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DNA methylation plays an important role in biological processes by affecting gene
expression. However, how DNA methylation regulates phenotypic variation in Hu
sheep remains unclear. Therefore, we generated genome-wide DNA methylation and
transcriptomic profiles in the ovaries of Hu sheep with different prolificacies and genotypes
(FecBB and FecB+). Results showed that ovary DNA methylome and transcriptome were
significantly different between high prolificacy and low prolificacy Hu sheep. Comparative
methylome analyses identified 10,644, 9,594, and 12,214 differentially methylated regions
and 87, 1,121, and 2,375 genes, respectively, showing differential expression levels in
three different comparison groups. Female reproduction-associated differentially
methylated regions-related genes and differentially expressed genes were enriched,
thereby the respective interaction networks were constructed. Furthermore,
systematical integrative analyses revealed a negative correlation between DNA
methylation around the transcriptional start site and gene expression levels, which was
confirmed by testing the expression of integrin β2 subunit (ITGB2) and lysosome-
associated protein transmembrane-4 beta (LAPTM4B) in vivo and in vitro. These
findings demonstrated that DNA methylation influences the propensity for prolificacy by
affecting gene expression in the ovaries, which may contribute to a greater understanding
of the epigenome and transcriptome that will be useful for animal breeding.
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INTRODUCTION

Litter size is one of most important traits that determines the fecundity and reproductive efficiency of
sheep bred for meat. In China, most sheep species are monotocous and seasonal estrus, although a
few are polytocous. Compared with other sheep, Hu sheep is an excellent local breed in China, which
is known for its high prolificacy and year-round estrus (Yue, 1996). Therefore, determining the
molecular mechanisms associated with fecundity will help accelerate the breeding process of sheep
with high prolificacy. Although the existing genetic studies have identified several genes with sheep
fecundity, including GDF9, BMP15, and BMPR1B, the underlying genetic mechanisms remain
largely unexplored (Chu et al., 2007; Polley et al., 2010; Farhadi et al., 2013; Wang et al., 2015). FecB
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(mutation in BMPR1B) is one of the key genes associated with
sheep prolificacy (Wang et al., 2015). Moreover, evidences
revealed that sheep with the homozygous mutation (FecBB;
BB) had the greater ovulation rates than those with the
heterozygous mutation (FecB+; B+) or the wild-type genotype
(++) (Fabre et al., 2006; Gootwine et al., 2008). Thus, Hu sheep
with different prolificacies and genotypes (BB and B+) were
selected as experimental subjects.

It is widely thought that ovarian dysfunction leads to infertility
in mammals. One of the main functions of the ovaries is to
produce mature oocytes and secrete reproductive hormones that
are involved in the follicular development and ovulation.
Therefore, studying the differences in regulatory mechanisms
in the ovaries of sheep with different prolificacies may reveal the
mechanisms behind the genetic regulation of little size traits.

DNA methylation is an epigenetic modification that regulates
gene expression and serves as a key regulator of development (Fan
et al., 2020; Yang et al., 2021), differentiation (Khavari et al., 2010),
and other processes (Miyakuni et al., 2021). Recent studies have
shifted their focus toward how DNA methylation regulates pubertal
onset (Lomniczi et al., 2015; Yang et al., 2016; Yuan et al., 2019),
estrus (An et al., 2018; Zhou et al., 2018), ovary (Wang et al., 2014; Yu
et al., 2015; Sagvekar et al., 2019), oocyte (Mattern et al., 2017; Wei
et al., 2019), and embryo development (Salilew-Wondim et al., 2015;
Canovas et al., 2017), and reproductive diseases (Vazquez-Martinez
et al., 2019; Cao et al., 2021; Zhong et al., 2021). In-depth studies
pertaining on epigenetic modifications, such as DNA methylation,
are facilitating improvement in animal breeding (Gonzalez-Recio
et al., 2015). Several studies have reported the genome-wide
methylation profiles associated with milk production-related
phenotypes in dairy cows (Singh et al., 2012), and disease
resistance in crops (Tirnaz and Batley, 2019), as well as litter size
in goats and pigs (Hwang et al., 2017; Kang et al., 2021). Meanwhile,
Miao et al. (2017) recently reported the DNAmethylation patterns in
the ovaries of Dorset sheep and Small Tail Han sheep. These studies
have demonstrated that DNAmethylation plays an important role in
regulating fecundity.

DNA methylation and gene expression profiles have been
previously studied in the ovaries of Hu sheep with different
prolificacies (the BB genotype only) to elucidate the regulatory
mechanisms involved in Hu sheep fecundity (Zhang et al., 2017;
Feng et al., 2018). As an extension of this study, here we aimed to
systematically investigate both genome-wide DNA methylation and
gene expression profiles in the ovaries of Hu sheep with different
prolificacies (high prolificacy, HP; low prolificacy, LP) and genotypes
(BB and B+) by performing whole-genome bisulfite sequencing
(WGBS) and RNA-sequencing (RNA-seq). Furthermore, an
integrated analysis of DNA methylation and transcriptome was
performed to reveal whether and how DNA methylation mediate
prolificacy phenotypic variations by affecting gene expression.

MATERIALS AND METHODS

Animals and Sample Collection
We previously reported the details of the procedures for handling
experimental animals and sample collection (Yao et al., 2021),

which were approved by the Institutional Animal Ethics
Committee of the Nanjing Agricultural University (SYXK
2011-0036). In brief, we firstly chose twenty non-pregnant
ewes (2, 3 years old) based on their litter size numbers of
three records, categorizing them as HP ewes (litter size = 3,
n = 4) and LP ewes (litter size = 1, n = 16). Meanwhile, BMPR1B
polymorphism genotyping of those ewes was detected as
described previously (Yao et al., 2021). Finally, nine ewes were
selected and divided into HPBB (n = 3), LPBB (n = 3) and LPB+
(n = 3) groups. All ewes were slaughtered during estrus and the
ovarian samples were immediately collected and stored at −80°C
for WGBS and RNA-seq.

WGBS and RNA-seq
Genomic DNA and total RNA were extracted from ovarian tissue
of the nine sheep using a Genomic DNA kit (Cat.#DP304-
03,Tiangen, Beijing, China) and TRIzol reagent (Cat.# 15596-
026; Invitrogen, Carlsbad, CA), respectively. The concentration
and purity of isolated DNA and RNA were determined using
NanDrop spectrophotometer (NanoDrop Technologies,
Wilmington, DE, United States) and agarose gel
electrophoresis. The preparation of nine genome-wide DNA
methylation and transcriptome libraries and sequencing
(WGBS and RNA-seq), respectively, were performed by
Biomarker Technologies Corporation (Beijing, China).
Notably, we previously reported the DNA methylation (Zhang
et al., 2017) and mRNAs (Feng et al., 2018) profiles in ovaries of
only HPBB and LPBB Hu sheep, and using the same described
methods, we analyzed theWGBS and RNA-Seq data in this study,
with somemodifications. Briefly, the raw data were first filtered to
remove low-quality reads, and the clean data were then aligned
with the reference genome of sheep (Ovis aries v4.0).

Differential methylated regions (DMRs) were defined by the
presence of at least three methylation sites in the region, and the
difference in methylation levels was >0.2 (>0.3 for CG type) with
P-value (Fisher’s) < 0.05. Differentially expressed (DE) mRNAs
were identified with the false discovery rate (FDR) < 0.05 and
absolute value of log2 (fold change, FC) >1. Primarily, DMGs
were detected through mapping the DMRs to genes based on
their genomic location. In this study, we defined the genomic
region from −3000 bp to the transcription start site (TSS) as the
promoter region and from the TSS to the transcriptional
termination site (TTS) as the gene body region. To visualize
the overlapping gene sets, we generated venn diagrams using
Venn diagram online tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

Integrated Analysis
The correlation between gene expression and methylation was
calculated using only differentially expressed genes (DEGs) and
DMR-related genes (DMGs). For the global methylation around
TSS regions (±2000 bp) and gene expression correlation analysis,
the genes was divided into four groups according to their
expression level: hightest, lowest, medium-high and medium-
low. T visualize the relationship between methylation and gene
expression, heatmaps were generated using the R package
(heatmap).
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Functional Enrichment Analysis
Gene Ontology (GO) enrichment analyses of DMGs and DEGs
were implemented by theWallenius non-central hyper-geometric
distribution in the GOseq R packages (Young et al., 2010). Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of DMGs
and DEGs were evaluated using KOBAS software (Mao et al.,
2005).

Interaction Network Construction
The interaction network of DMGs and DEGs associated with
female reproduction was analyzed using the STRING database
(http://string-db.org/) and visualized with Cytoscape software
(V3.4.0).

Bisulfite Sequencing PCR
For BSP analysis, genomic DNA of ovaries from each groups was
modified with sodium bisulfite using an EZ DNA Methylation-
Direct Kit (Cat.#D5020; Zymo Research, Irvine, CA,
United States). The PCR products were purified using a gel
extraction kit (Cat.#DC301-01; Vazyme, Nanjing, China), then
ligated and cloned into the pMD19-T vector (Cat.#6013; Takara,
Osaka, Japan). Subsequently, ten positive clones of each sample
were randomly selected for DNA sequencing. Data were analyzed
and visualized using BIQ Analyzer software. BSP primers are
listed in Supplementary Table S1 and all operations were
conducted according to the manufacturer’s instructions.

Cell Culture and Treatments
Hu sheep granulosa cells (GCs) were isolated from healthy
follicles (2–5 mm) and cultured as our previously described
(Yao et al., 2021). Briefly, GCs were seeded into different
plates (6-well: 1 × 106 cells/well) in culture medium
(Dulbecco’s modified Eagle’s medium/nutrient mixture F-12
supplemented with 10% fetal bovine serum, 2 mM L-
glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin)
at 37°C and 5% CO2. When the cultured GCs attained 60–70%
confluence, the culture medium was replaced with new medium
containing various concentrations (0, 1, 2, 5, 10, and 20 μM) of 5-
Aza-deoxycytidine (5-Aza; Cat.#a3656; Sigma-Aldrich,
United States), as a DNA methyltransferase inhibitor, and
incubated for 48 h.

ITGB2 (integrin β2 subunit) knockdown was achieved using
siRNAs, which were synthesized by GenePharma (Shanghai,
China) and the sequences listed in Supplementary Table S2.
After cultured GCs to 60–70% confluence, siRNA-NC and
siRNA-ITGB2 were transfected into GCs with or without
10 μM 5-Aza for 48 h. Subsequently, all treated cells were
collected for further analysis. All reagents used in cell culture
were purchased from Life Technologies (Pleasanton CA,
United States).

Immunohistochemistry
Immunohistochemistry was performed following our previously
described method (Yao et al., 2017). Rabbit anti-LAPTM4B
(lysosome-associated protein transmembrane-4 beta;
Cat.#18895 -1-AP; ProteinTech, Rosemont, IL, United States)
were used as primary antibody. For negative control, the primary

antibody was replaced with Tris-buffered saline. Digital images
were examined using a light microscope (Nikon, Tokyo, Japan).

Quantitative Reverse Transcriptase PCR
For qRT-PCR analysis, cDNA was synthesized using reverse
transcription reagent kit with gDNA wiper (Cat.#R323-01;
Vazyme, Nanjing, China). Subsequently, qRT-PCR was
performed on an ABI 7500 Real-Time PCR System (Applied
BioSystems, Carlsbad, CA, United States) using SYBR Green
Master Mix (Cat.#Q711-02; Vazyme, Nanjing, China). Relative
mRNA expression levels were quantified using 2–ΔΔCT method,
with Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as
the internal control. Primers were designed using the Primer 5.0
software and listed in Supplementary Table S3.

Statistical Analysis
Data are presented as means ± SEM based on three independent
experiments, with GraphPad Prism v7.0 (GraphPad Software,
CA, United States). Statistical analyses were performed by the
one-way analysis of variance followed by a post hoc test in the
SPSS25.0 software package (Chicago, IL, United States). P-values
< 0.05 were considered statistically significant.

RESULTS

Overview of Genome-Wide DNA
Methylation Profiling in the Ovaries of Hu
Sheep
To determine the effects of DNA methylation on the phenotypic
variation of prolificacy, WGBS analysis was performed in the
ovaries of HPBB, LPBB and LPB + groups of Hu sheep. After data
filtering, each sample had approximately 210 million clean reads.
Of mapped reads, 74.26, 73.94, and 66.65% in the HPBB, LPBB
and LPB + groups, respectively, were used for subsequent
analysis, with an average of 3.58% of methylated cytosine sites
(Supplementary Table S4).

Global DNA methylation profiles indicated three contexts,
CG, CHH, and CHG (where H is A, C, or T), existed in the ovaries
of Hu sheep. The genomic methylation proportions of CG, CHG,
and CHH contexts was respectively 72.23, 0.50 and 0.50% in the
LPB + group, 69.60, 0.63 and 0.63% in the LPBB group, and 70.77,
0.70 and 0.66% in the HPBB group (Figure 1A). Among the three
methylated contexts (CG, CHG and CHH), the methylated CG
context represented 95.55, 95.20 and 95.06% in the LPB+, LPBB
and HPBB groups, respectively (Figure 1B). In addition, the
methylated level of CG context was mainly between 90 and 100%,
whereas the methylated levels of CHG and CHH contexts
apparently exhibited a more uniform distribution range from
10 to 30% (Figure 1C).

Comparison of DMRs in the Ovaries of Hu
Sheep with Different Prolificacies
The Model-Based Analysis of Bisulfite Sequencing package was
used to identify DMRs and compare the DNA methylation
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profiles between the different groups. Overall, 10,644 DMRs
(6,281 hyper-methylated and 4,363 hypo-methylated; 10,634
CG, 1 CHG and 9 CHH), 9,594 DMRs (4,359 hyper-
methylated and 5,235 hypo-methylated; 9,583 CG, 2 CHG and
9 CHH) and 12,214 DMRs (4,562 hyper-methylated and
7,652 hypo-methylated; 12,199 CG, 1 CHG and 14 CHH)
were identified in the LPBB vs. HPBB, LPB + vs. HPBB and
LPB + vs. LPBB groups, respectively (Figure 2A and
Supplementary Tables S5–S7). Moreover, the distribution of
DMRs were mainly located at intergenic and intron regions
(Figures 2B–D).

Identification of DMGs and DEGs Among
Different Comparison Groups
We identified 7,933 DMGs in the ovaries of the different
comparison groups, of which 1,944 DMGs were common to
all comparison groups (Figure 3A and Supplementary Table
S8). Of these DMGs, 4,721 (3,393 hyper-methylated and 2,670
hypo-methylated), 4,426 (2,694 hyper-methylated and 2,951
hypo-methylated) and 5,152 (2,813 hyper-methylated and
3,812 hypo-methylated) were differentially methylated in the
LPBB vs. HPBB, LPB + vs. HPBB and LPB + vs. LPBB
groups, respectively (Figure 3B). Moreover, DMGs that
exhibited DMRs in their promoter and gene body are shown
in Figures 3C–E. The LPBB vs. HPBB, LPB + vs. HPBB and LPB
+ vs. LPBB groups contained 487, 404 and 528 genes, respectively,
including both hyper- and hypo-methylated DMRs in their
promoter and gene body.

There were 87 (19 up-regulated and 68 down-regulated), 1,121
(662 up-regulated and 459 down-regulated) and 2,375 (1,563 up-
regulated and 812 down-regulated) DE mRNAs identified in the

LPBB vs. HPBB, LPB + vs. HPBB and LPB + vs. LPBB groups,
respectively (Figures 4A–C). Hierarchical clustering of the DE
mRNAs (Figures 4D–F) revealed the expression patterns of the
individuals for each comparison.

To confirm the reliability of the WGBS and RNA-seq data,
four regions and seven genes were randomly selected for BSP
and qRT-PCR, respectively. The results were consistent with
the WGBS and RNA-seq data, suggesting that the
WGBS and RNA-seq data were reliable for further study
(Figure 5).

Functional Enrichment and Interaction
Network Construction
As previously mentioned, the majority of methylated cytosines
were of the CG type; thus, we focused on DMGs of methylated
CG for functional enrichment analysis. GO and KEGG analyses
were performed to evaluate the functions of DMGs and DEGs in
the ovaries of Hu sheep with different prolificacies. Across all
comparisons, the DMGs were significantly enriched in the TGF-β
and Wnt signaling pathways (Supplementary Figure S1).
Furthermore, we selected the female reproduction associated
DMGs (Supplementary Tables S9–S11) and DEGs
(Supplementary Tables S12–S14) for functional enrichment
and the interaction networks construction for each
comparison (Figure 6). Interestingly, most of DMGs from all
the comparison groups were enriched in the ovarian follicle
development/rupture, BMP signaling pathway and ovulation
GO terms, as well as the Wnt and TGF-β signaling pathways
among all comparison groups (Supplementary Figure S2).
Specifically, INHBA, TGFBR2 and SMAD7 genes of the TGF-
β pathway and SFRP1, FZD1 and MAP3K7 genes of the Wnt

FIGURE 1 | DNA methylation levels and distribution in ovaries of Hu sheep with different prolificacies. (A) Genomic methylation levels of CG, CHG, and CHH in
different groups. (B) Relative average proportions of CG, CHG, and CHH methylation contexts in ovaries among different groups. (C) The average methylation
percentage (y-axis) for different methylation levels (x-axis) of CG, CHG, and CHH methylation in different groups.
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pathway were differentially methylated among all comparison
groups.

Similarly, the female reproduction associated DEGs from the
LPBB vs. HPBB group were enriched in the hormone biosynthetic
process and embryo implantation in GO terms (Supplementary
Figure S3A), ae well as the ovarian steroidogenesis, PI3K-Akt and
Rap1 signaling pathways (Supplementary Figure S3B).
Meanwhile, female reproduction associated DEGs from both
the LPB + vs. HPBB and LPB + vs. LPBB groups were
enriched in the female gonad and ovarian follicle development
GO terms (Supplementary Figures S3C,E), as well as the ovarian
steroidogenesis, PI3K-Akt, TGF-β and Wnt signaling pathways
(Supplementary Figures S3D,F).

Correlation Analysis Between DNA
Methylation and Gene Expression
As shown in Figures 7A–C, a significant negative correlation was
observed between DNA methylation level around the TSS and

gene expression. In the LPBB vs. HPBB, LPB + vs. HPBB and LPB
+ vs. LPBB groups, we found that 13, 195 and 530 of the DMGs,
respectively, associated with DEGs (Figures 7D–F and
Supplementary Tables S15–S17). Moreover, the heatmap was
constructed to visualize the relationship between DMGs and
DEGs in the different comparison groups (Figures 7G–I).
Many DMGs contained more than one DMR. For example,
five DMRs in NDST4 were hyper-methylated and one DMR
in NDST4 was hypo-methylated in the HPBB group compared to
that in the LPBB group. In the LPBB vs. HPBB group, we
identified 10 hyper-methylated genes with down-regulated
expression levels in the HPBB group, including genes related
to the Hippo (ITGB2), PI3K-Akt (SYK) and Rap1 (ITGB2)
signaling pathways, while three genes were hypo-methylated
and up-regulated in the HPBB group compared to that in the
LPBB group (Figure 7G and Supplementary Table S15). In the
LPB + vs. HPBB group, 77 genes were hyper-methylated and
down-regulated in the HPBB group, and these genes were related
to the regulation of the TGF-β (ID2), estrogen (LOC101114987)

FIGURE 2 | Identification of DMRs in different groups. (A) The number of DMRs (hyper- and hypo-methylated) in different comparison groups. (B,C) The
distribution of DMRs in different genomic elements in the (B) LPBB vs. HPBB, (C) LPB + vs. HPBB, and (D) LPB + vs. LPBB groups.
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and oocyte meiosis (LOC101112318 and PTTG1) signaling
pathways. In contrast, 49 genes were hyper-methylated and
down-regulated in the LPB + group, and these genes were
related to the TGF-β (TGFBR2), PI3K-Akt (COL4A1,
LOC101115805 and COL24A1), FoxO (TGFBR2 and
FOXO3) and insulin (CBLB, PDE3A and RIMS2) signaling
pathways (Figure 7H and Supplementary Table S16). In the
LPB + vs. LPBB group, 153 genes were hyper-methylated and
down-regulated in the LPBB group, and these genes were
related to the PI3K-Akt (PRKAA2, FGF10, FGF12 and
LOC101103187), TGF-β (ID2) and ovarian steroidogenesis
(FSHR) pathways. We found that 201 genes were hypo-
methylated and up-regulated in the LPBB group compared
to that in the LPB + group, and these genes were related to the
PI3K-Akt (COL24A1, TLR4, SYK, ITGAV, ITGA7, VWF,
RELN, FLT4, KIT, SGK1, THBS2, COL4A1 and
LOC101115805), TGF-β (CDKN2B and TGFBR2) and
ovarian steroidogenesis (STAR and PRKX) pathways
(Figure 7I and Supplementary Table S17). In addition,
some genes exhibited coinciding methylation and expression

patterns in three comparison groups (Figures 7G–I and
Supplementary Tables S15–S17). Interestingly, we found
that ITGB2 and LAPTM4B genes, which were hyper-
methylated (DMRs in their promoter) and down-regulated
in LPBB vs. HPBB group and both LPB + vs. HPBB and LPB +
vs. LPBB group, respectively, to confirm the negative
correlation between DNA methylation and gene expression.

Integrative Analysis of ITGB2 and LAPTM4B
Methylation and Expression
ITGB2 mRNA expression level in the LPBB group was
significantly higher than that in the LPB+ and HPBB groups;
with the expression being higher in the HPBB group than in the
LPB + group (Figure 8A). LAPTM4B mRNA expression level in
the LPB + group was significantly higher than that in the LPBB
andHPBB groups (Figure 8B). These results were consistent with
the RNA-seq data. Meanwhile, LAPTM4B protein was
predominantly localized in the GCs of the antral follicle
(Figure 8C).

FIGURE 3 | DMGs in the ovaries of different comparison groups. (A) DMGs that were unique or common among different comparison groups. (B) Number of
hyper- and hypo-methylated genes in different comparison groups. (C–E) Venn diagram of the number of DMGs in promoter and gene body in the LPBB vs. HPBB, LPB
+ vs. HPBB, and LPB + vs. LPBB groups.
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Next, we evaluated the effect of 5-Aza on ITGB2 and
LAPTM4B expression in cultured GCs, and the results showed
that ITGB2 and LAPTM4B mRNA expression were significantly
higher in the 5-Aza treatment group (Figure 8D). Moreover,
following the treatment of GCs with 5-Aza, the methylation level
of the LAPTM4B and ITGB2 promoter decreased compared to
that of the control cells (Figures 8E,F). Additionally, the mRNA
expression of ITGB2 was significantly decreased using siRNA-
specific ITGB2 (Figure 8G), subsequently, we demonstrated that
the treatment of 5-Aza inhibited ITGB2-specific siRNA-reduced
ITGB2 expression in GCs (Figure 8H).

DISCUSSION

Fecundity is an economically important trait in the sheep industry.
Therefore, investigating the molecular mechanisms of sheep
fecundity may assist in accelerating the breeding process. Herein,

we systematically investigated the genome-wide DNA methylation
and gene expression profiles in the ovaries of Hu sheepwith different
prolificacies and genotypes by WGBS and RNA-seq, respectively.
Although it has been demonstrated that the homozygous mutation
(BB) had the higher fecundity than the heterozygous mutation (B+)
or wild-type (++), significant differences in prolificacy phenotypes
were found in the same genotype (BB) of Hu sheep with under the
same feeding conditions. Therefore, we conducted an integrated
analysis of DNA methylation and gene expression patterns was
performed to reveal the manner in which DNA methylation may
regulate prolificacy by affecting gene expression.

WGBS revealed that approximately 3.58% of cytosine sites were
methylated in the ovaries ofHu sheep, with the highest proportion of
CG methylation context. This finding is corroborated by previous
reports in other animals (Yuan et al., 2016; Hwang et al., 2017; Fan
et al., 2020). Moreover, the DNA methylation of the CG context
from the ovaries of Hu sheep exhibited significant hyper-
methylation levels (90–100%), but CHH and CHG exhibited

FIGURE 4 | Identification of DE mRNAs. (A–C) Volcano plot of DE mRNAs in each group. Red indicates up-regulation and green indicates down-regulation. (D–F)
Hierarchical clustering of DE mRNAs in each group. (A,D): LPBB vs. HPBB; (B and E): LPB + vs. HPBB; and (C,F): LPB + vs. LPBB groups. HPBB (H1, H2, H3); LPBB
(L1, L2, L3); LPB+ (L4, L5, L6).
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FIGURE 5 | Validation of WGBS and RNA-seq data by BSP and qRT-PCR, respectively. (A,B) A DMR across the different groups in the promoter of the ITGB2 and
LAPTM4B from 262725444 to 262725596 and from 78904708 to 78904789, respectively. (C) A DMR across the three groups in the intron of LAT2 from 33088118 to
33088230. (D) A DMR across the three groups in the distal intergenic region of MXRA5 from 1512307 to 1512503. Each box corresponds to one CpG position in the
genomic sequence. Blue indicates unmethylated and yellow indicates methylated. (E) Seven mRNAs were randomly selected from the RNA-seq data. RNA-seq
data are presented as log10 (FPKM+1). FPKM: Fragments Per Kilobase of transcript per Million fragments mapped. (F) Validation of the DEGs using qRT-PCR.
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hypo-methylation levels (10–30%), which is consistent with the
results of a previous study in the ovaries of pigs (Yuan et al.,
2016). These results suggest that the CG methylation was high-
efficiently maintained in the ovaries of Hu sheep.

Themajority ofDMRs in the ovaries ofHu sheep exhibit a similar
distribution to that observed in the ovaries or muscle of pigs and Hu
sheep (Hwang et al., 2017; Yang et al., 2017; Fan et al., 2020), with the
mainly located at the intergenic and intron elements. Accordingly,
we identified numerous DMGs among the three comparison groups.
As described above, focusing on the CG methylation context of
DMGs, and we found that the common DMGs were significantly
enriched in the TGF-β and Wnt signaling pathways, which have
been confirmed to be involved in fecundity (Chu et al., 2007; Gao
et al., 2020). For example, INHBA is associated with follicle
development (Cui et al., 2020; Li et al., 2021), oocyte maturation
(Tesfaye et al., 2009) and fecundity (Hiendleder et al., 1996; Yu et al.,
2019). In the present study, INHBA was found to contain five distal
intergenic DMRs, with four DMRs being hyper-methylated and one
being hypo-methylated in the LPB + vs. HPBB group. Moreover, six
DMRs (five distal intergenic and one intron) were identified in
INHBA, of which five were hypo-methylated and one was hyper-
methylated in the LPB + vs. LPBB group. FZD1 has been confirmed
to regulate certain biological processes, including oocyte maturation,
female fertility (Lapointe et al., 2012), embryonic development

(Tribulo et al., 2017) and ovary development (Tepekoy et al.,
2019). The methylation level of the 3′-UTR of FZD1 in the
HPBB group was higher than that in the LPB + group. In
addition, most DMGs were enriched in the ovulation and
ovarian follicle development biological processes. These results
supported the hypothesis that DNA methylation as a regulator of
epigenetic modification could influence the prolificacy phenotype
(Hwang et al., 2017; Miao et al., 2017; Zhang et al., 2017).

To understand how DNA methylation influences the prolificacy
of Hu sheep, here, for the first time, we systematically analyzed and
compared the genome-wide DNAmethylation and transcriptome of
ovaries from Hu sheep with different prolificacies and genotypes.
The number of DMGs-DEGs in the LPBB vs. HPBB group was
lower than that in both the LPB + vs. HPBB and LPB + vs. LPBB
groups. This finding suggests that, although changes in DNA
methylation may influence fecundity, the differences are mainly
attributed to the genotype. The most significant results of this study
showed that an inverse relationship was observed between DNA
methylation and gene expression in the HPBB, LPBB, and LPB +
groups, which is in agreement with the results of previous studies
(Jadhao et al., 2017; Wang et al., 2017; Yang et al., 2017).

DNA methylation status in the promoter and gene body
regions regulates gene expression by changing transcription
efficiency or chromatin structure (Jones 2012; Yang et al.,

FIGURE 6 | Construction of the network of DMGs and DEGs related to female reproduction. (A–C) Red and blue colors represent strong-hyper and strong-hypo,
respectively. Yellow color represents the coexisting strong-hyper and strong-hypo. (D–F) Red and blue colors represent up- and down-regulated, respectively. (A,D)
LPBB vs. HPBB; (B and E) LPB + vs. HPBB; and (C,F) LPB + vs. LPBB groups.
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FIGURE 7 | Integrative analysis of the DNAmethylome and transcriptome in the ovaries of different groups. (A–C) DNAmethylation level distribution around TSS of
four levels of gene expression in the different groups. (D–F) Venn diagram shows the common DMGs and DEGs. (G–I) Heatmap showing the differentially methylated
levels and corresponding genes change in the different comparison groups.
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FIGURE 8 | Integrative analysis of methylation and expression levels of ITGB2 and LAPTM4B. (A,B) ITGB2 and LAPTM4B mRNA expression in the ovaries were
detected by qRT-PCR. (C) Localization of LAPTM4B in the ovaries using immunohistochemistry. Scale bars = 50 μm. (D) ITGB2 and LAPTM4BmRNA expression levels
in cultured GCswere detected after treatment with various concentrations (0, 1, 2, 5, 10, and 20 μM) of 5-Aza treatment. (E,F)Methylation levels of ITGB2 and LAPTM4B
in cultured GCs after 10 μM5-Aza treatment. (G) Suppression efficiency of ITGB2was evaluated by qRT-PCR. (H)mRNA level of ITGB2 in cultured GCs stimulated
by 5-Aza with or without siRNA-ITGB2.
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2014). Therefore, we further selected the genes (ITGB2 and
LAPTM4B) that exhibited inverse changes in DNA
methylation and gene expression, and those with DMRs in the
promoter or gene body for subsequent analyses. For example, the
promoter region of ITGB2, an important regulator of embryo
implantation (Guo et al., 2018), oocyte maturation (Antosik et al.,
2016) and follicle development (Kisliouk et al., 2007; Antosik
et al., 2016), was hyper-methylated in the HPBB group compared
to that in the LPBB group; however, its expression was higher in
the LPBB group than in the HPBB group. Meanwhile, ITGB2
expression level in atretic follicles was higher than in healthy
follicles (Kisliouk et al., 2007). Up-regulated expression of ITGB2
in the LPBB group may be responsible for the increased number
of atretic follicles. Previous studies have reported that LAPTM4B
is expressed in the reproductive organs and reproductive diseases
in bovine or human (Yang et al., 2008; Ndiaye et al., 2015; Meng
et al., 2016). Ndiaye et al. (2015) reported that LAPTM4B
expression was higher in large dominant follicles than in small
antral follicles. The results of the present study showed that the
LAPTM4B promoter was hyper-methylated and LAPTM4B
expression was down-regulated in the HPBB group compared
to that in the LPB + group. Moreover, the relationship between
ITGB2 and LPATM4B expression and epigenetic modifications
in the ovaries and cultured GCs were assessed, and the results
showed an inverse relationships occurred for both. These findings
may, to some extent, explain the significant differences in
phenotypic variation among Hu sheep.

In summary, the present study systematically integrated DNA
methylation and gene expression profiles in the ovaries of Hu
sheep with different phenotypes and genotypes, indicating the
potential mechanisms underlying on prolificacy phenotypic
variation and providing new insights into the genetic
mechanism responsible for the excellent fecundity of Hu
sheep. As several factors, including physiological,
environmental and diet, have been shown to affect phenotypic
variation (Peaston and Whitelaw, 2006). Therefore, further
studies are needed to fully understand the effects of epigenetic
modification on the fecundity of Hu sheep, which may contribute
to better reproductive efficiency.
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