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Simple Summary: Prostate cancer is a common disease in older men, yet current risk prediction
models for prostate cancer do not discriminate between men at higher risk of aggressive, clinically
significant disease compared to those with benign disease. If risk prediction models can be improved
to identify the risk of clinically significant disease with more precision, it could help to reduce
over-diagnosis, over-screening, and unnecessary invasive procedures, especially in older men. We
examined whether the use of a genomic risk score improves the precision and discriminative ability
of prostate cancer risk prediction in men aged 70 years and older. In a population of 5701 healthy
older men, we found that the genomic risk score was strongly associated with future prostate cancer
risk. However, we observed no association between the genomic risk score and more aggressive,
clinically significant prostate cancer—thereby limiting the clinical utility of the genomic risk score.

Abstract: Despite the high prevalence of prostate cancer in older men, the predictive value of a
polygenic risk score (PRS) remains uncertain in men aged ≥70 years. We used a 6.6 million-variant
PRS to predict the risk of incident prostate cancer in a prospective study of 5701 men of European
descent aged ≥70 years (mean age 75 years) enrolled in the ASPirin in Reducing Events in the
Elderly (ASPREE) clinical trial. The study endpoint was prostate cancer, including metastatic or
non-metastatic disease, confirmed by an expert panel. After excluding participants with a history of
prostate cancer at enrolment, we used a multivariable Cox proportional hazards model to assess the
association between the PRS and incident prostate cancer risk, adjusting for covariates. Additionally,
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we examined the distribution of Gleason grade groups by PRS group to determine if a higher PRS
was associated with higher grade disease. We tested for interaction between the PRS and aspirin
treatment. Logistic regression was used to independently assess the association of the PRS with
prevalent (pre-trial) prostate cancer, reported in medical histories. During a median follow-up time
of 4.6 years, 218 of the 5701 participants (3.8%) were diagnosed with prostate cancer. The PRS
predicted incident risk with a hazard ratio (HR) of 1.52 per standard deviation (SD) (95% confidence
interval (CI) 1.33–1.74, p < 0.001). Men in the top quintile of the PRS distribution had an almost three
times higher risk of prostate cancer than men in the lowest quintile (HR = 2.99 (95% CI 1.90–4.27),
p < 0.001). However, a higher PRS was not associated with a higher Gleason grade groups. We
found no interaction between aspirin treatment and the PRS for prostate cancer risk. The PRS
was also associated with prevalent prostate cancer (odds ratio = 1.80 per SD (95% CI 1.65–1.96),
p < 0.001).While a PRS for prostate cancer is strongly associated with incident risk in men aged
≥70 years, the clinical utility of the PRS as a biomarker is currently limited by its inability to select
for clinically significant disease.

Keywords: prostate cancer; polygenic risk score; Gleason grade

1. Introduction

Prostate cancer is one of the most common cancers diagnosed in men [1,2]. Although
often remaining indolent and not requiring active therapy, in some cases, prostate can-
cers become aggressive, leading to metastatic and incurable disease [3]—despite local or
systemic treatment. Screening for prostate cancer is typically offered to men aged 50 to
69 years, using the prostate specific antigen (PSA) blood test and digital rectal examination
(DRE) [4]. However, screening in older men aged ≥70 years is not recommended by
contemporary guidelines [5,6], despite a high proportion of diagnoses occurring in this
older age group. Some studies have suggested that targeted screening in older men could
be guided by individual risk assessment [7,8]. However, current risk prediction models
for prostate cancer do not discriminate between men at higher risk of aggressive, clinically
significant disease, compared to those with indolent or benign disease.

If improved risk prediction models can be developed for prostate cancer with speci-
ficity for identifying risk of clinically significant disease, in turn, it could help reduce
over-diagnosis, over-screening, and unnecessary invasive procedures, especially in older
men [9,10], by focusing on early detection and prevention strategies for men at highest risk.
Improved risk prediction models could also help direct the use of emerging non-invasive
screening methods, such as magnetic resonance imaging (MRI) [11].

Although modifiable risk factors (such as smoking) are associated with prostate cancer
risk [12–14], there is limited evidence that prevention is achieved by the cessation of these
factors [15,16]. The most significant risk factors for prostate cancer are non-modifiable, such
as age, ethnicity [17], family history [18], and genetic predisposition [19]. Therefore, the use
of a polygenic risk score (PRS) comprised of common prostate cancer-associated genetic
variants has the potential to improve risk prediction, beyond conventional risk factors.
Genome-wide association and twin studies have estimated the heritability of prostate
cancer to be 57% [20,21]. Whilst a small proportion of this heritability is explained by rare
pathogenic variants in monogenic disease-associated genes [22–25], a larger proportion is
attributable to common variants identified by genome-wide association studies (GWAS). A
PRS aggregates the effect of these common variants into a single measure of genetic risk
that can then be used alongside conventional prostate cancer risk factors in a risk prediction
model. Polygenic scores for prostate cancer have been shown to be strongly associated
with the development of prostate cancer in previous studies [26–29], including in diverse
genetic ancestries [30]. In these studies, the SNP selection has been predominantly limited
to tens to hundreds of genome-wide significant variants.
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A recent study developed a 6.6 million variant PRS for prostate cancer risk based on a
recent GWAS [20,26,27]. We sought to validate the performance of this PRS independently
in a well-characterised prospective cohort of older men from Australia and the United
States of America aged ≥70 years. The goal of our study is to determine whether the
PRS predicts incident prostate cancer risk in older men, and test whether the PRS has the
discriminative ability to identify risk of clinically significant disease (as determined by
Gleason grade group [28]), to help guide targeted screening in older men.

2. Methods
2.1. Study Design

This study involved a post hoc genetic analysis of all male participants of non-Finnish
European ancestry from the ASPirin in Reducing Events in the Elderly (ASPREE) trial—a
randomised placebo-controlled trial of daily low-dose aspirin in older people [29–31]. The
design [32,33], recruitment [34], and baseline characteristics [35] of the ASPREE study
have been published previously. Of the 6046 male participants in ASPREE who provided
DNA samples and consent for genetic analysis, 318 participants of non-European ancestry
were removed from the analysis using principal component analysis (PCA)-based filtering
(see Supplementary Materials, Table S1), while a further 27 were removed due to missing
covariates, resulting in a total of 5701 male participants. All participants were aged 70 years
or older at enrolment with genotyping data available [36,37] and provided informed
consent for genetic research at the time of sample collection. The ASPREE study is registered
on Clinicaltrials.gov (NCT01038583) and approved by local ethics committees.

2.2. Genotyping

Genotyping was performed on the Axiom 2.0 Precision Medicine Diversity Research
Array (Thermo Fisher Scientific (TFS), Waltham, MA, USA) following standard protocols.
Variants were aligned to the human genome reference GRCh38. Participants with European
ancestry were included to minimise the effect of population stratification on polygenic risk
scoring. PCA was used to identify ethnicity and filter participants not overlapping with the
non-Finnish European subset of the 1000 genomes reference population (Supplementary
Figure S1) [38]. Imputation was performed on the TopMED Imputation Server (European
samples) [39]. Variants with low imputation quality scores (r2 < 0.3) were removed, as
were multi-allelic variants resulting in 98.5% of SNPs (single-nucleotide polymorphisms)
(6,508,423 of the 6,606,786) in the PRS passing quality control.

2.3. Endpoint

The study endpoint was prostate cancer diagnosis, as adjudicated by an expert panel,
with histopathology or imaging of metastasis to confirm diagnosis as described previ-
ously [40]. Incident cases included both localised and metastatic prostate cancer. Metastatic
recurrence was reported but excluded from the analysis of incident prostate cancer events.
The median follow-up time among male participants was 4.6 years. Prostate cancer occur-
ring prior to enrolment was self-reported (hereon referred to as prevalent cancer), with
age at diagnosis listed as either occurring at 49 years or younger, or at age 50 or older. The
analysis of incident prostate cancer risk excluded all participants with prevalent prostate
cancer at enrolment.

2.4. Calculation of Polygenic Risk Score

The PRS was calculated using the ‘score’ function from plink version 1.9 [41,42]. The
PRS is defined as the sum of all the effect sizes for each effect allele present in a participant,
taken from the published GWAS summary statistics [20]. The PRS was developed by
Mars et al. (2020) [26] who used LDpred to prune and select 6,606,785 SNPs following
methods described previously. The list of SNPs and effect sizes were downloaded from the
polygenic score (PGS) catalog [43].
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2.5. Statistical Analysis

The association between the PRS and incident prostate cancer was evaluated using a
multivariable Cox proportional hazards model, excluding all participants with prevalent
prostate cancer at enrolment. Hazard ratios (HRs) were reported, adjusting for age, first
degree family history of prostate cancer, and randomization to aspirin treatment. The PRS
was also assessed in an independent model as a categorical variable, categorised into low
(Q1: 0–20%), medium (Q2–Q4: >20–80%), and high (Q5: >80%) risk groups. The c-index
(concordance index) was used to assess the discriminative ability of the models. We used
a chi-squared test to examine the distribution of Gleason grade groups across categorical
PRS risk groups. We tested whether the PRS and aspirin treatment had an interaction
effect on the risk of incident prostate cancer risk using the Wald test, and adjusting for the
same covariates. Competing risks (from death) estimates of the cumulative incidence were
visualised using the survfit function from the R survival [44] and survminer 0.4.8 packages.
Statistical analyses were conducted using R v3.6.1 [45] with tidyverse 1.3.0 [46].

Prevalent prostate cancer at enrolment was analysed using a logistic regression model,
to report the odds ratio (OR) of the PRS. The prevalence model also included the covariates
of age, and family history of prostate cancer.

3. Results
3.1. Baseline Characteristics

The mean age of participants at enrolment was 75 years, with more than half of the
participants aged between 70 and 74 years at enrolment (Table 1). Of 5701 male participants,
9% reported a family history of prostate cancer, 56% were current or former smokers, and
11% reported prior diagnosis of prostate cancer at the time of enrolment. The PRS was
normally distributed with a mean value of −0.46 (SD 0.16). In subsequent analysis, this
was standardised to have mean 0 (SD 1).

Table 1. Baseline characteristics of the included ASPREE male participants.

Characteristics ASPREE

Participants 5701

Age at randomisation (mean (SD)) 74.9 (4.2)

Age Group (%)

70–74 3566 (62.6)

75–79 1384 (24.3)

80–84 585 (10.3)

85+ 166 (2.9)

Current or former smoker (%) 3203 (56.2)

Diabetes (%) 637 (11.2)

Randomized to Aspirin (%) 2837 (49.8)

Body-mass-index (kg/m2) − mean (SD) 27.9 (3.8)

Current alcohol consumption (%) 4880 (85.6)

Family history of prostate cancer (%) 499 (8.8)

Polygenic Risk Score − mean (SD) −0.46 (0.15)

Prevalent Prostate Cancer (%) (self-reported at enrolment)

None 4725 (88.5)

<49 years 4 (0.0)

≥50 years 654 (11.5)
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3.2. Prostate Cancer Diagnoses

During a median follow-up time of 4.6 years, 218 participants out of 5701 (3.8%) were
diagnosed with prostate cancer. Of these, 31 diagnoses were for metastatic prostate cancer.
The majority of diagnoses occurred in participants aged 70–74 years and were identified as
stage II disease (organ confined) (Supplementary Figure S2).

3.3. Association of PRS with Incident Prostate Cancer Risk

After excluding participants with prevalent prostate cancer at baseline, the PRS as a
continuous variable was associated with increased incident risk of prostate cancer with a
hazard ratio (HR) of 1.52 per SD of the PRS (95% CI 1.33–1.74, p < 0.001), after adjustment
for relevant covariates (Table 2). When considering the model without the PRS, the c-index
was 0.52 (95% CI 0.48–0.55). After addition of the PRS, the c-index improved to 0.62 (95%
CI 0.58; 0.66). We tested for an interaction between the PRS and aspirin treatment, but
found no interaction (p > 0.05).

Table 2. Multivariable Cox regression model for prostate cancer incidence.

Incident prostate cancer.
(218 clinically confirmed cases during the ASPREE trial, excluding all prevalent cases)

Variable

PRS as Continuous Variable
(per Standard Deviation)

PRS as Categorical Variable
(low, medium, high)

Hazard Ratio 95% CI p-Value Hazard Ratio 95% CI p-Value

PRS (per std dev) 1.52 (1.33; 1.74) <0.0001

Low PRS
0–20% (n = 23) Reference

Medium PRS
>20–80% (n = 128) 1.74 (1.14; 2.66) 0.01

High PRS
>80% (n = 57) 2.99 (1.90; 4.72) <0.0001

Cox proportional hazards model, adjusted for first-degree family history of prostate cancer, age at enrolment, and trial arm (aspirin/placebo).

Compared with participants in the lowest quintile of the PRS distribution (Q1), participants
in the medium-risk PRS group (Q2–4) had a higher risk of prostate cancer (Figure 1), with an
HR of 1.74 (95% CI 1.14; 2.66, p = 0.01). Participants in the highest quintile of polygenic risk
(Q5) had an almost three times higher risk of incident prostate cancer than participants in
the lowest PRS quintile, with an HR of 2.99 (95% CI 1.90; 4.72, p < 0.001) (Table 2).

Only 20 of the 218 participants (9.2%) with an incident prostate cancer diagnosis
reported a family history of prostate cancer at enrolment. When excluding these partici-
pants from the analysis, the PRS remained associated with incident prostate cancer risk
(HR = 1.50 per SD, 95% CI 1.30–1.72, p < 0.001).

In subgroup analysis, when only participants aged 70–74 years at enrolment were
analysed, the HR of the PRS was 1.65 per SD (95% CI 1.39–1.97), with the high-risk PRS
group having over three times higher risk than the low-risk PRS group (Q5 vs. Q1 HR = 3.54
(95% CI 1.93–6.49)) (Table 3).

The distribution of incident prostate cancer diagnoses by the Gleason grade group [28]
(GrG) was assessed using chi-squared tests (Figure 2). The analysis found that the Gleason
GrGs were distributed evenly among the PRS distribution with no statistically significant
evidence of enrichment in any PRS group (chisq = 8.5, df = 8, p = 0.37) and no association of
the PRS with higher-grade disease. Despite observing a large proportion of GrG 5 tumours
in the low PRS group, there was no statistically significant difference in the distribution
of GrGs when examining only this grade group (chisq = 5.6, df = 2, p = 0.06). We also
examined staging information, where data were available (in 211 cases), stratifying the
data into three groups—I, II/III, IV). We found no evidence of enrichment of stage in any
PRS group (chisq = 3.68, df = 4, p = 0.45).
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0–20% (n = 23) 

      Reference     

Medium PRS 
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Figure 1. Competing risk survival curves for incident prostate cancer by PRS group. Low risk = PRS
0–20% (blue line); medium risk = PRS > 20–80% (yellow line); high risk = PRS > 80–100% (red line).
Cumulative incidence of prostate cancer risk accounting for competing risk (death) is plotted, with
groups stratified according to PRS group.

Table 3. Multivariable Cox regression model for prostate cancer incidence—subgroup analysis for men aged 70–74 years.

Incident prostate cancer in participants with age at randomisation between 70 and 74 years
(126 clinically confirmed cases during the ASPREE trial, excluding all prevalent cases)

Variable

PRS as Continuous Variable
(per Standard Deviation)

PRS as Categorical Variable
(low, medium, high)

Hazard Ratio 95% CI p-Value Hazard Ratio 95% CI p-Value

PRS (per std dev) 1.65 (1.39; 1.97) <0.0001

Low PRS
0–20% (n = 23) Reference

Medium PRS
>20–80% (n = 128) 1.78 (1.00; 3.15) 0.05

High PRS
>80% (n = 57) 3.54 (1.93; 6.49) <0.0001

Cox proportional hazards model, adjusted for first degree family history of prostate cancer, age at enrolment, and trial arm (aspirin/placebo).

3.4. Prevalent Prostate Cancer

A total of 658 participants reported a prior history of prostate cancer at enrolment
(prevalent prostate cancer), of which 654 were diagnosed at age 50 or older, while only
four occurred at age 49 years or younger. The PRS as a continuous variable was associated
with prevalent prostate cancer (OR = 1.80 per SD, 95% CI 1.65–1.96, p < 0.001). When
categorized into low (reference), medium, and high PRS groups, the medium group was
associated with increased risk of prevalent prostate cancer (OR = 1.93, 95% CI 1.47–2.57)
compared to the low PRS group, and the high PRS group (highest quintile) was associated
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with over four times higher risk (OR= 4.6, 95% CI 3.48–6.26, p < 0.001) compared to the low
PRS group.
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Figure 2. Gleason grade in incident prostate cancer stratified by polygenic risk, showing percentage
of prostate cancers in each group, divided by their Gleason grade group. Gleason scores were
retrieved from 191 individuals. Scores from the primary and secondary foci were combined together
to report the Gleason grade group (Table 2, Figure 1). Gleason grade group 2 was the most commonly
diagnosed across the cohort. There was no evidence of enrichment of Gleason grade groups across
PRS categories (chisq = 8.5, df = 8, p = 0.37).

4. Discussion

We assessed the predictive value of a recently developed PRS for the prediction of
incident prostate cancer risk in older men aged ≥70 years. Overall, the PRS was a strong
predictor of risk, with an HR of 1.52 per SD during a median 4.6 years of follow-up.
Men in the highest quintile of the PRS distribution were almost three times more likely
to develop incident prostate cancer than men in the lowest quintile during this period
(HR = 2.99). However, notably, the PRS was not able to identify men at risk of clinically
significant prostate cancer (as defined by a higher Gleason grade group). This major
limitation of the PRS currently restricts its clinical utility for risk prediction in older men,
and for guiding targeted screening. Unless improved specificity can be achieved through
future refinement or iteration of the current PRS, or by combining it with other biomarkers
or screening modalities, the inability to discriminate between clinically significant and
clinically insignificant disease will likely limit the clinical application of the PRS, at least in
the context of primary prevention and routine screening.

Despite this limitation, the observed predictive ability of the prostate cancer PRS in
the ASPREE trial population was higher than most other PRSs we have tested for other
conditions [36,37,47,48]. This includes risk prediction studies of PRSs for melanoma [37],
breast cancer [47], coronary artery disease [49], and ischemic stroke [48], where HRs of the
PRSs have been lower in the same trial population. The stronger effect (HR) of the prostate
cancer PRS could reflect the high heritability of the disease, and the significant role of
genetic predisposition as a risk factor. In addition to the observed strong effect of the PRS
in predicting incident prostate cancer risk in older men, we also found a strong association
between the PRS and prevalent prostate cancer (in men who reported a personal history
of disease prior to enrolment). The association of the PRS with prevalent prostate cancer
(OR = 1.80) was similar to the HR of 1.83 reported in the original study of younger men
from which the PRS was derived [26]. This shows consistent performance of the PRS when
assessed in an independent study of men of European-descent.

However, despite the predictive performance of the PRS for identifying the risk of
incident prostate cancer in the ASPREE population, we observed no evidence of the PRS
being capable of discriminating between men at risk of high-grade versus low-grade prostate
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cancer. This result was consistent with other studies in different populations [50–53]. This
lack of association with tumor grade limits the potential clinical utility of the PRS, and
has implications for the consideration of genomic risk prediction in targeted screening for
prostate cancer. A further limitation of the PRS is that this measure remains constant and
unchanged throughout an individual’s lifetime and is not yet an established clinical test.
By contrast, current PSA testing has the advantage of being a dynamic marker which can
change during disease progression, with a higher PSA indicating a greater likelihood of
risk, and it can be measured using an established low-cost laboratory test.

Furthermore, the lack of specificity of the current PRS to identify the risk of aggressive
disease can likely be linked back to the initial ascertainment of prostate cancer cases used in
the original GWAS to derive the score [26]. The original GWAS reported associations based
on low- and high-grade prostate cancer cases combined. As the PRS was derived from
analysis irrespective of tumor grade, it may not be surprising that it lacks the specificity
to distinguish clinically-significant from clinically-insignificant disease in independent
study populations.

One possible way to overcome this limitation would be to conduct a large GWAS
using only high-grade and aggressive prostate cancer cases to derive a new high-grade
specific PRS. However, in the original GWAS from which the current PRS was derived [20],
the authors did attempt to stratify individuals by low-versus high-grade as well as age of
onset, and identified only one variant (rs138004030) associated with early onset disease,
and no strong evidence of genetic associations with aggressive or advanced disease [20].

An alternative approach might be to stratify based on genomic features, rather than
clinical grade. In a recent pan-cancer study, common germline variants were shown to
explain only a proportion of variation of tumour mutational burden across cancers [54]—a fea-
ture typically associated with unique molecular features such as response to immunother-
apy [55]. In prostate cancer, high levels of tumour copy number burden are associated with
the development of biochemical recurrence and treatment failure [56,57]. Therefore, it could
be hypothesized that a PRS based on common variants that are associated with higher copy
number burden could explain a greater proportion of genetic risk for aggressive disease. If
so, developing and adding these additional genomic measures to a combined risk score
(with the PRS) could offer additional pathways to improve the specificity of risk prediction
for aggressive disease.

Rare high-penetrance pathogenic variants can also contribute to the risk of aggres-
sive prostate cancer, including those in known susceptibility genes such as BRCA2 [58].
However, these are only found in a small number of high-risk men in the population
(<1% of males in the general population [25]), meaning monogenic testing alone is not
likely to be tractable for guiding targeted screening. In the future, however, the concept
of a combined genomic risk score that incorporates common, rare, and structural variants
for prostate cancer predisposition may help improve the specificity and sensitivity for
predicting aggressive prostate cancer risk, beyond the current PRS.

Strengths of our study include a well-characterised prospective cohort of older men,
with adjudicated pathological assessment of prostate cancer cases. The ASPREE cohort
represents an older demographic, where a high proportion of prostate cancer diagnoses
occur, who have historically been under-represented in genomic risk prediction studies.
The ASPREE cohort was selected for men without serious or chronic illness that would
impact survival over the course of the trial, reflecting a key demographic of largely healthy
individuals who are more likely to consider screening, with fewer competing risks and
comorbidities than the general population.

The limitations of the study include the lack of data on prostate cancer screening
history, as well as a lack of access to baseline and ongoing PSA measurements to assess the
overlap between risk estimates derived from a high PRS or a high PSA test. Our study is
also limited in a lack of genetic diversity, resulting in an inability to generalise results to
other genetic ancestries or diverse populations [50].
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The goal of improving prostate cancer risk prediction towards the identification of
clinically significant disease remains a challenge. However, if further progress can be
made in the refinement of current genomic risk scores and other complementary measures,
then improved risk prediction could help reduce over-diagnosis, over-screening, and
unnecessary invasive procedures, especially in older men [4,10]. While the current PRS is
strongly associated with incident prostate cancer risk in older men overall, the clinical utility
of this biomarker is currently limited by its inability to discriminate clinically significant
from clinically insignificant disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225815/s1, Figure S1: principal component (PC) analysis of the ASPREE cohort
compared with the 1000 Genome Project, Figure S2: TNM staging by age, Table S1: association of the
PRS with prevalent prostate cancer.
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