, J., Robinson, B., Cuevas, E., Hanig, J., et al. (2018). Identification of altered microRNAs in serum of a mouse model of Parkinson's disease. *Neurosci. Lett.* 687, 1–9. doi: 10.1016/j.neulet.2018.07. 022
- Rostamian Delavar, M., Baghi, M., Safaeinejad, Z., Kiani-Esfahani, A., Ghaedi, K., and Nasr-Esfahani, M. H. (2018). Differential expression of miR-34a, miR-141, and miR-9 in MPP+-treated differentiated PC12 cells as a model of Parkinson's disease. *Gene* 662, 54–65. doi: 10.1016/j.gene.2018.04.010
- Sadlon, A., Takousis, P., Alexopoulos, P., Evangelou, E., Prokopenko, I., and Perneczky, R. (2019). miRNAs identify shared pathways in Alzheimer's and Parkinson's diseases. *Trends Mol. Med.* 25, 662–672. doi: 10.1016/j.molmed. 2019.05.006
- Salamon, A., Zádori, D., Szpisjak, L., Klivenyi, P., and Vecsei, L. (2020). Neuroprotection in Parkinson's disease: facts and hopes. J. Neural Trans. 127, 821–829. doi: 10.1007/s00702-019-02115-8
- Singh, A., and Sen, D. (2017). MicroRNAs in Parkinson's disease. *Exp. Brain Res.* 235, 2359–2374. doi: 10.1007/s00221-017-4989-1
- Starhof, C., Hejl, A. M., Heegaard, N., Carlsen, A. L., Burton, M., Lilje, B., et al. (2019). The biomarker potential of cell-free microRNA from cerebrospinal fluid in Parkinsonian syndromes. *Mov. Disord.* 34, 246–254. doi: 10.1002/mds.27542
- Thomas, L., Florio, T., and Perez-Castro, C. (2020). Extracellular vesicles loaded miRNAs as potential modulators shared between glioblastoma, and Parkinson's and Alzheimer's diseases. *Front. Cell. Neurosci.* 14:590034. doi: 10.3389/fncel. 2020.590034
- Titze-de-Almeida, R., and Titze-de-Almeida, S. S. (2018). miR-7 replacement therapy in Parkinson's disease. *Curr. Gene Ther.* 18, 143–153. doi: 10.2174/1566523218666180430121323
- Tolosa, E., Botta-Orfila, T., Morató, X., Calatayud, C., Ferrer-Lorente, R., Martí, M. J., et al. (2018). MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. *Neurobiol. Aging* 69, 283–291. doi: 10.1016/j.neurobiolaging.2018.05.032
- Uwatoko, H., Hama, Y., Iwata, I. T., Shirai, S., Matsushima, M., Yabe, I., et al. (2019). Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson's disease. *Mol. Brain* 12:49. doi: 10.1186/s13041-019-0471-2
- Viswambharan, V., Thanseem, I., Vasu, M. M., Poovathinal, S. A., and Anitha, A. (2017). miRNAs as biomarkers of neurodegenerative disorders. *Biomark. Med.* 11, 151–167. doi: 10.2217/bmm-2016-0242
- Wang, J., Li, Z., Liu, B., Chen, G., Shao, N., Ying, X., et al. (2016). Systematic study of cis-antisense miRNAs in animal species reveals miR-3661 to target PPP2CA in human cells. RNA 22, 87–95. doi: 10.1261/rna.052894.115
- Wang, L., and Zhang, L. (2020). Circulating exosomal miRNA as diagnostic biomarkers of neurodegenerative diseases. *Front. Mol. Neurosci.* 13:53. doi: 10.3389/fnmol.2020.00053
- Wang, X., Zhou, Y., Gao, Q., Ping, D., Wang, Y., Wu, W., et al. (2020). The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2020:3232869. doi: 10.1155/2020/3232869
- Wang, Y., Yang, Z., and Le, W. (2017). Tiny but mighty: promising roles of microRNAs in the diagnosis and treatment of Parkinson's disease. *Neurosci. Bull.* 33, 543–551. doi: 10.1007/s12264-017-0160-z

- Xie, S., Niu, W., Xu, F., Wang, Y., Hu, S., and Niu, C. (2020). Differential expression and significance of miRNAs in plasma extracellular vesicles of patients with Parkinson's disease. *Int. J. Neurosci.* 2020, 1–16. doi: 10.1080/00207454.2020. 1835899
- Yan, J. H., Hua, P., Chen, Y., Li, L. T., Yu, C. Y., Yan, L., et al. (2020). Identification of microRNAs for the early diagnosis of Parkinson's disease and multiple system atrophy. *J. Integr. Neurosci.* 19, 429–436. doi: 10.31083/j.jin.2020.03.163
- Yang, Z., Li, T., Cui, Y., Li, S., Cheng, C., Shen, B., et al. (2019). Elevated plasma microRNA-105-5p level in patients with idiopathic Parkinson's disease: a potential disease biomarker. *Front. Neurosci.* 13:218. doi: 10.3389/fnins.2019. 00218
- Yurikova, O. Y., Aisina, D. E., Niyazova, R. E., Atambayeva, S. A., Labeit, S., and Ivashchenko, A. (2019). The interaction of miRNA-5p and miRNA-3p with the mRNAs of orthologous genes. *Mol. Biol.* 53, 692–704. doi: 10.1134/ S0026898419040189
- Zhang, Y., Xu, W., Nan, S., Chang, M., and Fan, J. (2019). MicroRNA-326 inhibits apoptosis and promotes proliferation of dopaminergic neurons in Parkinson's

disease through suppression of KLK7-mediated MAPK signaling pathway. J. Mol. Neurosci. 69, 197–214. doi: 10.1007/s12031-019-01349-1

Zhao, L., and Wang, Z. (2019). MicroRNAs: game changers in the regulation of α -synuclein in Parkinson's disease. *Parkinsons Dis.* 2019:1743183. doi: 10.1155/2019/1743183

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kamenova, Aralbayeva, Kondybayeva, Akimniyazova, Pyrkova and Ivashchenko. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.