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The Toll/interleukin-1 receptor (TIR) domain is the signature signalling motif of innate
immunity, with essential roles in innate immune signalling in bacteria, plants, and animals.
TIR domains canonically function as scaffolds, with stimulus-dependent multimerization
generating binding sites for signalling molecules such as kinases and ligases that activate
downstream immune mechanisms. Recent studies have dramatically expanded our
understanding of the TIR domain, demonstrating that the primordial function of the TIR
domain is to metabolize NAD+. Mammalian SARM1, the central executioner of
pathological axon degeneration, is the founding member of the TIR-domain class of
NAD+ hydrolases. This unexpected NADase activity of TIR domains is evolutionarily
conserved, with archaeal, bacterial, and plant TIR domains all sharing this catalytic
function. Moreover, this enzymatic activity is essential for the innate immune function of
these proteins. These evolutionary relationships suggest a link between SARM1 and
ancient self-defense mechanisms that has only been strengthened by the recent
discovery of the SARM1 activation mechanism which, we will argue, is strikingly similar
to bacterial toxin-antitoxin systems. In this brief review we will describe the regulation
and function of SARM1 in programmed axon self-destruction, and highlight the
parallels between the SARM1 axon degeneration pathway and bacterial innate
immune mechanisms.
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INTRODUCTION

Injured or diseased axons initiate a self-destruction program known as Wallerian degeneration.
SARM1 triggers this pathological axon degeneration (1), and is a key driver of pathology in models
of chemotherapy-induced peripheral neuropathy (2–5), traumatic brain injury (6–10), glaucoma
(11), and retinal degeneration (12, 13). SARM1 also participates in antiviral defense. SARM1
triggers axon degeneration following rabies infection (14), presumably to halt the spread of the virus
as it travels retrogradely down the axon to the neuronal cell body, and induces neuronal cell death in
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response to bunyavirus infection (15), killing infected cells and
thereby reducing viral spread. Hence, the role of SARM1 in
pathological axon degeneration is likely closely linked to its
function in antiviral innate immunity.

SARM1 is a multi-domain protein comprised of an
autoinhibitory ARM domain, tandem SAM domains mediating
multimerization, and a C-terminal TIR domain NAD+ hydrolase
(16, 17). In healthy neurons, SARM1 autoinhibition is maintained
by multiple intra- and intermolecular interactions (18), including
binding of the N-terminal ARM domain to the C-terminal TIR
domain (19) (Figure 1A). SARM1 autoinhibition is regulated by an
allosteric binding site within the autoinhibitory ARM domain that
can bind either nicotinamide adenine dinucleotide (NAD+) (21, 22)
or its precursor, nicotinamide mononucleotide (NMN) (23). NMN
promotes SARM1-dependent axon degeneration (24–27). Axon
injury leads to loss of the NAD+ biosynthetic enzyme NMNAT2
(28), resulting in an increased NMN/NAD+ ratio that promotes
NMN binding to the allosteric site (23). The switch from NAD+ to
NMN binding alters the conformation of the autoinhibitory ARM
domain, thereby promoting TIR-TIR interactions and enzymatic
activity (23) (Figure 1B). Below we will highlight commonalities
between SARM1 activation and effector mechanisms with similar
bacterial innate immune mechanisms.

SARM1-NMNAT2 Is a Candidate
Mammalian Toxin-Antitoxin Pair
Just as SARM1 can trigger axon self-destruction in response to
rabies infection, so too can a bacterial population acquire
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immunity to bacteriophage infection through an altruistic
suicide mechanism known as abortive infection. When
infected, the bacterial cells activate a toxin-antitoxin (TA)
system prior to phage replication, killing the infected cells and
thereby protecting the community by preventing further phage
expansion (29). In a TA system, bacteria express both a lethal
toxin and its antagonist, the antitoxin. Upon infection, the
antitoxin is degraded, unleashing the degenerative activity of
the toxin. Genetic deletion of the toxin-encoding gene yields no
phenotype in the absence of the inciting stimuli, whereas deletion
of the antitoxin-encoding gene results in cell death due to
unchecked toxin activity. This lethality can be rescued by
concurrent deletion of the toxin-encoding gene. This TA
relationship is strikingly reminiscent of the relationship
between NMNAT2 and SARM1, with NMNAT2 serving as the
antitoxin and SARM1 as the toxin (Figure 2). First, NMNAT2
inhibits the prodegenerative activity of SARM1, as antitoxins
inhibit the functions of toxins. Second, the classic TA genetic
relationship holds for SARM1 and NMNAT2. Loss of SARM1
has no obvious phenotype in mice until an appropriate stimulus,
such as neuronal injury, occurs (17, 30). By contrast, genetic loss
of NMNAT2 (the antitoxin) is embryonic lethal in mice (31, 32).
Double mutants lacking both NMNAT2 and SARM1 fully rescue
this lethality (33). Hence, the essential function of NMNAT2 is to
inhibit SARM1. Third, similar to a type II TA system in bacteria
(29), the antitoxin NMNAT2 is highly labile (28) and the levels of
NMNAT2 are a key determinant of SARM1 activation (34).
However, in contrast to the bacterial type II TA system, in which
A

B

FIGURE 1 | Model of SARM1 domain structure and activation mechanism. (A) Domain structure of the human SARM1 protein. SARM1 contains an N-terminal
mitochondrial localization sequence and Armadillo-repeat containing domain (ARM), two tandem sterile alpha motif (SAM) domains, and a C-terminal Toll/interleukin-1
receptor (TIR) domain. Numbers denote the amino acid position of the domain boundaries. (B) Schematic depicting the activation mechanism of SARM1. In the
inactive state SARM1’s ARM domains are bound to NAD+ at the allosteric site and bound to adjacent TIR domains both intra- and inter-molecularly, mediating
autoinhibition of the TIR’s NADase activity. In response to an increase in the NMN/NAD+ ratio, NMN binds to the ARM domain allosteric site, resulting in a
conformational change in the ARM domain, disengagement of the ARM-TIR interactions, multimerization of the TIR domains and NADase activity. Based on recent
structural data from the RPP1 TIR domain, we depict active TIRs as a tetramer forming two active sites for NAD+ binding (20).
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the antitoxin inactivates the toxin through direct binding,
NMNAT2 inhibits SARM1 indirectly, by modulating the flow
of metabolites that bind and regulate SARM1 activity.

To our knowledge, all known TA systems are found in
bacteria. Here we posit that via convergent evolution SARM1
and NMNAT2 have developed into an analogous TA system to
control axonal fate in mammalian neurons. In an injured or
unhealthy axon the transport of NMNAT2 is disrupted (3, 28),
and neuronal stress pathways promote NMNAT2 turnover (34,
35), leading to the loss of the labile NMNAT2 antitoxin and the
subsequent activation of the toxin SARM1, resulting in rapid and
efficient axonal self-destruction. This may be a physiological
function of SARM1, enabling the phagocytosis and clearance of
damaged axons before their contents leak and potentially harm
adjacent axons or cells or induce inflammation. Indeed, this
scenario was recently demonstrated in a mouse model
of ulcerative colitis, in which SARM1 promotes axon
degeneration in the enteric nervous system and thereby limits
inflammation in the colon (36). It will be interesting to determine
whether NMNAT2 is also lost in this colitis model, or in
response to rabies infection, when SARM1 is activated and
axons degenerate as an antiviral defense (14).

SARM1 Is the Founding Member of the TIR
Domain Family of Innate Immune NADases
The role of SARM1 and its connection to ancient surveillance
mechanisms extends beyond its TA relationship with NMNAT2
to its mechanism of degeneration, NAD+ cleavage. In many
bacterial TA relationships, the toxins are, like SARM1, NAD+

glycohydrolases (37). Examples include the toxins SPN
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(S. pyogenes), TNT and MbcT (M. tuberculosis), Tne2
(P. protegens), and RES (P. luminescens), all of which deplete
NAD+ to induce cellular dysfunction or death and are
neutralized by their respective antitoxins (38–42). The newly
discovered bacterial TIR domain NADases also participate in
phage defense as they are essential components of the Thoeris
phage defense mechanism (43, 44). Moreover, bacteria not only
use TIR NADases to defend against phage invasion, but also to
disrupt mammalian innate immune mechanisms via metabolic
disruption of the host cell (45). In addition, plant TIR domain
innate immune receptors are active NADases and this enzymatic
function is essential for the cell death that confers disease
resistance (20, 46–48). The conservation of TIR NADase
function (Table 1) in bacterial, plant, and animal response to
infection suggests that TIR-mediated NAD+ cleavage is a
primordial innate immune function.

Finally, SARM1 and evolutionarily diverse TIR domain
proteins not only share NADase function, but can also possess
regulatory domains controlled via allosteric binding to cellular
metabolites. The SARM1 TIR domain NADase is fused to a
metabolic sensing ARM domain that acts to inhibit the NADase
activity until specific environmental signals are present. This is
likely a general regulatory mechanism for TIR NADase
activation, as organisms from all kingdoms of life encode
proteins with TIR domains fused to a variety of other motifs,
such as leucine-rich repeat (LRR), tetratricopeptide repeat
(TPR), WD repeat, and coiled coil (CC) domains (51–53), that
may function as environmental sensors to tune the NADase
activity of the fused effector TIR domains. Indeed, this precise
regulatory relationship occurs in ancient STING (stimulator of
FIGURE 2 | The NMNAT2 antitoxin inhibits the SARM1 toxin to prevent axon degeneration. The antitoxin NMNAT2 converts nicotinamide mononucleotide (NMN) to
nicotinamide adenine dinucleotide (NAD+) and thus maintains a healthy NMN/NAD+ ratio in axons. SARM1’s ARM domain senses the ratio of NMN/NAD+ by binding
to either metabolite. When the antitoxin NMNAT2 is lost, the NMN/NAD+ ratio rises, NMN binds to the toxin SARM1’s ARM domain, activating SARM1’s TIR domains
to hydrolyze NAD+, producing nicotinamide (Nam) and adenosine diphosphate ribose (ADPR), or cyclizing ADPR into cyclic ADPR (cADPR). Activation of the toxin
SARM1 drives pathological axon degeneration.
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interferon genes) receptor proteins. In both prokaryotes and
lower eukaryotes, STING domains are fused with TIR NADase
domains. This effectively couples STING domain sensing of
cyclic dinucleotides produced by the cyclic AMP-GMP
synthase (cGAS) cellular surveillance system to TIR domain
NADase activity (50). We suggest that additional multi-
domain proteins encoding TIR NADases are likely regulated
via metabolite binding, sensing changes in cellular metabolism
and responding via NAD+ hydrolysis.
DISCUSSION

This brief survey of SARM1 and the family of TIR domain
NADases demonstrates that mechanistic insights into SARM1
regulation and function have enabled major breakthroughs in
our understanding of TIR domain proteins across the domains of
life. Key insights from these studies are the identification of
SARM1/NMNAT2 as the first candidate mammalian toxin/
Frontiers in Immunology | www.frontiersin.org 4
antitoxin pair, the recognition of multidomain TIR containing
proteins as coordinated metabolic sensors and effectors, and the
realization that there is a striking commonality between
mechanisms of neurodegeneration and the primordial battle
between bacteria and bacteriophages.
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