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Abstract: The thermal history of melts leads to three liquid states above the melting temperatures
Tm containing clusters—bound colloids with two opposite values of enthalpy +∆εlg × ∆Hm and
−∆εlg × ∆Hm and zero. All colloid bonds disconnect at Tn+ > Tm and give rise in congruent
materials, through a first-order transition at TLL = Tn+, forming a homogeneous liquid, containing
tiny superatoms, built by short-range order. In non-congruent materials, (Tn+) and (TLL) are separated,
Tn+ being the temperature of a second order and TLL the temperature of a first-order phase transition.
(Tn+) and (TLL) are predicted from the knowledge of solidus and liquidus temperatures using non-
classical homogenous nucleation. The first-order transition at TLL gives rise by cooling to a new
liquid state containing colloids. Each colloid is a superatom, melted by homogeneous disintegration
of nuclei instead of surface melting, and with a Gibbs free energy equal to that of a liquid droplet
containing the same magic atom number. Internal and external bond number of colloids increases at
Tn+ or from Tn+ to Tg. These liquid enthalpies reveal the natural presence of colloid–colloid bonding
and antibonding in glass-forming melts. The Mpemba effect and its inverse exist in all melts and is
due to the presence of these three liquid states.

Keywords: liquid–liquid transitions; glass phase; amorphous; undercooling; superheating; percola-
tion threshold; microheterogeneity

1. Introduction

Glass-forming melt transformations have been mainly studied, for many years, around
the glass transition temperature Tg and sometimes up to the liquidus temperature Tliq. The
liquid properties are often neglected because the classical nucleation equation predicts
the absence of growth nuclei and nucleation phenomenon above the melting temperature.
The presence of growth nuclei above Tm being known [1–3], an additional enthalpy is
added to this equation to explain these observations. A new model of nucleation is built
from the works of Turnbull’s [4] characterized by two types of homogeneous nucleation
temperatures below and above Tm. The new additional enthalpy is a quadratic function of
the reduced temperature θ = (T − Tm)/Tm as shown by a revised study of the maximum
undercooling rate of 38 liquid elements using Vinet’s works [5,6]. A concept of two liquids
is later introduced to explain the glass phase formation at Tg by an enthalpy decrease from
liquid 1 to liquid 2 at this temperature. New laws minimizing the numerical coefficients of
each quadratic equation are established determining the enthalpies εls(0) × ∆Hm of liquid
1 and εgs(0) × ∆Hm of liquid 2 for each θ value, with ∆Hm being the melting enthalpy [7,8].
The thermodynamic transition at Tg is characterized by a second-order phase transition and
a heat capacity jump defined by the derivative of the difference (εls(θ) − εgs(θ)) ∆Hm which
is equal to 1.5 ∆Sm for many glass transitions with ∆Sm being the melting entropy [9].

The glass transition results from the percolation of superclusters formed during
cooling below Tm [10–12]. A thermodynamic transition characterized by critical parameters
occurs by breaking bonds (configurons) and when the percolation threshold of configurons
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is attained [13–17]. Building bonds by enthalpy relaxation below Tg has for consequence the
formation of a hidden undercooled phase called phase 3 with an enthalpy (εls(θ) − εgs(θ))
∆Hm equal to that of configurons with a residual bond fraction which can be overheated
up to Tn+ > Tm before being melted [18]. The homogeneous nucleation temperature at
Tn+ occurs in overheated liquids and is predicted for many molecular and metallic glass-
forming melts.

This paper is devoted to phase transitions above Tm completing our recent work,
showing that the dewetting temperatures of prefrozen and grafted layers in ultrathin films
are equal to Tn+ [19]. The latent heats are exothermic or endothermic without knowing
the explanation. The existence of a first-order transition is claimed for Pd42.5Ni42.5P15 and
La50Al35Ni15 liquid alloys [20,21]. Our nucleation model of melting the liquid mean-range
order by breaking residual bonds predicted all values of Tn+ and exothermic enthalpies
at this temperature. The observation of endothermic latent heats showed the existence of
three liquid states at Tm, the first one with a positive enthalpy εgs(0) × ∆Hm, the second
one zero, and the third one −εgs(0) × ∆Hm, which is negative. The liquid is homogeneous
above Tn+ when its enthalpy is equal to zero. The existence of various liquid states was
also predicted without using a non-classical nucleation equation [22]. The formation
temperature of a homogeneous liquid state was observed by measuring the density or
the viscosity during heating and cooling, determining the point where the branching of
these quantities disappears. Colloidal states were observed below this homogenization
temperature and composed of thousands of atoms defining liquid heterogeneities [23–27].
Our objectives were to predict all these phase transitions.

2. The Homogeneous Nucleation

The Gibbs free energy change for a nucleus formation in a melt was given by Equa-
tion (1) [6,9]:

∆Gls = (θ− εls)∆Hm/Vm × 4πR3/3 + 4πR2σls (1)

where R is the nucleus radius and following Turnbull [4], σls its surface energy, given by
Equation (2), θ the reduced temperature (T − Tm)/Tm, ∆Hm the melting enthalpy at Tm,
and Vm the molar volume:

σls(Vm/NA)
−1/3 = αls∆Hm/Vm (2)

A complementary enthalpy −εls × ∆Hm/Vm was introduced, authorizing the pres-
ence of growth nuclei above Tm. The classical nucleation equation was obtained for εls = 0.

The critical radius R∗
ls in Equation (3) and the critical thermally activated energy barrier

∆G∗
ls

kBT in Equation (4) are calculated assuming dεls/dR = 0:

R∗
ls =

−2αls
(θ− εls)

(
Vm

NA
)
−1/3

(3)

∆G∗
ls

kBT
=

16π∆Sm α
3
ls

3NAkB(1 + θ)(θ− εls)
2 (4)

These critical parameters are not infinite at the melting temperature Tm because εls

is not equal to zero. The nucleation rate J = Kvexp(−∆G∗
ls

kBT ) is equal to 1 when Equation (5)
is respected:

∆G∗
ls/kBT = ln(Kv) (5)

The surface energy coefficient αls in Equation (2) is determined from Equations (4)
and (5) and given by Equation (6):

α3
ls =

3NAkB (1 + θ)(θ− εls)
2

16π∆Sm
ln(Kv) (6)
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The nucleation temperatures θn obtained for dα3
ls/dθ = 0 obeys (7):

dα3
ls/dθ ∼ (θn+ − εls)(3θn− + 2 − εls) = 0 (7)

In addition to the nucleation temperature Tn- below Tm, the existence of homogeneous
nucleation up to Tn+ above Tm was confirmed by many experiments, observing the un-
dercooling versus the overheating rates of liquid elements and CoB alloys [28,29]. This
nucleation temperature could have, for consequence, the possible existence of a second
melting temperature of growth nuclei above Tm and of their homogeneous nucleation at
temperatures weaker than θn+.

The coefficient εls of the initial liquid called liquid 1 is a quadratic function of θ in
Equation (8) [6]:

εls = εls0(1 − θ2/θ2
0m) (8)

where θ0m is the Vogel–Fulcher–Tammann-reduced temperature leading to εls = 0 for
θ = θ0m, the VFT temperature T0m of many fragile liquids being equal to

1 
 

≌ 0.77 Tg. This
quasi-universal value is known for numerous liquids including atactic polymers [30,31].

New liquid states are obtained for θ = θn+ = εls and θ = θn− = (εls − 2)/3 with
Equation (7). The reduced nucleation temperatures θn− are solutions of the quadratic
Equation (9):

εls0θ
2
n−/θ2

0m + 3θn− + 2 − εls0 = 0 (9)

There is a minimum value of εls0 plotted as function of θ0m using (8) and θn− = (εls − 2)/3,
determining the relation (10) between θ2

0m and εls0 for which the two solutions of (9) are
equal in the two fragile liquids [8,32]. These values defined the temperature where the
surface energy was minimum and θ2

0m and εls0 obeyed Equations (10) and (11):

θ2
0m =

8
9
εls0 −

4
9
ε2

ls0, (10)

εls(θ = 0) = εls0 = 1.5θn− + 2 = aθg + 2 (11)

The value a = 1 in the Equation (10) leads to T0m = 0.769 × Tg in agreement with many
experimental values [9].

All melts and even liquid elements underwent, in addition, a glass transition because
another liquid 2 existed characterized by an enthalpy coefficient εgs given by Equation (12),
inducing an enthalpy change from that of liquid 1 at the thermodynamic transition at
Tg [7,9,32]:

εgs = εgs0(1 − θ2/θ2
0g) (12)

θ2
0g =

8
9
εgs0 −

4
9
ε2

gs0 (13)

εgs(θ = 0) = εgs0 = 1.5θn− + 2 = 1.5θg + 2 (14)

The difference ∆εlg in the Equation (15) between the coefficients εls and εgs determines
the phase 3 enthalpy when the quenched liquid escapes crystallization:

∆εlg(θ) = εls − εgs = εls0 − εgs0 + ∆ε− θ2

(
εls0

θ2
0m

−
εgs0

θ2
0g

)
(15)

The coefficient ∆εlg(θ) defined a new liquid phase called phase 3 undergoing a hidden
phase transition below Tg and a visible one at θn+, occurring for ∆εlg(θ) = θn+, as shown
by Equation (7). This transition was accompanied by an exothermic latent heat equal to
∆εlg(θ)× ∆Hm corresponding to about 15% of the melting heat [18]. Phase 3 was detected
for the first time in supercooled water and associated with glacial phase formation [33–35]
and recently appears as being associated with configuron formation [13–18]. The concept
of configurons was initially proposed for materials with covalent bonds which can be either
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intact or broken [36]; then, it was extended to other systems including metallic systems
based on ideas of Egami on bonds between nearest atoms in metals [16,37]. Thus, it is
generically assumed that the set of bonds in condensed matter has two states; namely,
the ground state corresponding to unbroken bonds and the excited state corresponding
to broken bonds. The set of bonds in condensed matter is described in such a way by the
statistics of a two-level system [38,39] which are separated by the energy interval Gd. The
two approaches converge because the Gibbs free energy of phase 3 is equal to Gd. Phase
3 is assumed to be the configuron phase which is preserved above Tm in a liquid with
medium-range order up to a temperature Tn+. Both transition temperatures Tg and Tn+ are
accompanied by enthalpy or entropy changes of phase 3 and are predicted in many cases:
Annealing above and below Tg, vapor deposition, formation of glacial and quasi-crystalline
phases in perfect agreement with experiments. Any transformation of phase 3 changes the
initial liquid enthalpy and rejuvenation at Tg < T < Tn+ does not lead to the enthalpy of the
initial liquid [18].

Our new publication here was devoted to the simplest case where ultrastable glass
and glacial phase are not formed. The value of θn+ was maximum in this case because all
transformations below Tg and Tm modified the liquid state and decrease θn+ [19].

The heat capacity jump at Tg was equal to 1.5 × ∆Hm/Tm in polymers as shown in
1960 by Wunderlich [40] and confirmed for many molecular glasses [9] (where
∆Hm/Tm = ∆Sm is the crystal melting entropy). The contribution of the undercooled
liquid to the total heat capacity per mole is given by (16) using d∆εlg(θ)/dT:

∆Cp(T) = Cp(liq)− Cp(cryst) = 2
(T − Tm)

T2
m

(∆Hm)

(
εls0

θ2
0m

−
εgs0

θ2
0g

)
(16)

3. Exothermic or Endothermic Heats Observed above the Melting Temperature Tm

3.1. Exothermic Enthalpy Delivered at 688 K in Al88Ni10Y2 for Tm = 602 K

We follow data of ref. [41]. The glass transition occurs at Tg = 380 K, and the melting
temperature at Tm = 602 K. In Figure 1, an annealing of 60 s at Ta = 401, 427, and 525 K
increases the fraction Vf of Al-fcc precipitates up to 0.42 and decreases the volume of the
amorphous phase without changing the enthalpy recovery at 688 K measured at 0.67 K/s.
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Figure 1. DSC curves measured at 0.67 K/s of an Al88Ni10Y2 amorphous alloy aged for 60 s at
different Ta. Reprinted from ref. [42], Figure 4.
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3.2. Exothermic Enthalpy Delivered at Tn+ = 1622 K in (Fe71.2B24Y4.8)96Nb4

We follow data of ref. [42]. The glass transition occurs at Tg = 963 K and the melting
temperature at Tm =1410 K. An enthalpy recovery occurs at 1622 K (Figure 2).
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Figure 2. (a) High-temperature DSC trace at 0.33 K/s of the master alloy and (b) the enlarged version
after melting. Reprinted with permission from ref. [42], Figure 7. Copyright 2014 Springer.

3.3. Exothermic Enthalpy Delivered at 1835 K in Ni77.5B22.5

We follow data of ref. [24]. The glass transition occurs at Tg = 690 K and the melting
temperature at Tm = 1361 K. The enthalpy recovery temperature is equal to 1835 K.

Deep transformations of eutectic liquid state are observed in Figure 3 by slow heating
and aging above the melting temperature which are attributed to the formation of mi-
crodomains of 10–100 nm enriched with one of the components with prolonged relaxation
time. These microdomains have an influence on the structure and properties of rapidly
quenched liquid alloys [24,25]. The enthalpy recovery temperature is here the highest
temperature of liquid transformation leading to its homogeneous state. A cooling from
1950 K gives rise to a homogeneous liquid leading to supercooling below Tm = 1361 K.
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Figure 3. Temperature dependence of the density d of Ni-22.5%B melt at slow heating after melting
and time exposition for 5–20 h (•), subsequent cooling (o), and the second heating after crystallization
of the sample and repeated melting (∆). The arrows show the “critical” temperatures at which the
density instability is observed. Reprinted with permission from ref. [24], Copyright 1997 Elsevier.
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3.4. Exothermic Enthalpy Delivered at 1356 K in Cu47.5Zr45.1Al7.4

We follow data of ref. [43]. The glass transition occurs at Tg = 690 K and the melting
temperature at Tm =1170 K. An enthalpy recovery occurs at 1356 K (Figure 4).
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Figure 4. Multiple DTA measurements (0.333 K/s) of Cu47.5 alloy. The first up- and down-scan
cycle is well below 1350 K and the last two cycles reach 1473 K. A remarkable exothermic reaction
observed at the temperature above 1350 K in the second up-scan curve is marked by a gray dashed
circle. Reprinted with permission from ref. [43], Figure 9b, Copyright 2020 Elsevier.

3.5. Endothermic Enthalpy Recovered at 1453–1475 K in a Silicate Liquid

We follow data of ref. [44]. The composition was (49.3SiO2, 15.6Al2O3, 1.8TiO2,
11.7FeO, 10.4CaO, 6.6MgO, 3.9Na2O, and 0.7K2O (wt%)). The glass transition occurred
at Tg = 908 K and the melting temperature at Tm = 1313 K. The exothermic latent heat
occurred at 1173 K and the amorphous fraction decline with the cycle number from 573 to
1523 K. The melting ex-tended up to 1475 K in Figure 5, and the crystallization temperature
Tm occurred at 1313 K in Figure 6. The melting enthalpy recovered between Tm and Tn+
was the same all along the cycles from 2 to 21.

Figure 6 shows that Tm = 1313 K. The transition at Tn+ during continuous cooling at
20 K/mn was no longer sharp and did not have a first-order character. Crystallization
occurred at the melting temperature without undercooling, showing that the nuclei were
growing between Tn+ and Tm because they were formed above Tm by homogenous nucle-
ation accompanied by an enthalpy increase. Phase 3 disappeared above Tn+ and ∆εlg = 0.
Crystallization was sharper and sharper during cycling from temperatures higher than
Tn+, showing that the short-range order was enhanced. The enthalpy coefficient ∆εlg of
phase 3 grew by cooling below Tn+.
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Figure 6. The repeated DSC down-scanning from 1250 ◦C (Tn+ + 70◦C). The numerals next to the
graphs represent the order of the DSC down-scans. The measurements are performed in argon at the
cooling rate 20 ◦C/min. Reprinted with permission from ref. [44], Copyright Elsevier.

3.6. Endothermic Enthalpy Recovered at 1114 K in Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1)

We follow data of ref. [45]. The glass transition occurred at Tg = 625 K and the melting
temperatures at Tsol = 965 K and Tliq = 1057 K (Figure 7). There was an endothermic
enthalpy at T = 1114 K. The heat capacity jump at Tg was ∆Cp (Tg)

1 
 

≌ 21.6 J/K/g-atom. A
heat capacity peak of superheated liquid after supercooling was observed during heating
around T = 1114 K, accompanied by an endothermic latent heat of about 1100 J/mole.
Another transition, observed by viscosity measurements, occurred at 1225 K by heat-
ing and subsequent cooling, showing that the liquid became homogeneous above this
temperature [46].
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Figure 7. Cp measured upon heating at 30 K/min for the amorphous sample (upper) and once-melted
crystallized sample (lower) (vertically shifted for clarity). Reprinted from ref. [45], Figure 1b.

Structural changes corresponding to these anomalies were still observed with in-situ
synchrotron X-ray-scattering experiments in a contactless environment using an electro-
static levitator (ESL). There was an endothermic liquid–liquid transition at 1114 K during
heating reinforced by the symmetrical observation of an exothermic latent heat regarding
Tm = 965 K and an exothermic structural change around 816 K by supercooling.

3.7. Endothermic Enthalpy Recovered at 980–1000 K for Tm = 876–881 K in PdNiP Liquid Alloys

The heat capacities of several PdNiP alloys measured at 20 K/min are represented
in Figure 8. The melting temperatures were slowly varying with composition around
880 K and an enthalpy recovery temperature was still observed around 990 K in many
liquid alloys. The theoretical predictions for these liquid alloys were limited to the case of
Pd42.5Ni42.5P15 [21] presented in Sections 6.1 and 7.1.
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4. Predictions of Enthalpy Recovery Temperatures at Tn+ > Tm

Equations (10)–(15) were used to calculate the enthalpy coefficients of fragile Liquids
1, 2, and 3 in Section 4.1, Section 4.2, Section 4.4, Section 4.5, and Section 4.6. Liquid
Ni77.5B22.5 in 4.3 being strong, the enthalpy coefficients εls0 and εgs0 were calculated with
(9) for θn− = θg, θ0g

2 = 1 and θ0m
2 = 4/9.

4.1. Exothermic Enthalpy Delivered at Tn+ = 688 K in Al88Ni10Y2

We follow data of ref. [41]. The enthalpy coefficients of this fragile glass-forming melt
were calculated with Tg =380 K and Tm = 602 K:

Liquid 1 : εls (θ) = 1.63123
(

1 − θ2/0.26736
)

(17)

Liquid 2 : εgs (θ) = 1.44694
(

1 − θ2/0.3557
)

(18)

Liquid 3 : ∆εlg(θ) = 0.18439 − 2.05237 × θ2 (19)

The temperature Tn+ = 688 K was deduced from θn+ = ∆εlg (θn+) = 0.14287 [48]. In
Figure 1, an exothermic enthalpy peak is observed at 688 K for all samples at 0.67 K/s.

4.2. Exothermic Enthalpy Delivered at Tn+ = 1622 K in (Fe71.2B24Y4.8)96Nb4

We follow data of ref. [42]. The enthalpy coefficients of this fragile glass-forming melt
were calculated with Tg = 963 K and Tm = 1410 K [48]:

Liquid 1 : εls (θ) = 1.61206
(

1 − θ2/0.27795
)

(20)

Liquid 2 : εgs (θ) = 1.41609
(

1 − θ2/0.36676
)

(21)

Liquid 3 : ∆εlg(θ) = 0.19397 − 1.93329 × θ2 (22)

The temperature Tn+ = 1622 K was deduced from θn+ = ∆εlg (θn+) = 0.1503 [48].

4.3. Exothermic Enthalpy Delivered at Tn+ = 1835 K in Ni77.5B22.5

We follow data of ref. [24]. The enthalpy coefficients of this strong glass-forming melt
were calculated with Tg = 690 K and Tm = 1410 K:

Liquid 1 : εls (θ) = 1.09891
(

1 − θ2/0.44444
)

, (23)

Liquid 2 : εgs (θ) = 0.51347
(

1 − θ2
)

(24)

Liquid 3 : ∆εlg(θ) = 0.58553 − 1.958 × θ2 (25)

The temperature Tn+ = 1835 K was deduced from θn+ = ∆εlg (θn+) = 0.34808 [48] in
agreement with Figure 3.

4.4. Exothermic Enthalpy Delivered at Tn+ = 1356 K in Cu47.5Zr45.1Al7.4

We follow data of ref. [43]. The enthalpy coefficients of this fragile glass-forming melt
were calculated from Tg = 690 K and Tm = 1170 K:

Liquid 1 : εls (θ) = 1.5906
(

1 − θ2/0.28942
)

(26)

Liquid 2 : εgs (θ) = 1.3859
(

1 − θ2/0.37826
)

(27)

Liquid 3 : εlg(θ) = 0.2047 − 1.83194 × θ2 (28)

The temperature Tn+ = 1356 K and the recovered enthalpy coefficient ∆εlg were de-
duced from θn+ = ∆εlg (θn+) = 0.1586 [48] in agreement with Figure 4. The enthalpy
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coefficient ∆εlg reappeared by homogeneous nucleation below Tn+ because εgs (θn+) was
weaker than εls (θn+) and liquid 1 enthalpy decreased toward that of liquid 2 at slow cooling.

4.5. Endothermic Enthalpy Recovered at Tn+ = 1470 K in a Silicate Liquid

We follow data of ref. [44]. The enthalpy coefficients of this fragile glass-forming melt
were calculated with Tg = 908 K and Tm = 1313 K:

Liquid 1 : εls(θ) = 1.69155
(

1 − θ2/0.23189
)

(29)

Liquid 2 : εgs(θ) = 1.53732
(

1 − θ2/0.31613
)

(30)

Phase 3 : ∆εlg(θ) = 0.15473 − 2.4315 × θ2 (31)

The temperature Tn+ = 1470 K was deduced from θn+ = ∆εlg (θn+) = 0.1195 [48] in
agreement with Figure 5.

4.6. Endothermic Enthalpy Recovered at Tn+ = 1114 K in Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1)

We follow data of ref. [45]. The enthalpy coefficients of this fragile glass-forming melt
were calculated with Tg = 625 K and Tm = 965 K [35]:

εls = 1.70651 ×
(

1 − θ2/0.2226
)

(32)

εgs = 1.4715 ×
(

1 − θ2/0.34564
)

(33)

∆εlg = 0.23501 − 3.409 × θ2. (34)

The temperature Tn+ = 1114 K was deduced from θn+ = ∆εlg (θn+) = 0.15407 [48]
in agreement with Figure 6. The observed double transition was the consequence of
the presence in the melt of nuclei, all having the same Gibbs free energy, leading to a
homogenous nucleation at 818 and 1114 K as consequence of the quadratic equation of ∆εlg
(θn+) = θn+. The ordered liquid was rebuilt at Tn+ = 818 K during cooling from 1350 K with
the formation in the no-man’s land of new superclusters, building a vitreous solid phase
at Tg resulting of the bond number divergence. The hysteresis of viscosity disappeared
at about 1225 K when the liquid is homogeneous [46]. A “colloidal” state was melted
above the temperature of viscosity or density branching observed during cooling after
heating [24,26,27,46]. Equation (35) was used to calculate the reduced temperature θn+ of
glass-forming melt with a glass transition at θg and obeying (11) with a = 1 [48]:

θn+ = −0.38742 × θg (35)

The liquidus melting temperature Tliq = 1057.5 K was deduced from Equation (35)
with Tg = 625 K and Tn+ = 1225 K in perfect agreement with the experimental observation
of liquidus presented in Figure 7. This finding of a second transition above Tn+ agreed
with the first-order liquid–liquid transitions observed above Tn+ in Pd42.5Ni42.5P15 and
La50Al35Ni15.

5. Three Liquid States above the Melting Temperature

The exothermic and endothermic transitions at Tn+ led to a liquid above Tn+ with
an enthalpy coefficient ∆εlg = 0. Two other liquid states existed at Tm with enthalpy
coefficients equal to ±∆εlg0. The melting temperature Tm was chosen equal to Tsolidus in
Figure 9. The enthalpy coefficients (±∆εlg), defined by (15) and applied to Pd42.5Ni42.5P15
in Figure 9 and in Section 7.1, were related to the enthalpy decrease and increase with
temperature of these two quenched liquid states toward that of homogeneous liquid.
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The homogenous liquid can be quenched along q2 (∆εlg0 = 0) in Figure 9 from
above the temperature where the liquid became homogeneous, down to temperatures
much weaker than Tg [49–51]. An enthalpy relaxation at low heating rate, equal to
(−∆εlg0 × ∆Hm), built the bonds of phase 3 and led by heating to the temperature where
∆εlg = 0 [35]. This slow heating through Tg broke the bonds and the liquid enthalpy
increases up to (+∆εlg0 × ∆Hm) at Tm, producing an exothermic enthalpy at Tn+. These
phenomena are observed in Figures 1–4.

With a much higher heating rate, the enthalpy of bonds, building phase 3, did not
have the time to relax below Tg, and phase 3 was not formed along the thermal path below
Tg and the latent heat at Tn+ was not observed for Pd42.5Ni42.5P15 at 100 K/s, as shown in
Figure 10 [21]. The liquid being frozen below Tg with ∆εlg = 0 gave rise to an endothermic
enthalpy at Tg due to bond breaking and the liquid returned to a homogenous state with
∆εlg0 = 0 above Tn+ [10–12].

A quench along q1 in Figure 9 from Tm < T < Tn+ with a liquid enthalpy (+∆εlg0 × ∆Hm)
at Tm led to an amorphous phase with an enthalpy excess (+∆εlg0 × ∆Hm). Phase 3 bonds
were built during reheating and they decreased, at a low heating rate, the enthalpy coeffi-
cient from (+∆εlg0) below Tg to (−∆εlg0) at Tm, leading to an endothermic latent heat at
Tn+ corresponding to crystallized nuclei melting at Tn+.

Starting heating at a very low heating rate from any liquid state led to crystallization
and to a liquid enthalpy equal to (−∆εlg0 × ∆Hm) at Tm.

A quench from Tm < T < Tn+ along q3 led to the enthalpy of phase 3 with crystallized
nuclei being the skeleton of this phase after percolation at Tg, as shown for plastic crystals.
A slow cooling led to crystallization at Tm without undercooling [19].

The endothermic and exothermic characters of the transition at Tn+ were imposed by
the initial value of the liquid enthalpy after quenching and by cooling and heating rates.

Homogeneous nucleation in the liquid was expected to depend on the time of aging
in the range of temperatures below and close to the homogenization temperature. The
first-order liquid–liquid transitions in Pd42.5Ni42.5P15 and La50Al35Ni15 studied by [20,21]
combined with our non-classical model of homogeneous nucleation shed light on these
new phenomena.

6. First-Order Liquid–Liquid Transitions Observed in Pd42.5Ni42.5P15, La50Al35Ni15,
and Fe2B

We follow data of ref. [21] for Pd42.5Ni42.5P15, of ref. [20] for La50Al35Ni15 and of
ref. [24] for Fe2B.

6.1. Pd42.5Ni42.5P15
6.1.1. Fast Differential Scanning Calorimetry at 100 K/s

The fast differential scanning calorimetry (FDSC) heating curve at 100 K/s represented
in Figure 10 and reproduced from [21] was used to determine the solidus and liquidus
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temperatures Tsol = 876 and Tliq = 926.5 K. A first-order liquid–liquid transition was
observed at TLL = 1063 K. The sample was previously cooled from 1073 K at 40,000 K/s
down to room temperature and reheated up to 1073 K, which was a temperature higher
than the first-order transition observed at TLL.
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Figure 10. DSC with heating rate of 100 K/s. A typical FDSC heating curve of the sample obtained
from Tq = 1073 K and q− = 40,000 K/s. The enthalpy of crystallization is denoted as ∆H. The inset
shows the temperature protocol of the FDSC experiments. Temperatures Tsol, Tliq, and TLL added.
Reprinted with permission from ref. [21], Figure 3a, Copyright 2021 Elsevier.

6.1.2. Melting Transition Observed at 993 K above the Solidus Temperature Tsol = 876 K of
Pd42.5Ni42.5P15

The samples were quenched from Tq to room temperature at a cooling rate of
q− = 40,000 K/s and reheated at 100 K/s up to Tq, as shown in Figure 11b [21]. There
was no nucleation when cooling started from 1073 K for q > 70 K/s, while crystallization
occurred for q < 7000 K/s when cooling started from 1023 K as shown in Figure 11a. The
area of the crystallization peak occurring around T = 770 K in Figure 10 was plotted versus
Tq in Figure 11b. The temperature T = 993 K was viewed by the authors as a liquidus
temperature which was, in fact, equal to 926.5 K, as shown in Figure 9.
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Figure 11. The content of amorphous phase as a function of cooling rate q− of the samples obtained
from Tq = 1073 and 1023 K, respectively (a). The crystallized fraction characterized by ∆H is evaluated
by FDSC as shown in Figure 10b. Area of the second exothermic peak ∆H as a function of Tq as shown
in Figure 10. (b) Area of the exothermic peak ∆H as a function of Tq with a cooling rate of 40,000 K/s.
Reprinted with permission from ref. [21], Figure 3b and Figure S1, Copyright 2021 Elsevier.



Materials 2021, 14, 2287 13 of 22

6.1.3. First-Order Transition Observed by 31P Nuclear Magnetic Resonance (NMR)
31P NMR was used to characterize the LLT at TLL = 1063 K above Tn+ = 993 K. The

liquid alloy was first heated to 1293 K for homogenization during 30 min, and then cooled
step by step to 1043 K. NMR spectra were taken isothermally after equilibrating the liquid
at 1293 K at each step. The Knight shift (Ks) was determined by the ensemble average
of local magnetic field around 31P nuclei, sensitive to the changes in structure, plotted in
Figure 12 as a function of temperature [21]. (Ks) varied linearly above 1063 K with a slope
increase of 1.76 ppm/K below 1063 K, indicating a change in the P-centered local structures
at this temperature. This change was viewed as a first-order liquid–liquid transition (LLT)
analogous to that observed in La50Al35Ni15 where a second change of Ks in this new liquid
state was observed at lower temperatures attributed to the hysteresis of the transition [20].
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6.2. La50Al35Ni15

This melt was characterized by Tg = 528 K, Tsol = 877.6 K, and Tliq = 892 K, as shown
in Figure 13 ([20] Figure S1). A second liquidus temperature was found at 950 K. The
temperature TLL, observed at 1033 K by measuring the 27Al Knight shift by RMN, is
viewed as a first-order LLT in Figure 14. A phenomenon analogous to hysteresis led to a
second transition at 1013 K.
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6.3. Fe2B

The vitreous state of this compound was obtained by mechanical alloying [52]. The
first-order transition occurs at TLL = 1915 K in Figure 15 with a melting temperature of
1662 K [24].
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transformation in a liquid compound. Reprinted with permission from ref. [24], Figure 8, Copyright
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7. Predictions of First-Order Transition Temperatures by Homogenous Nucleation in
Pd42.5Ni42.5P15, La50Al35Ni15 and Fe2B Melts

These first-order transitions were observed at TLL at very low cooling rates or by
isothermal annealing between the melting temperature and TLL. The homogeneous liquid
state characterized by ∆εlg0 = 0 was stable during cooling in Figure 3 while the first-order
transitions were reversible in Figure 15. The two melting temperatures Tsol and Tliq of
non-congruent materials led to two nucleation temperatures Tn+.
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7.1. Predictions of Transitions in Pd42.5Ni42.5P15 Melt

The temperature 993 K in Figure 11b was viewed by [21] as a liquidus temperature
which was, in fact, equal to 926.5 K, as shown in Figure 10. The reduction of the enthalpy
recovered by crystallization at 770 K occurred for Tq < 993 K, as shown in Figure 11b. The
crystallization enthalpy at 770 K was continuously reduced without exothermic enthalpy
jump equal 0.13357 × 197 = 26 in Figure 11b at 993 K. The mean-range order accompanied
by exothermic enthalpy progressively reappeared by homogeneous nucleation in the liquid
heated during 30 s at each temperature Tq and was completely formed at Tliq = 926.5 K
because the enthalpy decrease was equal to −13.4 % at this temperature. The residual
configurons melted at Tn+ = 993 K using (35) (θn+ = ∆εlg (θn+) = 0.13357), Tm = 876 K, and
Tg = 574 K. This value of Tg agreed with measurements of heat capacity of melts with
similar compositions [47]. The enthalpy coefficients of Pd42.5Ni42.5P15 for the liquidus and
solidus liquid states were given in Equations (36–38) using Equations (10–16):

For Tsol = 876 K and Tg = 574 K

Liquid 1 : εls(θ) = 1.65525
(

1 − θ2/0.25362
)

(36)

Liquid 2 : εgs(θ) = 1.48288
(

1 − θ2/0.34081
)

(37)

Phase 3 : ∆εlg(θ) = 0.17237 − 2.1755 × θ2 (38)

For TLiq = 926.45 K and Tg = 574 K

Liquid 1 : εls(θ) = 1.61957
(

1 − θ2/0.27384
)

(39)

Liquid 2 : εgs(θ) = 1.42935
(

1 − θ2/0.36251
)

(40)

Phase 3 : ∆εlg(θ) = 0.19022 − 1.97146 × θ2 (41)

Applying Equation (35) led to Tn+ = TLL = 1063 K in perfect agreement with Figure 12.
From our analysis, a second change of Ks occurred by homogeneous nucleation in
Pd42.5Ni42.5P15 at Tn+ = 993 K. This transition was not only due to the hysteresis of a
first-order transition because there were two homogeneous nucleation temperatures as
shown in Figure 12. This point was still confirmed in 7.2 devoted to La50Al35Ni15, where the
changes of Ks occurred for two values of Tn+ because there were, in these non-congruent liquid
compounds, two solid–liquid transitions characterized by solidus and liquidus temperatures.

The temperature Tn+ = TLL = 1063 K corresponded to the temperature of homogenous
nucleation of colloids containing critical numbers nc of atoms with nc given by Equation (42)
(see [9], Equation (48)):

nc =
8NAkB

(
1 + ∆εlg

)3

27∆Sm

(
∆εlg

)3 ln(K) (42)

where NA is the Avogadro number, kB the Boltzmann constant, ∆Sm the melting entropy,
and LnK

1 
 

≌ 90 [5]. With ∆εlg = 0.13356 and ∆Sm = 8.76 J/g-atom [47], nc = 15522 at the
temperature Tn+ = 993 K. With ∆εlg = 0.14739 and ∆Sm = 8.76 J/g-atom, nc = 11977 at
the temperature Tn+ = 1063 K. Critical numbers nc, still larger, were observed in Pb-Bi
liquid alloys below the temperature of liquid homogenization [27]. The number of atoms
inside an elementary superatom in the homogenous liquid above 1063 K was equal to 135,
with ∆εlg (θn+) replaced in (42) by εgs (θn+) = 1.40526 in (42) using Equations (39) and (40).
The homogenous nucleation time τ (s) for temperatures 1043 < T < 1063 K was following
Equation (43) (see Figure 1d in ref. [21]):

τ (s) = 5.9 × 10−3
(

1063
T

− 1
)2.18

(43)

which led by extrapolation to τ

1 
 

≌ 1.9 s at Tn+ = 993 K.
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There was no growth nucleus inducing crystallization after quenching from the tem-
perature T = 1073 K which was higher than TLL = 1063 K as shown in Figure 11a [21]. New
growth nuclei were added when the melt was quenched from 1023 K, a temperature higher
than Tn+ = 993 K and much higher than Tsol. Consequently, new denser nuclei growing
from the colloidal state were added by homogeneous nucleation at 1023 K above 993 K.
The transition at 993 K after cooling from 1073 K was due to the internal and external
bond formation between colloids below 1063 K [18]. This observation agreed with the
growth of nc from 11977 to 15522 between 1063 and 993 K. The transitions observed by
NMR below 1063 K involved all 31P atoms and corresponded to the colloid formation
through the relaxation time decrease [23]. The first-order character of this transition was
observed at each step of isothermal annealing below 1063 K. The breaking of bonds inside
and outside colloids occurred at the lowest temperature Tn+ during heating [18], while
at the highest Tn+, a transition from colloidal state to a new homogeneous state made of
elementary superatoms only organized by short-range order appeared.

The enthalpy coefficients (−∆εlg0) of phase 3 equal to those of configurons are rep-
resented in Figure 16 as a function of the temperature T (K) for Tsol and Tliq using
Equations (38) and (41). The crystallization temperature occurred at the reentrant for-
mation temperature of ultrastable glass with its enthalpy equal to −∆εlg0. This nucleation
temperature opened the door to crystallization [19].
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Figure 16. Enthalpy coefficients of liquidus and solidus melts versus T (K). Tliq = 926.5 K, Tn+ = 1063 K,
Tsol = 876 K, and its Tn+ = 993 K. Crystallization at the nucleation temperature T3 = 748.4 K of phase
3 in solidus melt instead of T3 = 774.2 K in liquidus melt. In the liquidus melt, TLL = Tn+ = 1063 K.

7.2. Predictions of First-Order Transitions in La50Al35Ni15 Glass-Forming Melt

We follow data of ref. [20]. The phase 3 enthalpy coefficients of La50Al35Ni15 for the
liquidus and solidus liquids were given in Equations (44)–(49) for Tsol = 877.6 K, Tliq = 892 K,
and Tg =528 K, and are represented in Figure 17.
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Figure 17. La50Al35Ni15 enthalpy coefficients of liquidus and solidus melts. Tsol = 877.6 K;
Tn+ = 1013 K; Tliq = 892 K; Tn+ = TLL = 1033 K. The enthalpy coefficients of ultrastable phase 3 are
(−0.19918) for the solidus and (−0.20404) for the liquidus. The two melts have the same Tg = 574 K.
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For TLiq = 892 and Tg = 528 K:

Liquid 1 : εls(θ) = 1.66143
(

1 − θ2/0.25000
)

(44)

Liquid 2 : εgs(θ) = 1.42935
(

1 − θ2/0.33679
)

(45)

Phase 3 : ∆εlg(θ) = 0.20404 − 2.2516 × θ2 (46)

For Tsol = 877.6 and Tg = 528 K:

Liquid 1 : εls(θ) = 1.60164
(

1 − θ2/0.28357
)

(47)

Liquid 2 : εgs(θ) = 1.40246
(

1 − θ2/0.37246
)

(48)

Phase 3 : ∆εlg(θ) = 0.19218 − 1.88273 × θ2 (49)

7.3. Predictions of Glass Transition Temperature of Fe2B Melt

The enthalpy coefficients of the strong liquid Fe2B were calculated with Equations (9) and (35),
Tm = 1662 K and Tn+ = TLL = 1915 K, given in Equations (50)–(52). Phase 3 is represented
in Figure 18.
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For Tm = 1662 K and Tn+ = TLL = 1915 K, Tg = 1125.7 K:

Liquid 1 : εls(θ) = 1.60164
(

1 − θ2 × 2.25
)

(50)

Liquid 2 : εgs(θ) = 1.1519
(

1 − θ2
)

(51)

Phase 3 : ∆εlg(θ) = 0.19579 − 1.8804 × θ2 (52)

7.4. One Liquid–Liquid Transition at Tn+ = TLL in Congruent Materials and Two in the Others

A first-order transition occurred at TLL due to the formation by cooling of colloidal
state assembling elementary superatoms composed of tenths atoms bounded by short-
range interactions, leading to colloids containing thousands of atoms. In the case of
congruent materials, only one liquid–liquid transition was expected. The lowest and the
highest temperatures Tn+ were equal and Tn+ is a first-order transition temperature equal
to TLL. This is the case for Fe2B.

These colloids were similar atom clouds containing a magic atom number of atoms
because they were melted by homogeneous nucleation instead of surface melting. They
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had a maximum radius for which their Gibbs free energy was smaller or equal to that of
the melt [53].

There were two liquid–liquid transitions above the solidus and liquidus temperatures
Tsol and Tliq in non-congruent materials, leading to two temperatures Tn+. The highest one
was equal to TLL and related to Tliq. Above TLL, the liquid was homogeneous and atoms
were only submitted to short-range order in tiny superatoms. The lowest (Tn+) was related
to Tsol and was the temperature where coupling between elementary superatoms started
during cooling and led to bond percolation at Tg. The lowest one was a second-order phase
transition where the residual configurons were melted during heating, involving 15% of
the sample volume.

A melt was only rejuvenated above Tn+ because all colloids and superatoms
were disconnected.

8. Perspectives: Mpemba Effect and Bonding-Antibonding of Superatoms
8.1. Mpemba Effect and Its Inverse Relation to the Existence of Three Liquid States above the
Melting Temperature

The Mpemba effect is described by a shorter time needed to crystallize a hot water
system than to crystallize the same colder water system cooled down from initial lower
temperatures [54]. This phenomenon was documented by Aristotle 2300 years ago [55].
The melting enthalpy of ice was ∆Hm = 334 J/g with a specific heat of 4.18 J/g. Starting
from a hot homogenous water, the exothermic enthalpy of formation of mean-range order
below Tn+ = 295.3 K (22.1 ◦C) [34] was progressively equal to −0.0818 ×334 = −27.3 J/g
by homogenous nucleation during slow cooling through Tn+. The value of Tn+ in water
was confirmed by numerical simulations of the melting temperature of an ultrathin layer
of hexagonal ice [19,56–58]. The water enthalpy variation being equal to 92 J/g from
22.1 to 0 ◦C, the temperature of 0 ◦C was quickly attained by the hot system because of
the recovery of exothermic enthalpy. The cold water had no more available exothermic
enthalpy because the formation of mean range order was much older in this water. Cooling
this liquid took much more time.

The latent heat, expected at Tn+ = 22.1 ◦C, was not observed up to now, while Mpemba
and Osborne observed this effect with a slow cooling rate of 0.01 K/s. The window of nu-
cleation was very narrow in congruent materials because the temperature Tn+ was unique
instead of extending between the two Tn+ temperatures of non-congruent substances as
shown in Figure 13. At a too-high cooling rate, the liquid state, with ∆εlg = 0, free of any
growth nucleus, remained stable and showed undercooling. The homogeneous liquid state
was stable when it escaped the formation of colloidal state at Tn+. Figure 3 showed this
phenomenon in Fe77.5B22.5. On the contrary, the transition of Fe2B at Tn+ = 1915 K had a
first-order character (see Figure 15) Nucleus formation started from the colloidal state and
was expected to be formed at a low cooling rate.

Using the theory of nonequilibrium thermodynamics, Lu and Raz predicted a similar
anomalous behavior with heating using a three-state model that we had here for all
melts [59]. A cold liquid, with an enthalpy equal to (+∆εlg0 × ∆Hm), obtained after building
bonds below Tg, would develop an exothermic latent heat at Tn+ during heating, while
a warmer liquid with an enthalpy equal to (−∆εlg0 × ∆Hm) would need an endothermic
enthalpy to melt its mean-range order.

The Mpemba effect and its inverse effect can be extended to many systems [59,60]
and we showed that these phenomena could exist in all melts. Moreover, we assumed
that analogues of Mpemba effects should occur on vitrification of liquids so that glasses
would be formed quicker out of hot melts compared with melts cooled down from lower
temperatures. All these new events were observable because the transition at Tn+ was a
first-order transition in congruent materials [24].
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8.2. Three Liquid States Associated with Bonding–Antibonding of Superatoms

In Figure 9, the enthalpy coefficient of phase 3 at Tn+ was equal to three values +∆εlg, 0,
and −∆εlg depending on thermal history leading to three liquid states. The glass transitions
occurred at the percolation threshold of superclusters, built by homogeneous nucleation,
during the first cooling of liquids initially homogeneous. These superclusters survive
in overheated colloids after their formation during the first cooling because they were
melted at Tn+ by homogeneous nucleation instead of surface melting at Tm. These entities
were contained in colloids with a magic atom number [61]. Thus, they were melted at
Tn+ when their Gibbs free energy became equal to that of homogeneous liquid [53]. The
endothermic and exothermic latent heats revealed the existence of two families of bound
molecules which could be attributed to bonding and antibonding of colloids through
elementary superatoms. This concept of bonding and antibonding is highly developed in
bond chemistry to create new chemical structures. Bonding and antibonding of colloids
could lead to higher and lower enthalpies. Two recent examples of research in this field
were given [62,63]. The nature built these new superstructures in all overheated melts by
homogeneous nucleation. The percolation of these superatoms led Tg to a superstructure
involving 3D space in 15% of atoms [18].

9. Conclusions

Our models of homogeneous nucleation and configurons explained the formation
of liquid phases above Tg with mean-range order disappearing at a temperature Tn+
much higher than the melting temperature. This transformation at Tn+ was a first-order
transition in congruent materials such as Fe2B and was expected to be observable at a
very low cooling rate or by homogeneous nucleation during isotherm annealing below
Tn+. There were two melting temperatures in non-congruent materials called solidus and
liquidus temperatures, leading to two temperatures: Tn+ starting with a unique glass
transition temperature Tg. The first-order liquid–liquid transitions in Pd42.5Ni42.5P15 and
La50Al35Ni15 observed with NMR at TLL = 1063 and 1033 K, respectively, occurred at the
temperature Tn+ corresponding to the liquidus temperature of these two alloys. The two
other second-order phase transitions, occurring at Tn+ = 993 and 1013 K respectively, were
induced by the solidus temperatures.

The latent heats produced at Tn+ were exothermic or endothermic. We attributed this
phenomenon to the presence of three liquid states at Tn+, with three enthalpy coefficients
depending on the cooling rate and on the starting temperature of quenching. These
enthalpies were equal to 0, +∆Hm × ∆εlg (Tn+), and −∆Hm × ∆εlg in comparison with that
of a homogeneous liquid equal to zero at high temperatures. These liquids, when quenched
to temperatures much weaker than Tg, were characterized by their initial enthalpy at
the solidus temperature. The liquid state enthalpy after quenching was (−∆Hm × ∆εlg0),
or (+∆Hm × ∆εlg0), or 0 depending on its initial value before quenching and on the
cooling and heating rates. The enthalpy increased from −∆Hm × ∆εlg0 and 0 up to
+∆Hm × ∆εlg0 at Tm with configuron melting. The enthalpy decreased from +∆Hm × ∆εlg0
and 0 to −∆Hm × ∆εlg0 at Tm, rebuilding the missing bonds. These phenomena were well
described by the positive or negative variation ±∆Hm × ∆εlg (Tn+), of enthalpies of bonds
and configurons.

Our homogeneous nucleation model above Tm still confirmed the formation of col-
loids between Tn+ and Tm and at slow cooling rate, the growth of cluster-bound colloids
inducing crystallization. The temperature Tn+, congruent materials being unique, was
the temperature of homogenization of these melts. The highest temperature Tn+ = TLL
observed in Pd42.5Ni42.5P15 and La50Al35Ni15 was a homogenization temperature of these
non-congruent materials. All melts, containing atoms of different nature, were submitted
to short-range order inside superatoms, being the elementary bricks building the ordered
liquids and glasses.

These colloids and elementary superatoms could not be more precisely described because
their magic atom number nc, and the associated enthalpy depending on nc, were unknown.
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Colloids formed by homogeneous nucleation were superatoms containing magic atom
numbers which were not totally melted above Tm and were fully melted by homogenous
nucleation instead of surface melting at the highest temperature Tn+. They contained a
critical atom number nc defined by their Gibbs free energy equal or smaller than that of the
homogeneous melt. They gave rise to new molecular entities by bonding and antibonding,
as shown by the opposite values of their contribution to the enthalpy at Tn+. Superstructures
of elementary superatoms grew during cooling down to their percolation temperature.

The Mpemba effect and its inverse were easily predicted from this description of
materials melting, leading to three stable liquid states above the melting temperature and
transitions between them. The transition at Tn+ may have been not only the temperature
where the mean-range order disappeared, but also a first-order transition temperature
between two liquid states.
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