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Abstract: Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily
modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability,
editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding
Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of
post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs
have been studied in plants, their cellular and physiological functions remain largely unknown.
Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as
chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR)
proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs),
have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses.
Here, we review the latest research developments regarding the functional roles of organellar RBPs in
RNA metabolism during growth, development, and abiotic stress responses in plants.

Keywords: organellar gene expression; chloroplast; mitochondria; RNA metabolism; RNA-binding
proteins; abiotic stress

1. Introduction

Plant chloroplasts and mitochondria are thought to be derived from free-living cyanobacteria and
α-proteobacteria, respectively [1,2]. During evolution, the organellar genes were largely transferred
to the nucleus [2]. Current organellar genomes harbor only 15–209 proteins in the chloroplast,
and 3–67 proteins in the mitochondrion [3], which are essential for photosynthetic apparatus,
mitochondrial electron transport chain, and organellar gene expression (OGE) machinery [4]. OGE
in plant organelles conserves both prokaryotic and eukaryotic properties [5]. However, the OGE
mechanisms in plant organelles are much more complex than those of their bacterial ancestors [5,6]
and require thousands of nucleus-encoded proteins for maintaining OGE machinery and organellar
function. This indicates the importance of interactions between the organelles and nucleus in controlling
fine-tuned OGE through a nucleus-to-organelle anterograde or an organelle-to nucleus retrograde
signaling [7–9].

OGE is commonly regulated at the post-transcriptional level, including RNA processing, editing,
stabilization, turnover, intron splicing, and translational control, all of which are crucial for a
number of organellar processes [10–13]. The regulation of post-transcriptional RNA processing
in organelles requires hundreds of nucleus-encoded chloroplast or mitochondrial RNA-binding
proteins (nCMRBPs) during acclimation to environmental stress, as well as during plant growth and
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development [14,15]. Recent studies have uncovered that nCMRBPs play a critical role in plant growth
and stress responses [15–19]. Moreover, analysis of the characteristics of nCMRBP has demonstrated
that they possess multiple conserved motifs and domains, which include chloroplast RNA splicing
and ribosome maturation (CRM), pentatricopeptide repeat (PPR), DEAD-box RNA helicase (DBRH),
and S1 RNA-binding domain (SDP) [19–22]. Importantly, it is now known that the nCMRBPs function
as either specific RNA-binding proteins or non-specific RNA-binding proteins (RNA chaperones),
which facilitates the correct folding of the target RNA structure during plant growth and under
environmental stress [15,23]. Chloroplast- or mitochondria-localized CRM, PPR, DBRH, and SDP
proteins have been assessed in terms of their roles as RNA chaperones [21,24–27]. In this review,
we will focus on the recent advances in research on the function and cellular mechanisms of CRM,
PPR, DBRH, and SDP proteins in organellar RNA metabolism during plant growth, development, and
abiotic stress responses.

2. Domain or Motif Features of CRM, PPR, DBRH, and SDP Proteins

2.1. CRM Proteins

Single chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins
were first studied in archaea and bacteria [28,29], in which domain analysis revealed that CRM is
orthologous to E. coli YhbY associated with pre-50S ribosomal subunits [30] (Figure 1). Land plants
harbor single to multiple copies of CRM domains that can be classified into 4 subfamily groups, which
include the CRS1 subfamily (for chloroplast RNA splicing), the CAF subfamily (for CRS2-associated
factors), and CFM3 and 4 (for CRM family members), based on the proteome database of Arabidopsis
and rice [20]. Furthermore, structural analysis has demonstrated that GxxG sequences conserved in
the loop of the CRM domain contribute to RNA-binding capacity [20,30,31].
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pentatricopeptide repeat (PPR), DEAD-Box RNA helicase (DBRH), and S1-domain containing proteins
(SDP) proteins in plants.

2.2. PPR Proteins

Pentatricopeptide repeat proteins were first identified in the Arabidopsis genome and are comprised
of tandem repeated motifs of 35-amino acid sequences, ranging from 2 to 30 tracts [23,32,33]. PPR motifs
fold into a pair of antiparallel α helices and contribute to organellar RNA metabolism on the basis
of modular one-repeat:one-nucleotide binding [23,34]. Plant PPR proteins are classified into two
subfamilies; P- and PLS-class (P: 35 amino acids, L: 36 amino acids, and S: 31 amino acids, Figure 1).
Most P-class proteins contain only PPR motifs, although some also harbor a PPR-small MutS-related
(SMR) domain, which is important for organellar RNA stabilization, group II intron splicing, and
intercistronic processing [23]. In contrast, the PLS-class proteins contain additional C-terminal domains



Int. J. Mol. Sci. 2020, 21, 4548 3 of 17

of E, E+, and DYW, which are mainly involved in RNA C to U editing via recruiting additional
proteins [33,35].

2.3. DEAD-Box RH Proteins (DBRH)

Helicase proteins are enzymes that catalyze the unwinding of double-stranded DNA or duplex
RNA secondary structures in ATP-dependent rearrangements in both prokaryotic and eukaryotic
cells [36,37]. They are divided into six superfamilies (SF1–SF6) based on the properties of the conserved
motifs in their primary amino acid sequences [38,39]. The DBRH family belongs to the largest group,
superfamily 2 (SF2), and harbors at least nine conserved motifs, such as Q, I, Ia, Ib, II, III, IV, V, and VI
(Figure 1) [40–42]. The Q-motif, motif I (walker A motif), motif III, and motif VI of the DBRH family
are essential for ATP binding and ATP hydrolysis [41,43,44]. Motif II (walker B motif), which contains
residues of Asp-Glu-Ala-Asp (DEAD) is also crucial for ATP binding and ATP hydrolysis via the
interaction of Mg2+ [39,41]. Only a few biochemical studies have been focused on the remaining (Ia, Ib,
IV, and V) motifs. However, it has been suggested that they are also involved in RNA binding [41].

2.4. SDP Proteins

The S1 RNA domain-containing protein (SDP) was first observed in the ribosomal proteins S1
(RPS1) of E. coli. [45]. E. coli RPS1 is comprised of six copies of an S1 motif containing approximately
70 amino acids [46]. The structure of the S1 domain adopt a five-stranded antiparallel β barrel in which
residues Phe-19, Phe-22, His-34, Asp-64, and Arg-68 are believed to infer its RNA-binding ability [46].
S1 domain repeats (Figure 1) vary from one to 15 in different species [47] and have been identified in
RNase E endonuclease (RNase E), RNase II exonuclease (RNase II), transcription factor NusA, and
C. elegans EMB-5 [46], which play a crucial role in mRNA turnover, rRNA processing, and translational
initiation [48–51]. In addition, S1 domain repeats are also found in other RNA-associated proteins,
such as bacterial polynucleotide phosphorylase (PNPase) [52,53], bacterial translation initiation
factor 1 (IF1), eukaryotic eIF2a [54], and the RNA helicase-like protein PRP22 found in yeasts [55].
Furthermore, a recent study has demonstrated that the amino acid sequence homologies of S1 domains
are approximately 43% in archaea, 51% in bacteria, and 46% in eukaryotes, and that the residues
of Phe-28, Asp-66, and Arg-71 in archaea and Phe-25, Asp-68, and Arg-71 in eukaryotes are highly
conserved [47]. These findings suggest that S1 domains are diverse with a low sequence identity
among different species.

3. Functions of nCMRBPs in Plant Growth and Development

The latest studies have indicated the importance of nCMRBPs, including CRM, PPR, DBRH,
and SDP, for organellar RNA metabolism during plant growth and development (Table 1). Fourteen
and 16 CRM proteins are encoded in Arabidopsis and rice genomes, respectively [16,20]. Previous
analysis has indicated that chloroplast-localized Arabidopsis AtCRS1 [56], AtCAF1 [56], AtCAF2 [56],
AtCFM2 [28], and rice OsCFM3 [57], and dual-localized AtCFM3 [57] in both chloroplasts and
mitochondria, are involved in the splicing of subsets of specific introns. The recent functional analysis
of unknown CRM subfamilies has uncovered that Arabidopsis AtCFM4 [24] is involved in 16S and
23S rRNA processing, and that rice OsCAF1 [58] and OsCFM2 [59] is important for the splicing of
chloroplast introns as the orthologues of AtCAF1 and AtCAF2. Furthermore, it has been demonstrated
that mitochondria-localized Arabidopsis mCSF1 [60] and CFM9 [61] are involved in the splicing of
multiple mitochondrial introns and can influence seed development and seedling growth, respectively,
indicating that CRM proteins play a crucial role in plant growth and development.

As the structural characteristics of PPR motifs were first determined in plants, the functions of
a large number of plant PPR proteins have been reported over the last 20 years [23,26]. As it is not
possible to consider all of these in this review, we will only discuss the P-type PPR proteins. Previous
analysis of PPR proteins has demonstrated that chloroplast-localized maize PPR4 [62] and THA8 [63],
and Arabidopsis OTP51 [64] and OTP70 [65], are essential for the splicing of chloroplast specific introns.
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Interestingly, recent studies of PPR4 [25], EMB2654 [66], PBF2 [67], and SOT5 [68] in Arabidopsis
showed that these proteins play a role in the splicing of chloroplast introns through their role in the
recognition of the specific RNA sequences. Arabidopsis HCF152 [69], MRL1 [70], PGR3 [71], BFA2 [72],
and maize PPR5 [73] and PPR10 [74] were shown to be essential for the stabilization of chloroplast
transcripts. AtPPR2 [75], SOT1 [76], and PPR287 [77] in Arabidopsis are involved in chloroplast rRNA
processing. In addition, mitochondria-localized Arabidopsis OTP43 [78], BIR6 [79], TANG2/OTP439 [80],
and SLO3 [81] are known to affect the splicing of mitochondrial introns. The latest studies of Arabidopsis
MISF 26, 68, 74 [82], and EMB2794 [83] have also demonstrated their significance in mitochondrial
intron splicing. Furthermore, Arabidopsis MTSF1 [84] and PPR19 [85] were found to be important for
mitochondrial RNA stabilization as they bind to specific sequences, suggesting that organelle-localized
PPR proteins perform versatile roles in organellar RNA metabolism.

Approximately 58 and 50 DBRH were annotated from the Arabidopsis and rice genome,
respectively [86,87]. Although the functional roles of DBRH in plants have been investigated
for several decades, the DBRH functions in the chloroplast and mitochondria are not as well
understood as those in the nucleus. Nonetheless, the roles of DBRHs for organellar RNA metabolism
have been emerged [26,88–91]. In Arabidopsis, chloroplast-localized RH3 [26] and ISE2 [92] and
mitochondria-localized PMH2 [93] are involved in the splicing of diverse organellar introns, and
RH22 [94], RH39 [95], and RH50 [89] are associated with chloroplast rRNA processing and ribosome
biogenesis. In addition to this, chloroplast-localized SDP proteins, including Arabidopsis RLSB [96] and
Nicotiana STF [97], play roles in plastid gene expression, supporting the notion that Arabidopsis SDP is
crucial for chloroplast rRNA processing during plant growth and development.

Importantly, the aforementioned nCMRBPs are transported into chloroplasts and/or mitochondria,
and mutations in these genes result in various phenotypes, including embryo lethality, albino, pale
green, dwarfism, delayed growth, as well as impaired photosynthesis and mitochondrial respiration
(Table 1). This indicates that nCMRBPs play central roles in a variety of cellular RNA metabolism
processes in organelles during plant growth and development.

Table 1. Phenotypes and functions of CRM, PPR, DBRH, and SDP proteins in plant growth
and development.

Plant Gene Name Gene Number Location Molecular Function Mutant Phenotype Ref.

A. thaliana CRM family

AtCRS1 At5g16180 C Splicing of group II intron (atpF) Small and albino
seedling [28,56]

AtCAF1 At2g20020 C
Splicing of group II introns (petD,
rpl16, rps16, ndhA, rpoC1, ycf3-1,

clpP-1, and trnG)
Albino seedling [56]

AtCAF2 At1g23400 C Splicing of group II introns (ndhA,
ndhB, petB, ycf3-1, and rps12-1)

Small and pale green
seedling [56]

AtCFM2 At3g01370 C Splicing of group I (trnL) and group
II introns (ndhA, ycf3-1, and clpP-2)

Small and albino
seedling [28]

AtCFM3a At3g23070 C/M Splicing of group II intron (ndhB) Stunted growth [57]
CFM4 At4g39040 C 16S and 23S rRNA processing Retarded growth [24]

mCSF1 At4g31010 M Splicing of multiple mitochondrial
introns

Embryo lethal
Retarded growth [60]

CFM9 At3g27550 M Splicing of multiple mitochondrial
introns Retarded growth [61]

O. sativa OsCAF1 Os01g
0495900 C Splicing of group II introns (atpF,

rpl2, rps12, ndhA, ndhB, and ycf3) Albino seedling [58]

OsCFM2 Os04g
0464800 C

Splicing of group I (trnL) and
group II introns (atpF, rpl2, rps12,

ndhA, and ycf3-1)
Albino seedling [59]

OsCFM3 Os11g
37990 C Splicing of group II introns (ndhB,

petD, rpl16, rps16, trnG, and petB) Albino seedling [57]
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Table 1. Cont.

Plant Gene Name Gene Number Location Molecular Function Mutant Phenotype Ref.

A. thaliana PPR family
OTP51 At2g15820 C Splicing of ycf3 intron2 Pale yellow seedling [64]
OTP70 At4g25270 C Splicing of rpoC1 intron Virescent seedling [65]

AtPPR4 At5g04810 C Trans-splicing of rps12 intron1
Embryo lethal, pale

green, or albino
seedling

[25]

EMB2654 At2g41720 C Trans-splicing of rps12 intron1
Embryo lethal, pale

green, or albino
seedling

[66]

PBF2 At3g42630 C Splicing of ycf3 intron1 Small and pale
yellowish seedling [67]

SOT5/EMB2279 At1g30610 C Splicing of rpl2 and trnK intron Virescent seedling [68]

HCF152 At3g09660 C Stabilization or processing of
psbB-psbT-psbH-petB-petD

High chlorophyll
fluorescence [69]

MRL1 At4g34830 C Stabilization of rbcL Pale green seedling [70]

PGR3 At4g31850 C Stabilization of petL and probably
ndhA

High chlorophyll
fluorescence [71]

BFA2 At4g30825 C Stabilization of atpH/F Stunted growth [72]

AtPPR2 At3g06430 C Chloroplast 23S rRNA processing Embryo lethal or
albino seedling [75]

SOT1 At5g46580 C Chloroplast 23S-4.5 rRNA
processing

Small and pale green
seedling [76]

PPR287 At4g59040 C Processing of chloroplast 16S, 23S,
4.5S, and 5S rRNAs Yellowish seedling [77]

OTP43 At1g74900 M Trans-splicing of nad1 intron1 Small and delayed
development [78]

BIR6 At3g48250 M Splicing of nad7 intron1 Small and retarded
growth [79]

TANG2
OTP439

At1g19290
At3g48810 M Splicing of nad5 intron2 and 3 Retarded growth [80]

SLO3 At3g61360 M Splicing of nad7 intron2 Delayed growth and
development [81]

MISF26
MISF68
MISF74

At1g66345
At3g16010
At4g01400

M

Splicing of nad2 intron3 (MISF26)
Splicing of nad2 intron2, nad4

intron1, and nad5 intron4 (MISF68)
Splicing of nad1 intron4 and nad2

intron4 (MISF74)

Delayed growth [82]

EMB2794 At2g02150 M Trans-splicing of nad2 intron2 Retarded growth and
developmental defect [83]

MTSF1 At1g06710 M Stabilization of nad4 Retarded growth [84]

PPR19 At1g52620 M Stabilization of nad1 intron3 Retarded growth and
developmental defect [85]

Z. mays PPR4 Zm00001d026654 C Trans-splicing of rps12 intron1
Seedling lethal

pale green, or albino
seedling

[62]

THA8 GRMZM2G466032 C Splicing of ycf3 intron2 and trnA
intron Pale green seedling [63]

ZmPPR5 GRMZM2G025409 C Splicing of trnG intron Seedling lethal or pale
green seedling [73]

PPR10 GRMZM2G177169 C Stabilization of atpH and psaJ
Seedling lethal or
yellowish green

seedling
[74]

A. thaliana DBRH family

RH3 At5g26742 C
Splicing of group II introns (trnI,

trnA, rps12-1, rps12-2, and rpl2) and
chloroplast 23S rRNA processing

Embryo lethal or pale
green seedling [88]

ISE2 At1g70070 C Splicing of group II introns (rpl2,
atpF, rps12, and clpP) Chlorotic seedling [92]

PMH2 At3g22330 M Splicing of nad2 introns Similar to wild-type [93]

RH22 At1g59990 C Chloroplast 23S-4.5S rRNA
processing

Embryo lethal or
virescent seedling [94]

RH39 At4g09730 C Chloroplast 23S rRNA processing Retarded growth [95]

RH50 At3g06980 C Chloroplast 23S-4.5S rRNA
maturation Similar to wild-type [89]

A. thaliana SDP family

SDP At1g12800 C Processing of chloroplast 16S, 23S,
4.5S, and 5S rRNAs Pale green seedling [21]

RLSB At1g71720 C Regulation of rbcL mRNA Reduced seedling size [96]
N. benthamiana STF HM012811 C Regulation of plastid transcription Yellowish leaves [97]
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4. Physiological Functions of nCMRBPs in Abiotic Stress Responses

As sessile organisms, plants often face adverse environmental conditions, including extremes
of temperature, high salinity, drought, and UV stresses, all of which can severely damage crop
productivity and yield [98,99]. To survive these harsh conditions, plants need to adapt to these
environmental challenges by reprogramming the expression of genes in their nucleus, chloroplasts, and
mitochondria [18,100,101]. The organelles serve as a stress sensor, and the regulation of OGE [100,102]
and organellar metabolic processes are essential for acclimatizing to abiotic stress responses [16,18].
A number of studies have determined the functional roles of nCMRBPs in organelles for environmental
stress responses (Table 2).

Chloroplast-localized Arabidopsis CRM-containing CFM4 (16S and 23S rRNA processing) has been
determined as a positive effector in seed germination and seedling growth under low temperature
and salt stress conditions [24]. Recent work to characterize mitochondria-localized Arabidopsis CFM9,
which is involved in the splicing of multiple mitochondrial introns, has demonstrated its positive
role in seed germination and seedling growth in the presence of the abscisic acid (ABA) and under
high salinity or dehydration stress [61]. Although the cfm4 and the cfm9 mutants grew slowly under
normal conditions, the mutant characteristics of growth retardation and delayed germination were
much more severe under abiotic stress conditions compared to those of the wild type. This indicates
that organelle-targeted CFM4 and CFM9 also play a crucial role in plant responses to abiotic stresses.

The diverse roles of organelle-localized PPR proteins have been demonstrated in the responses of
plants to abiotic stresses. The loss-of-function mutant of chloroplast-localized Arabidopsis GUN1 was
found to be hypersensitive to sucrose and ABA [103]. Chloroplast-localized rice WSL, which is involved
in the splicing of chloroplast rpl2 introns, enhanced seed germination and seedling growth in response
to multiple environmental factors, such as glucose, ABA, and salinity, owing to its reduced translation
efficiency [104]. Chloroplast-localized rice OsV4 affects the gene expression of plastid translation
machinery, TCD10 is important for the gene regulation of OsV4, OsRpoTp, V1, V2, RNRL, RNRS, 16S
rRNA, rpl21, and OsDG2, and WSL5 are involved in the editing of rpl2 and atpA, as well as the splicing
of rpl2 and rps12 intron2, are crucial for chloroplast biogenesis, the mutants of which lead to albino or
pale yellowish phenotypes during cold stress [105–107]. The overexpression of mitochondria-localized
Arabidopsis PPR40 has been shown to promote seed germination in the presence of salt or ABA and
improve seedling growth under conditions of high salinity by reducing reactive oxygen species (ROS)
damage in the mitochondria [108,109]. In addition, mitochondria-localized Arabidopsis PGN, which
is involved in the expression of mitochondrial NAD1, RPL2, NAD9, and MATR genes, plays a role
in both biotic and abiotic stress tolerance, and its loss-of-function mutants are susceptible to ABA,
salt, and glucose, as well as necrotrophic fungal pathogens [110]. Arabidopsis ABO5 and ABO8, which
are involved in the splicing of mitochondrial nad2 intron3 and nad4 intron3, respectively, have been
shown to have enhanced sensitivity to ABA during post-germination and root growth phase due to the
accumulation of ROS in the mitochondria [111,112]. Interestingly, Arabidopsis PPR96, which is thought
to be involved in mitochondrial RNA editing, has a negative impact on seed germination and seedling
growth [113].

The organelle-localized DBRHs are essential for the responses of plants to environmental stresses.
The loss-of-function mutant of chloroplast-localized Arabidopsis RH3, which is involved in the splicing
of ndhA and ndhB introns, displays hypersensitivity to salt and cold stress, and to ABA [26]. Recently,
cold-inducible rice TCD33, which is thought to be involved in chloroplast ribosome assembly, has
been shown to affect chloroplast biogenesis under cold stress [91]. Moreover, the ectopic expression of
rice RH58, which is involved in the translation of chloroplast POR, RBCL, CLPB3, PSBA, and PETA
transcripts, and cabbage RH22, which affects the translation of chloroplast RBCL, PSBA, and YCF3
genes, contributed to an enhanced tolerance to salt and drought stress in Arabidopsis by increasing the
translational efficiency of chloroplast mRNAs [90,114].

Chloroplast-localized SRRP1 harboring two S1 domains was shown to decrease sensitivity
to ABA by impairing the splicing of the chloroplast trnL intron and 5S rRNA processing in the
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presence of ABA [115]. Additionally, the overexpression of chloroplast RPS5, which is involved in
16S rRNA processing, enhanced seedling growth in response to cold stress [116]. A recent study
has also demonstrated that chloroplast-localized SDP, which affects rRNA processing in chloroplasts
under normal conditions, has positive effects on salt, heat, freezing, or UV stress tolerance, as it
influences the stress-responsive genes in the nucleus [117]. Beyond organelles, it will be of great
interest to investigate how nCMRBP-mediated organellar retrograde signaling (ORS) influences
the reprogramming of the expression of stress-responsive nuclear genes, and the organellar and
nuclear epigenetic modifications for stress priming and memory [101,118–121]. Although the study
of organellar proteomics and metabolomics is far behind than those in the nucleus and cytoplasm,
recent studies emphasize the importance of homeostasis between the nucleus and organelles in plant
acclimation to environmental changes [122–125]. With these omics data, future tasks are to identify
novel ORS molecules and pathways, which will widely expand our understanding of crosstalk between
the nucleus and organelles.

Table 2. Phenotypes and functions of CRM, PPR, DBRH, and SDP proteins in abiotic stress responses.

Plant Gene Name Gene Number Location Molecular Function Mutant Phenotype Ref.

A. thaliana CRM family

CFM9 At3g27550 M Splicing of multiple mitochondrial
introns

Sensitive to salt,
drought, or ABA [61]

CFM4 At4g39040 C 16S and 23S rRNA processing Sensitive to salt or
cold stress [24]

A. thaliana PPR family
ABO5 At1g51965 M Splicing of nad2 intron3 Sensitive to ABA [111]

PPR40 At3g16890 M

Sensitive to salt, ABA,
or oxidative stress

Tolerant to salt stress
in overexpression

plants

[108,109]

GUN1 At2g31400 C Sensitive to sucrose or
ABA [103]

ABO8 At4g11690 M Splicing of nad4 intron3 Sensitive to ABA [112]

PPR96 At2g03380 M Probably mitochondrial RNA
editing

Tolerant to salt, ABA,
or oxidative stress [113]

PGN At1g56570 M Regulation of NAD1, RPL2, NAD9,
and MATR genes

Sensitive to salt,
glucose, or ABA [110]

O. sativa OsV4 Os04g39970 C Plastid gene expression associated
with plastid translation machinery Sensitive to cold stress [105]

WSL Os01g37870 C Splicing of chloroplast rpl2 intron Sensitive to salt,
sucrose, or ABA [104]

TCD10 Os10g28600 C
Regulation of OsV4, OsRpoTp, V1,
V2, RNRL, RNRS, 16S rRNA, rpl21,

and OsDG2 genes
Sensitive to cold stress [106]

WSL5 Os04g0684500 C RNA editing of rpl2 and atpA, and
splicing of rpl2 and rps12 intron2 Sensitive to cold stress [107]

A. thaliana DBRH family

RH3 At5g26742 C Splicing of ndhA and ndhB introns Sensitive to salt or
cold stress [26]

O. sativa TCD33 Os03g01830 C Probably chloroplast ribosome
assembly Sensitive to cold stress [91]

OsRH58 Os01g73900 C
Translational control of chloroplast
POR, rbcL, Clpb3, PsbA, and PetA

transcripts

Tolerant to salt or
drought stress [90]

B. rapa BrRH22 Bra035413 C Translational control of chloroplast
rbcL, psbA, and ycf3 transcripts

Tolerant to salt or
drought stress [114]

A. thaliana SDP family

SRRP1 At3g23700 C Splicing of chloroplast trnL intron
and 5S rRNA processing Sensitive to ABA [115]

RPS5 At2g33800 C Chloroplast 16S rRNA processing
Tolerant to cold stress

in overexpression
plants

[116]

SDP At1g12800 C Processing of chloroplast 16S, 23S,
4.5S, and 5S rRNAs

Sensitive to UV, salt,
heat, or freezing stress [117]
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5. Cellular Roles of nCMRBPs in Organellar RNA Metabolism

The mechanistic role of nCMRBPs in plant growth, development, and abiotic stress responses
remains largely unknown. However, recent studies have revealed that nCMRBPs act as RNA chaperones
in plant growth and development, as well as in stress adaptation processes.

RNA molecules must adopt correct structures in order to maintain functional RNAs. However,
RNA molecules are often misfolded into non-functional secondary or tertiary structures in cells, due to
intrinsic thermodynamic and kinetic folding problems [126,127]. As such, either specific RBPs or RNA
chaperones are required to ensure correct folding. An RNA chaperone is defined as a non-specific
RNA-binding protein that guides the folding of RNA molecules to ensure functionally active states
are achieved through structural rearrangement [127,128]. RNA chaperones usually bind to a wide
range of RNA species and are characterized as being non-specific [129,130]. Another of their typical
features is that they do not require external energy input or ATP, and they generally adopt structurally
disordered regions rendering RNA chaperone activity.

Research conducted over a number of decades has demonstrated that RNA chaperones are crucial
for diverse cellular processes in prokaryotic and eukaryotic organisms [15]. It has been demonstrated
that viral nucleocapsid proteins and E. coli Hfq and ProQ are important for stress responses because of
their roles as RNA chaperones [131,132]. Studies characterizing multiple DBRHs in bacteria, animals,
and yeast have demonstrated that CYT-19, DeaD, SrmBp, RhlE, and Mss116p are associated with
the splicing of mitochondrial group I and II introns through their RNA chaperone activity [133–135].
In plants, it has also been demonstrated that U11/U12-31K, a minor spliceosomal protein of Arabidopsis
and rice, is involved in the splicing of U12-type introns as an RNA chaperone, and it is essential for the
correct folding of introns during normal growth and development [136,137]. Studies of RNA chaperones
have also been expanded to a variety of CSDP, GRP, and RZ proteins in Arabidopsis, rice, cabbage
(Brasscia rapa), and wheat (Triticum aestivum) under various environmental conditions [15,138–147].
In plant organelles, recent findings have illustrated that chloroplast-localized Arabidopsis CFM4, RH3,
SDP, and SRRP1 have RNA chaperone properties that are crucial for maintaining the structures of the
precursor-RNA molecules suitable for splicing or rRNA processing [21,24,115,147]. It has also been
demonstrated that chloroplast-localized Arabidopsis and rice PPR4, containing both RRM and PPR
motifs, possess RNA chaperone activity through its RRM motif, and thereby affect the trans-splicing of
rps12 intron1 [25]. Moreover, chloroplast-localized rice OsRH58 and cabbage BrRH22 were shown to
affect the translation of multiple chloroplast mRNAs through their RNA chaperone activities that aid
in the structural rearrangement of target mRNAs for subsequent efficient translation control under
environmental stresses [90,114]. Mitochondria-localized Arabidopsis CFM9 was shown to affect the
splicing of multiple mitochondrial introns, and the cfm9 mutant was found to be sensitive to abiotic
stresses [61]. As such, CFM9 is presumably important for mitochondrial intron splicing due to its RNA
chaperon function. Taken together, these results clearly indicate that nCMRBPs, which carry out RNA
chaperone activities, have significant roles in the regulation of organellar RNA metabolism during
plant growth, development, and responses to abiotic stress.

6. Conclusions and Future Directions

Although the functional roles of nucleus-encoded organellar RBPs are still not fully understood,
the latest studies of the cellular and physiological functions of nCMRBPs has shed some light on the
significance of nCMRBPs for organellar RNA metabolism during plant growth, development, and
environmental stress responses. It has been demonstrated that chloroplasts- or mitochondria-localized
CRM, PPR, DBRH, and SDP proteins play pivotal roles in organellar post-transcriptional RNA
metabolism, including intron splicing, rRNA processing, and translational control under normal and
stressful conditions (Figure 2). Since different nCMRBPs often target same RNA for processing or
splicing, it would be interesting to determine whether nCMRBPs interact together to mediate RNA
metabolism. Moreover, given that the target organellar RNAs of many nCMRBPs are not known
yet, determination of the sequence- and structure-dependent recognition of target RNAs by RBPs
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would be important for further understanding of the mechanistic roles of nCMRBPs. In particular,
many nCMRBPs have been shown to play their roles as RNA chaperones that aid in the structural
rearrangement of RNA molecules during plant growth and responses to environmental stimuli.
However, further research is required to unravel the mechanisms underlying the RNA chaperone
function and to identify any protein partners that may interact with nCMRBPs, which play indispensable
roles in organellar RNA metabolism under both normal conditions and abiotic stress. In addition to this
sequence- and structure-dependent RNA regulation, epitranscriptomic RNA methylation is recently
emerging as a new form of post-transcriptional RNA regulation associated with plant development
and stress responses [148–150]. However, to date, the significance of RNA methylation in the
recognition of target RNAs by RBPs, and the importance of the interactions between RBPs and modified
RNAs, have yet to be determined. With the recent advances in high-throughput methylated RNA
immuneprecipitation-sequencing technology [151], transcriptome-wide m6A methylation patterns
in the chloroplast and mitochondria RNAs have been reported [152]. It would be interesting to
determine how the methylation in organellar RNAs influences the recognition and subsequent binding
of nCMRBPs to target RNA. This knowledge will further our understanding of the regulation of
RNA metabolism in organelles that are essential for stress adaptation, as well as plant growth
and development.
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