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ABSTRACT

Mitochondrial diseases are a heterogeneous group
of disorders that can be caused by mutations in
the nuclear or mitochondrial genome. Mitochondrial
DNA (mtDNA) variants may exist in a state of het-
eroplasmy, where a percentage of DNA molecules
harbor a variant, or homoplasmy, where all DNA
molecules have the same variant. The relative quan-
tity of mtDNA in a cell, or copy number (mtDNA-CN),
is associated with mitochondrial function, human
disease, and mortality. To facilitate accurate iden-
tification of heteroplasmy and quantify mtDNA-CN,
we built a bioinformatics pipeline that takes whole
genome sequencing data and outputs mitochondrial
variants, and mtDNA-CN. We incorporate variant an-
notations to facilitate determination of variant sig-
nificance. Our pipeline yields uniform coverage by
remapping to a circularized chrM and by recover-
ing reads falsely mapped to nuclear-encoded mito-
chondrial sequences. Notably, we construct a con-
sensus chrM sequence for each sample and recall
heteroplasmy against the sample’s unique mitochon-

drial genome. We observe an approximately 3-fold in-
creased association with age for heteroplasmic vari-
ants in non-homopolymer regions and, are better
able to capture genetic variation in the D-loop of
chrM compared to existing software. Our bioinfor-
matics pipeline more accurately captures features of
mitochondrial genetics than existing pipelines that
are important in understanding how mitochondrial
dysfunction contributes to disease.

INTRODUCTION

Approximately 1 in 8000 people are diagnosed with a
mitochondrial disease caused by a mitochondrial DNA
(mtDNA) mutation (1). Mitochondrial diseases are hetero-
geneous in their clinical manifestation and typically affect
multiple organ systems (2). For example, Leigh syndrome,
the most common childhood mitochondrial disease, can be
caused by >75 different mutations in nuclear or mitochon-
drial genes (3). Some of the features include neurological
symptoms, hypertrichosis, and dysmorphic features (2,3).
MELAS, or Mitochondrial Encephalopathy, Lactic acido-
sis, and Stroke-like episodes, is a mitochondrial disorder
where 80% of cases are caused by a mutation in a mito-
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chondrial tRNA gene (4). Sequencing patient DNA is com-
monly included as part of the diagnosis of mitochondrial
diseases; therefore, being able to assess multiple features of
mitochondrial genetics from genome sequencing data will
be of significant benefit to human health.

The mitochondrion is a ubiquitous organelle with com-
plex genetics. Unlike the nuclear genome, which is only
present in two copies, there can be ∼1000 to 10 000 copies
of mtDNA in most somatic cells (5) and up to 150 000 in
mature oocytes (6). The relative amount, or copy number,
of mtDNA is associated with aging and overall-mortality
(7,8). Additionally, the mitochondrial genome has a 17-fold
higher mutation rate than the nuclear genome (9). Thus, the
mtDNA can exist in a state of heteroplasmy, where there is
variation in the sequence of the different mtDNA molecules
within a cell, or homoplasmy, where all mtDNA share the
same sequence. Pathogenic mutations in mtDNA are usu-
ally present in a heteroplasmic state, and the level of het-
eroplasmy is directly linked to mitochondria function (2).
Both the quantity (as measured by copy number) and qual-
ity (as measured by heteroplasmic load) of mtDNA have
been linked to disease (2,8).

There are several software packages designed to take
whole genome sequencing (WGS) data and extract mtDNA
for variant identification. MToolBox (10) can extract mi-
tochondrial reads from WGS or whole exome sequenc-
ing (WES) data to identify heteroplasmic single nucleotide
variants (SNVs), insertions/deletions (INDELs) and hap-
logroup information. mtDNA-Server (11) which uses the
program Mutserve, identifies heteroplasmy and works very
well on large datasets. MitoAnalyzer (12,13) performs both
heteroplasmy calling and copy number calculations. Mity
(14) is another software that detects heteroplasmy SNVs
and INDELs from WGS data. These software attempt to
address two basic features of mitochondrial genetics, se-
quence variation and copy number, and each has its own
unique limitations. None of them attempts to recover se-
quencing reads at regions of low coverage, which is impor-
tant for thorough variant discovery.

Here, we present a bioinformatic pipeline, named Mi-
tochondrial High Performance Caller, referred to as Mi-
toHPC, to estimate mitochondrial copy number (mtDNA-
CN) and heteroplasmy from WGS samples. MitoHPC is
able to obtain uniform coverage across chrM and remove
contaminating nuclear-integrated mitochondrial sequences
(NUMTs). MitoHPC also constructs a reference sequence
for each sample and identifies heteroplasmic variants for
each sample using its own reference. The pipeline addi-
tionally annotates SNVs and INDELs to allow for better
identification of true variation from sequencing or map-
ping errors. MitoHPC is designed to be a useful tool for
accurately quantifying mtDNA-CN and identifying hetero-
plasmy in tens of thousands of samples with short computa-
tional run times and minimal computational requirements.
This makes MitoHPC ideal for large genomics datasets.

MATERIALS AND METHODS

Datasets

Datasets are from the Trans-Omics for Precision Medicine
(TOPMed) program, freeze 8 (15). TOPMed studies provide

WGS data at ∼30× genomic coverage using Illumina next-
generation sequencing technology. TOPMed WGS data
must pass specific quality control metrics before it is re-
leased for use by the scientific community. Additional infor-
mation on TOPMed WGS data generation and processing
can be found here: https://www.nhlbiwgs.org/data-sets

We analyzed WGS data from the Atherosclerosis Risk
in Communities (ARIC) study (16) and the Multi-Ethnic
Study of Atherosclerosis (MESA) study (17). Both ARIC
and MESA are population-based longitudinal cohort stud-
ies with 3930 and 5370 WGS samples available, respec-
tively. One sample in ARIC was excluded due to lack of
proper consent. ARIC WGS samples were comprised of
deep vein thrombosis and early-onset atrial fibrillation cases
(<10% of dataset) and controls. In the ARIC study, DNA
for WGS were isolated from buffy coat using the Gentra
Puregene Blood Kit (Qiagen), The ARIC cohort is 52%
female, age range 45–74 at time of DNA isolation with
the following racial backgrounds: 93% European Ameri-
can and 7% African American. MESA participants were
required to have no known clinical CVD upon recruitment.
In MESA, DNA was isolated from peripheral leukocytes
using the Gentra Puregene Blood Kit. The MESA cohort is
53% female, age range 45–84 with the following racial back-
grounds: 38% European American, 28% African American,
22% Hispanic and 12% Chinese American ancestry.

For the MESA cohort, we were able to identify 559 poor
quality samples. These samples had lower DNA quality due
to a temporary change in the DNA extraction method used
on samples extracted from November 2001 through Decem-
ber 2001. We removed these 559 samples from all analyses.

TOPMed google cloud data access and extracting metadata

The TOPMed datasets used for our study were accessed
using Google Computing Services (Supplementary Fig-
ure S1). Samples were processed in batches of 100. We
downloaded CRAM and CRAI files using fusera, ex-
tracted chrM/NUMT reads using ‘samtools view –T hg38-
reference-file chrM chr1:629084–634422 chr17:22521366–
22521502’, and generated output BAM files.

Processing the FASTQ files

We designed MitoHPC to run on aligned human WGS data
or mitochondrial enriched sequencing data provided as ei-
ther BAM or CRAM file format (Figure 1). Prior to run-
ning MitoHPC, we trimmed and aligned FASTQ files to
the whole human genome assembly using an aligner which
generates SAM/BAM/CRAM output alignments. SAM
format alignment files can be converted to BAM/CRAM
format using SAMtools software (18). The alignment files
were sorted (samtools sort) and indexed (samtools index).
The aligned reads counts (samtools idxstats) were used for
mtDNA-CN estimation (Supplementary Figure S1).

Calculations for mtDNA-CN

The general calculation for mtDNA-CN is shown below, as
used by Ding et al. (12) :

2 × (chrM coverage) / (genome coverage)

https://www.nhlbiwgs.org/data-sets
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Figure 1. Overview of mtDNA-CN and Heteroplasmy Analysis Pipeline.

Mitochondrial genome coverage is calculated as the num-
ber of mapped reads to chrM times the read length divided
by the length of chrM. Genome coverage is calculated using
three different methods described below:

1) coverage calculated by TOPMed from mappable reads
passing data quality filters aligned to a sex specific map-
pable genome

2) (mapped bases)/(3,031,865,587 bases in human genome)
3) (mapped bases)/(3,054,815,472 bases if female) or

(3,008,915,703 bases if male)

Genome sizes are taken from the Telomere-to-Telomere
Consortium (19). The comparison of these different copy
number metrics is described in the Results section.

Extracting and re-mapping reads to a circularized chrM

The WGS data was mapped to the human genome build
GRCh38 (Figure 2). We used SAMtools to extract reads
that mapped to the mitochondrial chromosome, chrM,
and the NUMT regions (hg38 chr1:629084–634422 and
chr17:22521366–22521502). These regions were identified
as mitochondrial read ‘sinks’ by mapping mitochondrial
reads to the nuclear chromosomes and identifying regions
of read pile up. We also retrieved unmapped reads where
one mate mapped to chrM. We remapped the reads to a
circularized version of chrM with position mt16569 ex-
tended downstream 300 bases and to the NUMT regions
on chr1 and chr17 (Figure 2). This extended end was in-
cluded in the ref.fa file which was indexed using ‘bwa index’.
The reads were trimmed using fastp (20) and remapped
using BWA (21), ‘bwa mem input.fa inputfile -p -v 1 -t
1 -Y -R headerline -v 1’. Duplicate reads were removed
using SAMBLASTER (22), ‘samblaster –removeDups –
addMateTags’. Alignments that spanned the chrM start-
stop were split and kept as two alignments.

Detecting sample heteroplasmy, homoplasmy and haplogroup

Prior to running the variant calling software, we down-
sampled the chrM reads for each sample to ∼2000× cov-
erage (Figure 2). This increases the speed of MitoHPC
while still retaining sufficient coverage to have confidence
in low level (3% variant allele frequency) heteroplasmy calls.
We incorporated two programs for calling mtDNA hetero-
plamic and homoplasmic variants, GATK Mutect2 (23,24)

and Mutserve (11) (Figure 2). For the first iteration of
variant identification, we used the rCRS as the reference
genome, although the RSRS is included as an optional ref-
erence. Mutect2 was run using default parameters and the
output VCF was run through FilterMutectCalls command
with the following additional parameters: –min-reads-per-
strand 2. Mutserve was run using the following additional
parameters: –deletions –insertions –level 0.01. For both pro-
grams, we used a 3% variant allele frequency (VAF) thresh-
old.

After the first iteration of variant identification, we run
the program HaploGrep v2.4 (25) to identify mitochon-
drial haplogroups for each sample. Samples are assigned
to a haplogroup based on the known variants in Phy-
lotree17 FU1 tree (26).

Variant annotation

Variant annotations are included in the VCF output files. In
addition to annotations created by Mutect2, we included
annotations that add genomic and biological context to
the variant sites identified. The following annotation files
are provided on GitHub (https://github.com/ArkingLab/
MitoHPC/tree/main/RefSeq): (i) mitochondrial hypervari-
able (HV) regions; (ii) chrM homopolymer (HP) regions
defined as five or more Cs in a row, one mismatch, ±1 bp
on the ends; (iii) mitochondrial hotspot regions (HS) as de-
scribed by Nussbaum (27); (iv) genic information like cod-
ing regions (CDS), D-loop and gene name; (v) manually cu-
rated database of 1098 haplogroup specific (HG) SNVs are
those that occur in 80% of GenBank samples (n = 35 502) of
the same haplogroup and not present in other haplogroups
(Supplementary Table S1). SNVs were identified by align-
ing samples’ chrM reads to the rCRS, while haplogroup
was determined using Haplogrep2; (vi) 382 NUMT SNVs
identified by aligning the NUMTs we identified on chr1
and chr17 and published in Lutz-Bonengel et al. (28) and
Dayama et al. (29) to rCRS using MUMMer (30) nucmer
and show-snps (Supplementary Table S2); (vii) dbSNP vari-
ants in dbSNP database (31). We also annotate variants
with APOGEE score (32) a measure of pathogenicity of mi-
tochondrial variants.

Generate consensus sequence and validate alignments

We use the program BCFtools (33) ‘bcftools consensus’ to
generate a new mitochondrial consensus fasta sequence for
each sample incorporating homoplasmies and major alle-
les from the Mutect2 output. This step generates the sam-
ple’s unique mitochondrial reference sequence for the sec-
ond iteration of heteroplasmy calling. This sequence was
circularized (300 bp from position mt1 added after posi-
tion mt16569) and indexed using BWA (21) ‘bwa index’. The
2000x coverage reads were aligned using ‘bwa mem’. Ex-
act alignments (100% identity, 100% length) were converted
to BED format and merged using BEDTools (34) ‘bedtools
merge –d −5’, making sure the reference was fully covered.

Contamination check

Due to the exclusive maternal inheritance, each sample
should have only one dominant haplogroup detected. We

https://github.com/ArkingLab/MitoHPC/tree/main/RefSeq
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Figure 2. Detailed flowchart of pipeline processes. Input is BAM/CRAM file (green) at the top of the diagram. Outputs are shaded blue. The following
abbreviations are used in the Annotate SNVs box and are described in detail in the Variant Annotation of the Methods section: HV, known hypervariable
regions; HS, mitochondrial hotspots; HP, homopolymer region; HG, haplogroup specific; NUMT, the variant matches a known variant in the nuclear
genome; dbSNP, the variant is found in the dbSNP database.

ran Haplocheck (35) on samples after haplogroup identi-
fication. The Haplocheck output file lists all samples and
contamination status. We removed samples with a contam-
ination level of 3% or more from downstream analyses.

Statistical analyses

Statistical analyses were performed using R version 4.0.4.
To test for an association with age and mtDNA-CN, we
ran a linear model adjusted for sex and collection center

(site where sample blood draw took place) as a random ef-
fect. Self-reported race was not included as it did not sig-
nificantly affect the model. The polygenic risk score (PRS)
is included in the linear model for ARIC only. A binomial
generalized linear model was used for dichotomized hetero-
plasmy data (where ‘0’ means no heteroplasmic sites and ‘1’
means at least one heteroplasmic site) and included the fol-
lowing covariates: age, sex, self-reported race, and collection
center. Average heteroplasmy count was determined after
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removing outlier counts that were three or more standard
deviations away from the mean.

RESULTS

Overview of pipeline

Our goal was to create a bioinformatics pipeline that in-
corporates multiple features of mitochondrial genetics to
readily facilitate downstream analyses. MitoHPC includes
four main parts: (i) calculation of mtDNA-CN; (ii) identifi-
cation of heteroplasmic and homoplasmic variants against
the rCRS (referred to as ‘first iteration’ of variant calling);
(iii) generation of the sample specific chrM consensus se-
quence by incorporating homoplasmies and major hetero-
plasmic alleles using the rCRS as the backbone (referred to
as ‘second iteration’ of variant calling) and (iv) re-calling
heteroplasmy for each sample mapped using its own con-
sensus sequence as the reference. MitoHPC produces three
main outputs. The first output is a mtDNA-CN summary
file with read count, coverage, and mtDNA-CN counts.
The second output is a variant summary information file,
which includes haplogroup, a count of mtDNA homoplas-
mic sites, heteroplasmic sites, SNVs, INDELS at all loca-
tions and at non-homopolymer regions. The third output
consists of VCF files of the annotated heteroplasmic and
homoplasmic sites. Re-calling heteroplasmy against a sam-
ple’s own reference generates the additional summary and
VCF files. The code is available on GitHub: https://github.
com/ArkingLab/MitoHPC.

Computational speed

We utilized Google Cloud to filter the chrM and NUMT
reads from TOPMed samples. The sample alignment files
were processed in batches of 30 on a single processor and
took ∼2 min per sample to complete. Running in parallel
with a maximum 240 jobs at one time, it took ∼1.5 days to
process the 90K samples. When it comes to computational
speed, our pipeline is designed to handle large genomics
dataset of tens of thousands of samples quickly and cost-
effectively.

Recovering low coverage areas

Accurately aligning reads to the chrM is a non-trivial task.
First, chrM is circular, and commonly used aligners ex-
pect linear chromosomes. Second, chrM reads can falsely
align to NUMTs in the nuclear genome. From the pro-
vided TOPMed metadata, we first checked the uniformity
of coverage across chrM (Figure 3, red line). As expected,
we saw noticeable dips at the ends of the chrM and at
other sites known to have low coverage. Position 310 and
460 lie within polycytosine tracts (chrM:300–320 AAACC-
CCCCCTCCCCCGCTTC and chrM:450–470 TATTTTC-
CCCTCCCACTCCCA) and have previously been reported
to have low coverage in sequencing data (36). Low cover-
age at three mitochondrial hypervariable regions due to ho-
mopolymer polycytosine tracts in these regions have also
previously been reported (37). This is due to polymerase
slippage at regions of low nucleotide complexity either dur-
ing sequencing, library PCR, or within the cell during mi-
tochondrial genome replication (36).

To recover reads at low coverage regions we started by re-
aligning the reads to the circularized version of chrM. Due
to the ‘edge’ effect (low coverage at the start/stop of chrM),
and the similarity of the chr17 NUMT to chrM D-loop
(bwa mem minimum alignment score of 30), the coverage
in the D-loop region is about ∼40% that of the chrM me-
dian coverage (Figure 3, red line). In the first iteration of
variant calling, MitoHPC aligns to the circularized rCRS
and the average D-loop coverage increased to more than
∼90% of the average total chrM coverage (Figure 3, blue
line). In the second iteration MitoHPC realigns reads to a
sample’s unique consensus chrM sequence, increasing the
coverage of other low coverage regions that may be due to
specific sequence variation in the sample. For example, in
Figure 3, Sample 1 from ARIC had a major dip in cover-
age upstream of position 7500, which was only recovered
when using the sample’s unique consensus as a reference
for alignment (Figure 3, green line). Sample 2 had a more
subtle difference in coverage but still showed a notable in-
crease in coverage at the start/stop of chrM. These 2 sam-
ples are from different haplogroups (L1 and H respectively)
and they demonstrate how individuals from haplogroups
that are more distant from the rCRS can have variation that
causes uneven read coverage across chrM. Our pipeline pri-
oritizes uniform chrM read coverage prior to heteroplasmy
calling; however, it is still possible for some samples to have
low average depth of coverage. It is important to inspect the
coverage depth of outlier samples and variants. With our
method of realigning to a sample’s unique reference, we are
able to attenuate large differences in coverage across chrM.

Contamination check

We included the program Haplocheck (35) in MitoHPC
to output the contamination status of each sample. Hap-
locheck identifies potentially contaminated samples by
looking for the presence of common variants from more
than one mitochondrial haplogroup. Four samples out of
3929 in ARIC and 10 samples of out 5370 in MESA had
a Haplocheck contamination level of 3% or more. For our
purposes, the potentially contaminated samples were ex-
cluded from our downstream analyses. Although depending
on the biology of the samples in question, it may be worth
investigating the ‘contaminated’ samples further. The inclu-
sion of additional sample QC checks, like Haplocheck, in
our pipeline allows for the user to easily identify samples of
poor quality, as their results could confound downstream
analyses.

mtDNA-CN calculation comparisons

Mitochondrial DNA copy number is a metric commonly
used for mitochondrial quantity in a cell or tissue and is
associated with mitochondrial function (38). It is based on
the ratio of mtDNA to nuclear DNA, calculated using the
equation defined by Ding et al. (12) as two times the ratio
of chrM coverage to genome coverage. The chrM coverage
was relatively uniform across all haplogroups in ARIC and
MESA cohorts (Supplementary Figure S2) except for main
haplogroups L (includes groups L0-6; P-value 4.77 × 10–7)
and R (includes groups R1-9, B, P F; P-value 4.08 × 10–4)

https://github.com/ArkingLab/MitoHPC
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Figure 3. Coverage for two samples in ARIC plotted across the full length chrM. Sample 1 belongs to haplogroup L1 and Sample 2 belongs to haplogroup
H. Reads were deduplicated prior to plotting. The red line is chrM coverage from the original alignment file. The blue line is the chrM coverage after
aligning the reads to the circularized rCRS reference. The green line is the chrM coverage after realigning the reads to the sample’s reconstructed chrM
reference sequence. All reads were down-sampled evenly for plotting.

in MESA. We calculated the genome coverage using three
different approaches to determine whether the subtle differ-
ences in the mtDNA-CN calculation would have an impact
(see Materials and Methods). For method 1 we used the av-
erage genome coverage included in the TOPMed metadata
file. For method 2, we ‘recomputed’ the average genome
coverage based on the number of bases sequenced divided
by the standard human genome size (19). Method 3 is the
sex-adjusted genome coverage, which is the total number of
bases divided by the genome size for females or males. Due
to the sex chromosomes, the female genome is 1.02x larger
than males. TOPMed also provides an mtDNA-CN metric
computed using the program fastMitoCalc (13) and is avail-
able for download for TOPMed datasets.

We observed a high correlation between the different
mtDNA-CN metrics (all r > 0.98, Supplementary Figure
S2) and the overall distribution of the mtDNA-CN val-
ues were similar for all four CN metrics (Supplementary
Figures S3 and S4). Given their similarity, we arbitrar-
ily checked one mtDNA-CN metric, sex-adjusted metric,
for any haplotype bias and found no major differences in
mtDNA-CN across all haplogroups (Supplementary Fig-
ure S3). Although we did note that the overall mtDNA-
CN metric is higher in the ARIC cohort compared to
MESA, which may be due to a difference in the DNA
source.

We next sought to understand how strongly each
mtDNA-CN metric was associated with known correlated
phenotypes (Figure 4). We and others have previously
shown that mtDNA-CN measured from peripheral blood
decreases with age and is higher in females than in males
(39). The mtDNA-CN associations were tested using a liner
regression model, adjusted for age or sex, self-reported race,
and collection center. As expected, samples from older in-

Figure 4. Age and sex association with mtDNA-CN. Linear regression re-
sults for mtDNA-CN and age or sex in ARIC (n = 3015, left) and MESA
(n = 4236, right) cohorts. Polygenic risk score (PRS) are only in ARIC.
Red dashed line indicates P-value of 0.05.

dividuals had a lower mtDNA-CN (P-values 4.53 × 10–06

sex-adjusted, 4.45 × 10–06 recomputed, 5.8 × 10–06 meta-
data, 6.41 × 10–06 fastmitocalc) and females had higher
mtDNA-CN than males (P-value < 2 × 10–16 for all met-
rics). For additional assessment of the mtDNA-CN metrics,
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we also determined the association of mtDNA-CN with a
copy number polygenic risk score (PRS) in the ARIC co-
hort. PRS was calculated from SNPs identified from GWAS
performed in 465 809 individuals in the UK Biobank and
Cohorts for Heart and Aging Research in Genomic Epi-
demiology (CHARGE) (40). When including age, sex, self-
reported race and collection center as covariates in our lin-
ear regression analysis, all four mtDNA-CN metrics were
associated with the mtDNA-CN PRS, with the TOPMed
mtDNA-CN provided metric having greatest significance
(Figure 4).

To identify the best metric for mtDNA-CN, we ranked
each metric based on the strength of the association with
known phenotypes as measured by p-values (Supplemen-
tary Figure S5). We used the Kendall’s W test to determine
if there was an agreement among the rankings. We observed
that there is no significant agreement in ranking, indicating
that no mtDNA-CN metric is significantly better than the
others. MitoHPC by default will calculate mtDNA-CN as
the total number of bases mapped divided by a standard
reference genome size (3.03 G), referred to as ‘recomputed’
within this manuscript. In our datasets the difference in ef-
fect size between the mtDNA-CN calculations and their
association with known phenotypes was subtle, suggesting
that the mtDNA-CN metric from WGS is generally robust
and the specific calculation should not have a major effect
on downstream analyses.

Characterizing heteroplasmic variants

Mitochondrial SNV heteroplasmies identified by next gen-
eration sequencing can be reliably detected at 3% variant
allele frequency (VAF) with 1000x chrM coverage (41). We
performed our analyses on heteroplasmy SNVs called as
low as 3% VAF in our data down-sampled to 2000× cov-
erage. We recommend down-sampling to a higher average
coverage if identifying heteroplasmic variants below 3%.
However sample quality should be taken into consideration
and with higher coverage homoplasmic VAF may cross the
heteroplasmic VAF threshold. At 3% VAF, the average het-
eroplasmic SNV site count was 0.9 and 1.5 for ARIC and
MESA, respectively, after excluding outlier counts that were
3 or more standard deviations from the mean. We noticed
that samples with heteroplasmic site count greater than 5
have significantly lower mtDNA-CN (P = 0.02 in ARIC
and P < 2 × 10–16 in MESA). Even though we did not ob-
serve a haplogroup bias with chrM coverage or mtDNA-
CN, some haplogroups did have significantly different het-
eroplasmy counts (Supplementary Figure S6). The L hap-
logroups have a higher number of homoplasmic variants
due to the rCRS reference being most similar to H hap-
logroups and least similar to L (Supplementary Figure S7).

We first looked at all SNVs from MitoHPC’s first iter-
ation of variant calling. Both Mutect2 and Mutserve had
similar distributions of heteroplasmic site counts (Supple-
mentary Figure S8); however, Mutect2 detects more sam-
ples as having one or more heteroplasmic sites than Mut-
serve. For example, Mutect2 identified 2084 samples with
one or more heteroplasmic sites in ARIC compared to 1833
by Mutserve. In both ARIC and MESA, the vast majority
of variants were identified by both programs, with Mutect2

identifying over 3000 additional variants in ARIC and over
6000 additional variants in MESA (Figure 5A). Of variants
that are uniquely identified by either program, only Mu-
tect2 detected variants in chrM hypervariable regions (Fig-
ure 5A). When we plotted the VAFs for each SNV in each
sample identified by Mutect2 and Mutserve, there were vari-
ants where one software called the position a homoplasmy
and the other software called the variant a heteroplasmy.
This was observed in both cohorts and these variants were
almost exclusively in the mitochondrial D-loop (Figure 5B).
As a result of the hypervariable regions and poly-C ho-
mopolymer tracts in the D-loop, many of the variants iden-
tified in this region had low base quality for the alternate
allele or had other annotations suggestive of sequencing or
technical errors. By performing a comparison of Mutect2
and Mutserve, we found that the genomic substructures of
chrM plays a significant role in variant identification. Nev-
ertheless, Mutect2 and Mutserve are largely similar in the
variants they identify.

To cross-validate the variants we identified, we deter-
mined how many of the variants were also present in the
gnomAD v3 database of over 56 000 WGS samples (42).
We took 8793 unique chrM homoplasmic and heteroplas-
mic variants from gnomAD. Of the variants we identified,
93% of sites in ARIC and MESA are also in the gnomAD
database. It should be noted that the gnomAD variants had
a more stringent frequency cut-off of 10% instead of the 3%
used in our study. These results support the conclusion that
MitoHPC is likely identifying true variants within the gen-
eral population, using a lower frequency threshold for defin-
ing heteroplasmic variants.

Detection of true- versus false-positive heteroplasmic variants

Since we identified different variants from the same indi-
vidual using the different variant calling software, we asked
if one software was detecting more false-positive hetero-
plasmic variants. To test this, we generated 30 simulated
datasets representing 30 main haplogroups. Each dataset
was simulated to have 150 bp paired-end reads with a ran-
dom base pair error rate of 0.01. We introduced 43 het-
eroplasmic sites (8 INDELs and 35 SNVs) into each sim-
ulated sample dataset at an average of 18% VAF distribu-
tion (range 15–20%). The reads were all mapped using bwa
to the rCRS reference. We compared the number of hetero-
plasmic sites identified by the first iteration Mutect2 (23,24),
Mutserve (11) as run by our pipeline, and the online based
client Mitoverse (https://mitoverse.readthedocs.io/), which
uses Mutserve, and MToolBox (10). MToolBox is the only
program that uses the aligner GSNAP (43). We ran the 30
datasets through the different variant callers and counted
the number of heteroplasmic sites identified (Table 1). Over-
all, Mutect2 had the fewest number of false-positives and
false-negative calls for both the first and second iteration of
variant calling. Mutserve detected more false-positive het-
eroplasmic sites compared to Mutect2, suggesting that the
uniquely identified heteroplasmic variants in Figure 5 were
less likely to be real variants, particularly as they occur in
homopolymer regions. Since Mutect2 performed the best
on our simulated data, we used the Mutect2 variant calls
for all analyses moving forward.

https://mitoverse.readthedocs.io/
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Figure 5. SNVs called by Mutect2 and Mutserve. Venn diagrams show the overlap/differences in the variants called by Mutect2 and Mutserve. The bottom
panel shows scatterplots of VAFs of SNVs called at 3% VAF threshold by both software. Colors indicate the location of the variant, in the D-loop (red),
in homopolymer (HP) regions (green), in a HP region within the D-loop (blue) or in another region (purple).

Table 1. Average number of heteroplasmic sites identified across simulated data––comparison of tools

SNV + INDEL SNV INDEL

All sites
False
negatives

False
positives All sites

False
negatives

False
positives All sites

False
negatives

False
positives

100× coverage
Mutect2 43.50 1.20 1.70 35.30 0.30 0.60 8.20 0.90 1.10
Mutserve 36.97 9.37 3.33 32.80 3.70 1.50 4.17 5.67 1.83
Mitoverse 38.00 8.70 3.70 34.83 1.77 1.60 3.17 6.93 2.10
MToolBox 50.93 1.10 9.03 41.47 0.17 6.63 9.47 0.93 2.40
2000× coverage
Mutect2 43.03 0.07 0.10 35.03 0.03 0.07 8.00 0.03 0.03
Mutserve 39.17 4.10 0.27 35.10 0.07 0.17 4.07 4.03 0.10
Mitoverse 37.80 6.17 0.97 35.40 0.07 0.47 2.40 6.10 0.50
MToolBox 52.33 0.03 9.37 42.30 0 7.30 10.03 0.03 2.07
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Second iteration Mutect2––calling variants against the sam-
ple reference

In its essence, homoplasmy represents inter-individual mi-
tochondrial variation, while heteroplasmy represents intra-
individual variation. To leverage this observation, we gen-
erate a unique reference for each sample using its own
mtDNA consensus sequence generated from homoplasmic
sites and major allele heteroplasmic sites called by Mu-
tect2. Heteroplasmic variants are then identified by remap-
ping reads against the sample’s unique mtDNA reference
sequence. We refer to this as the ‘second iteration’ of hetero-
plasmy calls. The SNV heteroplasmic site count decreased
an average 0.3 counts in ARIC and 0.4 counts in MESA,
suggesting a reduction in false-positive heteroplasmies. No-
tably, some haplogroups had significantly different hetero-
plasmic site counts (Supplementary Figure S8)

We further investigated the SNVs that differed between
the first and second iteration of heteroplasmy. Of these dif-
ferential SNVs, 96% in ARIC and 90% in MESA are within
a homopolymer region (Figure 6). The majority of first iter-
ation unique sites are at positions 302, 310 and 16,183 while
the majority of second iteration unique sites are at positions
310 and 16,182. These sites are within the homopolymer
regions at positions 296–318 and 16,178–16,193. We also
found that 41% and 57% in ARIC and MESA respectively
are multiallelic sites. For example, an individual in ARIC
had a SNV A > C (3% frequency) at position 302 identified
by the second iteration heteroplasmy calling. This sample
had two INDELs identified at this same position, AC > A
(5%) and AC > ACC (14%). For this sample, in the first
iteration, the variants at position 302 were three INDELs,
A > AC (6%), A > ACC (74%), A > ACCC (15%). Ho-
mopolymer regions complicate variant calling and using
MitoHPC we found that these sites have high heteroplas-
mic variation.

Multiallelic sites do not pass Mutect2 filters but may rep-
resent true genetic variation. For example, an individual in
MESA has two variants listed at position 3666 allele G > A
at 75.9% VAF and G > C at 23.5% VAF for a combined
frequency of 99.4%. The G allele must be present at <1%,
making this a triallelic site. MitoHPC outputs the full list
of variant calls to aid in understanding multiallelic variant
sites.

To further validate our approach of calling heteroplasmy
after remapping to each samples unique reference mtDNA
sequence, we called heteroplasmy on the same 30 simulated
datasets described above. At low coverage, running the sec-
ond iteration of Mutect2 variant calling was the most ac-
curate at identifying the known heteroplasmic sites in our
simulated dataset (Table 2). The second iteration identified
fewer false positives at 1.7 sites compared to 1.9 sites using
just the first iteration of Mutect2. The second iteration of
Mutect2 only detected true positive variants at 2000× cov-
erage making it considerably better than other methods at
variant calling in our simulated data. We use the second it-
eration Mutect2 variant calls for further analyses.

Heteroplasmy association with age and mtDNA-CN

We investigated the association between the number of SNV
heteroplasmic sites and age using a negative binomial gen-

Table 2. Average number of heteroplasmic sites identified in first versus
second iteration variant calling

All sites
False
negatives False positives

100× coverage
First iteration
Mutect2

43.50 1.20 1.70

Second iteration
Mutect2

43.10 1.20 1.30

2000× coverage
First iteration
Mutect2

43.03 0.07 0.10

Second iteration
Mutect2

43.00 0 0

eralized linear model, adjusted for sex, collection center,
and self-reported race. SNV heteroplasmic site counts were
from the second iteration of variant calling. Due to the
variability of variant calls at chrM homopolymer regions,
we counted non-homopolymer and homopolymer hetero-
plasmic sites separately. As expected, the number of het-
eroplasmies increased with age and this effect was stronger
for the non-homopolymer SNV count (Figure 7, Supple-
mentary Figure S10, and Table 3). The beta estimates were
similar for ARIC and MESA, indicating that in both co-
horts, we observe a similar age effect on heteroplasmy de-
spite differences in the age distributions of the cohorts
(ARIC = 45–74, MESA = 44–84). Additionally, the effect
of age on the number of heteroplasmies was 3× larger for
non-homopolymer sites but there is still a significant asso-
ciation with homopolymer sites. This suggests that for ho-
mopolymer sites there may be a real, biological signal with
a reduced effect size due to the inclusion of false-positive
calls.

We investigated the association of SNV heteroplasmic
count with sex-adjusted mtDNA-CN. While we observed a
general trend that as mtDNA-CN decreases, heteroplasmy
increases (Table 4), as previously shown (44), there was
extensive heterogeneity of the results. The lack of consis-
tency with respect to effect size in homopolymer and non-
homopolymer sites between the two cohorts make it chal-
lenging to draw clear conclusions of the results.

In addition to homopolymer regions, samples with low
mtDNA-CN (<100) may be more likely to yield NUMT
variants as false-positive mitochondrial heteroplasmic calls
(42). We plotted mtDNA-CN versus heteroplasmy count to
visualize the relationship between these two measurements
(Supplementary Figure S9). Using a mtDNA-CN cutoff of
100, there were 13/22 samples in ARIC and 3/4 samples
in MESA that had at least one heteroplasmy call. Of the
three MESA samples with heteroplasmy calls, one sample
only had one heteroplasmic site (16092 C > T; VAF 4%)
and while that site is not at a known NUMT, it is adja-
cent to a known NUMT (16093 T > C). Another sam-
ple had four heteroplasmic sites, one was a NUMT vari-
ant (12612G > A; VAF 3.8%). The third MESA sample
had eight heteroplasmic sites all with VAF less than 6%. Six
of which were known NUMTs (2706A > G, 7028C > T,
8701A > G, 10398A > G, 11719G > A, 12705C > T).
Thus, removing samples with low mtDNA-CN could re-
duce false-positive heteroplasmies due to NUMT contam-
ination. Setting a higher threshold for heteroplasmic vari-
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Figure 6. Comparison of heteroplasmic SNV site counts between first and second iteration Mutect2 variant calling (top venn). The pie charts show the
percentage of non-allele switch (or ‘other’) variants that were multiallelic, in a homopolymer region, both (MA & HP), or neither (other).

Figure 7. Heteroplasmy by age. Boxplots showing the age distribution of samples categorized by the heteroplasmic site count. X axis corresponds to the
count of heteroplasmic sites in a sample. Category ‘’5+’ contains all samples with five or more heteroplasmic sites.

ants can also reduce the number of false-positive hetero-
plasmies detected.

Previous work by Simone et al. (45) identified 585 NUMT
regions in human genome build hg18. These regions were
lifted over to hg19 and are viewable on the UCSC genome
browser. We used a similar approach to identify putative
NUMTs in silico in the hg38 genome build. We aligned

the rCRS to hg38 and identified 88 putative NUMT re-
gions (Supplementary Table S2). These regions have an av-
erage sequence identity of 88.4% to rCRS and an average
length of 1012.9 nucleotides. There are 37 putative NUMTs
with sequence identity over 90%, of those 25 were <300 nu-
cleotides long. We identified two putative regions that had
100% identity, both were less than 100 nucleotides long.
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Table 3. Association of heteroplasmic site count with age

Age association with heteroplasmy

Location Estimate Std. error P value

ARIC
Non-homopolymer 3.10 × 10–2 5.77 × 10–3 8.27 × 10–8
Homopolymer 9.57 × 10–3 5.69 × 10–3 9.28 × 10–2

MESA
Non-homopolymer 2.91 × 10–2 3.20 × 10–3 7.53 × 10–20

Homopolymer 6.32 × 10–3 3.26 × 10–3 5.24 × 10–2

Age association with the presence of at least one heteroplasmic site. Het-
eroplasmic sites are counted by location: in a homopolymer region or in a
non-homopolymer region for each sample in each cohort.

Table 4. Association of heteroplasmy site count with mtDNA-CN

mtDNA-CN and association with heteroplasmy

Location Estimate Std. error P value

ARIC
Non-homopolymer −2.49 × 10–4 3.47 × 10–4 4.74 × 10–1

Homopolymer −1.34 × 10–3 3.46 × 10–4 9.98 × 10–5

MESA
Non-homopolymer −7.89 × 10–4 4.73 × 10–4 9.49 × 10–2

Homopolymer −2.84 × 10–4 4.80 × 10–4 5.55 × 10–1

mtDNA-CN association with the presence of at least one heteroplasmic
site. Heteroplasmic sites were counted by location: in a homopolymer re-
gion or in a non-homopolymer region for each sample in each cohort.
mtDNA-CN was measured using the sex-adjusted metric.

However, most mitochondrial reads do not map to these re-
gions likely due to the fact that the WGS is paired-end 150
and during realignment bwa mem accurately assigns reads
overlapping these regions to the nuclear genome.

INDELs

INDELs were not as consistently identified in the chrM,
with high variability between the number of INDELs called
by Mutect2 and Mutserve. In MESA, INDEL site count in
Mutect2 and Mutserve had an adjusted r2 of 0.19 for het-
eroplasmy and 0.06 for homoplasmy. In ARIC, INDEL site
count at a 3% VAF threshold had an adjusted r2 value of
0.17 and 0.05 for heteroplasmic and homoplasmic INDELs,
respectively. We further examined the INDELs identified by
Mutect2 since Mutserve is not designed for INDEL identi-
fication. In ARIC and MESA, respectively, of the >10 000
and >17 000 total INDELs identified occurred at only 119
and 195 unique sites, with 60% in ARIC and 43% in MESA
found within 150 bases (the length of an Illumina sequence
read) of one of the 9 homopolymer regions on chrM rCRS
sequence (Supplementary Figure S11). These regions are
prone to PCR, sequencing, and mapping error, and thus, at
this time, we are not able to confidently identify INDELs.

DISCUSSION

Here, we present MitoHPC, a bioinformatics pipeline to an-
alyze mtDNA-CN and heteroplasmy from WGS data. We
optimize our pipeline to run quickly and cost-effectively
on tens of thousands of samples, a necessity for large scale
genomics studies. We built into MitoHPC methods to re-

cover chrM reads at the ends of chrM and at other typi-
cally low coverage regions by remapping unmapped reads
to a circularized chrM sequence and by remapping reads
from NUMTs on chr1 and chr17. These sequences are
chrM read ‘sinks’ and with 150 bp paired-end data, we
are able to appropriately map them to chrM. We inves-
tigated different calculations for mtDNA-CN, and found
that there was no significant difference between them. We
demonstrate that we detect true population-level SNV vari-
ants at 2000× chrM coverage, as shown by our high over-
lap with variants in the gnomAD database (42). The most
novel aspect of MitoHPC is the second iteration variant
identification, which calls variants using a sample’s unique
chrM sequence as the reference. We validate this tech-
nique’s ability to remove false-positive variants and ac-
curately call true-positives using simulated data. To date,
no other heteroplasmy software takes this approach. Our
method outperforms existing software in assessing intra-
individual heteroplasmic load by identifying heteroplasmic
variants against an individual’s unique chrM reference se-
quence rather than a standard reference. We found that
homopolymer regions in chrM give most of the variabil-
ity in heteroplasmy calls and but still have an association
with increasing age, although weaker than heteroplasmic
sites in non-homopolymer regions. Within our output files,
we provide annotated VCFs. Many of these annotations
are taken directly from Mutect2 and others are described
on our GitHub: https://github.com/ArkingLab/MitoHPC.
All-in-all, we demonstrate that our pipeline has increased
accuracy and precision in mtDNA variant calling over other
existing pipelines and we provide recommendations on how
to interpret the data outputs.

We built MitoHPC to run on human data already
mapped to hg19 or hg38 reference genomes. However, this
pipeline could easily be adopted for other organisms with
known mitochondrial variation. There are other interesting
facets of mitochondrial genetics that can also be addressed
through our pipeline. First, ARIC and MESA used slightly
different methods for isolating cells for DNA extraction. It
would be interesting to investigate how subtle differences
in the blood cell composition could affect the heteroplas-
mic variants we detect. Second, the analyses presented used
the rCRS but we have made RSRS an optional reference
genome in our pipeline. This may affect the homoplasmic
variants identified, but should have no effect on second it-
eration of heteroplasmic variant calls.

There are a few limitations to our approach. The work
presented here uses paired-end 150 bp sequencing reads.
WGS data with shorter read lengths or from different DNA
sequencing platforms may perform differently in MitoHPC.
Variants identified in homopolymer regions and/or hy-
pervariable regions tend to also have annotations such as
strand bias and clustered event. The software identifies
these regions as potential sequencing errors. Variants in
these regions should be evaluated cautiously or excluded
altogether, keeping in mind that many of these variants
reside in the D-loop, a region with high sequence varia-
tion (46). We leave it to the user’s discretion how to han-
dle these variants. We identify heteroplasmic variants as
low as 3% VAF using MitoHPC but other software, such
as MitoScape (47) may perform better for lower VAF vari-

https://github.com/ArkingLab/MitoHPC
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ants and lower mtDNA-CN. INDELs are prone to occur
in homopolymer regions. Currently MitoHPC and the het-
eroplasmy variant identification software are not optimized
for INDEL calling. Before assessing the biological signifi-
cance, it would be advantageous to validate uncertain vari-
ants with a secondary method.

It is also important to note that in addition to the Hap-
locheck output, there are other ways to identify problem-
atic samples in a dataset. Any samples that are outliers for
mtDNA-CN or heteroplasmy count should be taken with
careful consideration. Samples with a relatively high num-
ber of haplogroup specific, hypervariable, or hotspot vari-
ants should also be closely inspected. Moreover, samples
with a relatively high number of NUMT annotated variants
should also be examined prior to downstream analyses. As
with any experimental data, it is important to consider re-
sults of data analysis within the context of the biology of
the samples in question.

In summary, our bioinformatics pipeline MitoHPC cap-
tures many features of mitochondrial genetics that are im-
portant in understanding the contribution of the mtDNA
variation to disease. MitoHPC has high accuracy, high-
throughput, and is cost effective, creating a framework for
accelerating the analysis of mitochondrial genetics.
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