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In the innate immunity to Leishmania infection tissue-resident macrophages and
inflammatory monocytes accumulate host-cell, effector, and efferocytosis functions. In
addition, neutrophils, as host, effector, and apoptotic cells, as well as tissue-resident and
monocyte-derived dendritic cells (DCs) imprint innate and adaptive immunity to
Leishmania parasites. Macrophages develop phenotypes ranging from antimicrobial M1
to parasite-permissive M2, depending on mouse strain, Leishmania species, and T-cell
cytokines. The Th1 (IFN-g) and Th2 (IL-4) cytokines, which induce classically-activated
(M1) or alternatively-activated (M2) macrophages, underlie resistance versus susceptibility
to leishmaniasis. While macrophage phenotypes have been well discussed, new
developments addressed the monocyte functional phenotypes in Leishmania infection.
Here, we will emphasize the role of inflammatory monocytes to access how potential host-
directed therapies for leishmaniasis, such as all-trans-retinoic acid (ATRA) and the ligand
of Receptor Activator of Nuclear Factor-Kappa B (RANKL) might modulate immunity to
Leishmania infection, by directly targeting monocytes to develop M1 or M2 phenotypes.
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INTRODUCTION

Vector-borne Leishmania spp. parasites cause leishmaniasis, characterized by localized lesions in
the skin or mucosae, as well as disseminated and visceral diseases, which impact health across the
globe, particularly in the most impoverished populations. Leishmaniasis affects 12 million people
worldwide, while human vaccines are not available and current treatments induce resistance/side
effects (1–4). Leishmania parasites first infect phagocytes, such as inflammatory neutrophils and
tissue-resident macrophages, and then spread to inflammatory monocytes and monocyte-derived
macrophages and dendritic cells at the infection site (5–9). The different routes of infection
(intraperitoneal, subcutaneous, intradermic, the use of needles or insect bites) underly certain
discrepancies in the timing and size of major inflammatory cell subsets (9, 10) and need to be
considered when comparing different Leishmania experimental models. Undoubtedly, intradermic
inoculation mimics better natural infection through sand-fly bites (9).

Environmental stimuli are key to determine macrophage activation and shape macrophage
phenotype as permissive host versus effector cells during infection. The M1 and M2 terms, coined in
reference to Th1 and Th2 responses, describe T-cell independent, strain-specific macrophage
features related to the activation of L-arginine metabolism mediated by induced-NO synthase
org June 2021 | Volume 12 | Article 7044291
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(iNOS) in M1 macrophages or arginase 1 (Arg1) in M2
macrophages (11). The M1 and M2 phenotypes correlate well
with classically- and alternatively-activated macrophages, which
are induced by IFN-g (Th1) and IL-4 (Th2) T-cell derived
cytokines, respectively (12–17). Most importantly, M1 and Th1
responses predominate in Leishmania-resistant strains, whereas
M2 and Th2 responses underly susceptibility to infection in
specific experimental models (18–23). It is assumed, however,
that a range of intermediates fromM1 toM2, rather than discrete
extreme phenotypes, represents better macrophage plasticity
in vivo (24, 25).

The role of tissue-resident macrophages and neutrophils in
Leishmania infection has been addressed at the cutting-edge of
knowledge (8, 9, 26, 27). Previous in vitro studies showed that
neutrophils, either as apoptotic or effector cells, interact with
elicited-peritoneal macrophages and affect immunity to
Leishmania major in a mouse strain-dependent fashion. In
resistant C57BL/6 (B6) mice, effector neutrophils helped
macrophage activation and parasite killing, whereas in
susceptible BALB/c mice, efferocytosis of neutrophils induced
Leishmania-permissive macrophages (28, 29). Recent image data
revealed that dermis-resident macrophages at the skin infection
site express M2 phenotype hallmarks, such as the mannose
receptor (MR), and are parasite-permissive hosts despite
intense Th1 responses to non-healing isolates of L. major (8,
26). Remarkably, TAM-mediated efferocytosis of infected
neutrophils transferred Leishmania parasites to tissue-resident
macrophages and reduced innate immunity (9). Similarly, the
efferocytosis of infected neutrophils by antigen (Ag)-presenting
DCs downmodulated adaptive immunity to Leishmania antigens
(La-Ag) (6, 30). Therefore, resistance or susceptibility to
Leishmania infection might not correlate strictly with the Th1/
Th2 paradigm.

Here we will discuss the role of inflammatory monocytes in
Leishmania infection and how we can explore monocyte
functional plasticity to shape M1 and M2 responses and
promote immunity or restrain exacerbated inflammation.
EFFECTOR VERSUS SUPPRESSOR
MONOCYTES IN LEISHMANIA INFECTION

Since early upon Leishmania infection, the CCL2-CCR2 axis
mediates recruitment of monocytes to infection site where they
act as major players in innate immunity to Leishmania parasites
(31, 32). Mononuclear cells recruited to the skin infection site
display either effector or host cell functions depending on
resistant or susceptible mouse genotype (33–36). In addition,
inflammatory monocytes might also play a suppressive role on
anti-parasite T-cell responses (37, 38) in analogy to monocytic
myeloid-derived suppressor cells (Mo-MDSCs) that compromise
anti-tumoral adaptive immunity (39, 40).

The Mo-MDSC acronym highlights the role of monocytic
(Ly6C+) cells on T-cell suppression, whereas PMN-MDSC refers
to a morphologically and phenotypically (Ly6G+) distinct subset
(39). Here, we will focus on inflammatory monocytes and
Frontiers in Immunology | www.frontiersin.org 2
Mo-MDSCs from B6 mice, which express equivalent
CD11b+Gr1(Ly6C)+F4/80int phenotypes and morphological
aspects, host Leishmania parasites, and function as effector
cells to control parasite infection (31, 37, 38).

We previously reported that CD11b+Gr1+F4/80int Mo-MDSCs
were present in large proportions in footpad lesions twoweeks after
L. major infection in B6 mice (37). To investigate the role of Mo-
MDSCs in Leishmania infection, we first injected L. major in the
peritoneum of B6 mice to generate and sort large numbers of
CD11b+Gr1+F4/80int Mo-MDSCs for in vitro and in vivo analyses.
Purified Mo-MDSCs expressed monocyte morphology and could
be promptly infected in vitro with L. major promastigotes (37).
Moreover, Mo-MDSCS controlled infection either spontaneously
in a NO-dependent fashion ormore efficiently after treatment with
T-cell cytokines. Furthermore, co-injection of Mo-MDSCs and
Leishmania promastigotes in footpads reduced lesions and
parasite numbers in draining lymph nodes (LN), concomitant
with reduced ex vivo T-cell proliferation to La-Ag (37). To
directly address suppression of Ag-specific responses, Mo-
MDSCs were cocultured with draining-LN T-cells collected two
weeks after L. major infection. We found that Mo-MDSCs
suppressed both polyclonal and Ag-specific T-cell proliferation in
a NO-dependent manner (37). Therefore, Mo-MDSCs expressed a
NO-producing effector phenotype that might paradoxically
suppress subsequent adaptive immunity during L. major infection.

Schmid et al. (38) further addressed the role of Mo-MDSC in
L. major infection by comparing resistant B6 with susceptible
BALB/c mice. They showed that BM from B6 mouse yielded
increased proportions of Mo-MDSCs compared with BALB/c
BM. In addition, in GM-CSF treated cultures, B6 BM produced
increased frequencies of Mo-MDSCs, whereas BM from BALB/c
mice preferentially generated PMN-MDSCs. Moreover,
increased numbers of Mo-MDSCs accumulated in foot pad
lesions 10 days after infection in B6 compared with BALB/c
mice (38). Similar to peritoneal Mo-MDSCs, Mo-MDSCs from
B6 BM suppressed CD4 T-cell proliferation to L. major Ag in a
NO-dependent mechanism (37, 38). By contrast, Mo-MDSCs
from BALB/c BM expressed reduced NO production and are less
likely to suppress T-cell responses (38). Therefore, Mo-MDSCs/
monocytes play a role as NO-producing effector and suppressor
cells in a strain-specific fashion. The observations of increased
effector cell responses in inflammatory monocytes from B6 mice
might explain, at least in part, innate control of resistance versus
susceptibility to Leishmania infection in experimental
murine models.
EFFECTOR MONOCYTES AND INNATE
IMMUNITY TO LEISHMANIA INFECTION

To investigate the correlation of monocyte functional
phenotypes and effective innate immunity, we took advantage
of distinct susceptibility versus resistance of BALB/c mice in
L. major versus Leishmania braziliensis models (41). Early
studies suggested that resident peritoneal macrophages infected
with L. major, but not those infected with L. braziliensis, required
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activation by T-cell cytokines to fight parasite infection (42).
Then, we analysed the functional phenotypes of peritoneal
exudate cell (PECs) recruited after Leishmania infection, by
conducting kinetic analyses 1-3 dpi, before the establishment
of adaptive immunity (36). We observed that CD11b+Ly6C+F4/
80int monocytes replaced peritoneal-resident (F4/80hi)
macrophages 1-2 days post infection with either L. major or L.
braziliensis, both in BALB/c and B6 mice. In BALB/c mice,
CD11b+ PECs developed increased frequencies of M1 hallmarks
(IL-12p35+ and iNOS+ cells), as well as reduced Arg1 expression
in response to L. braziliensis compared with L. major infection.
Moreover, restimulation with L. braziliensis parasites induced
production of proinflammatory cytokines in vitro, whereas IL-10
predominated in L. major-infected cultures (36).

To address the role of mouse strain, we compared B6 versus
BALB/c mice infected with L. braziliensis and observed that
CD11b+ PECs from B6 mice expressed increased frequencies of
IL-12p35+ and iNOS+ (M1) cells, but reduced proportions of
Arg1+ (M2) cells, as well as increased NO production in infected
cultures (36). Altogether, monocytes developed M1 responses in
a Leishmania spp. (L. braziliensis > L. major)- and mouse
genotype (B6>BALB)-dependent fashion. Therefore, the
shaping of monocyte phenotypes might be useful to improve
M1 responses in therapeutic vaccination of susceptible hosts,
based on the benefits of IL-12 administration (43). By contrast,
host-directed therapies (2) designed to restrict exacerbated M1
responses to L. braziliensis infection might help the control of
inflammation (41, 44, 45) in mucocutaneous leishmaniasis.
FUNCTIONAL MONOCYTE RESPONSES
TO CD4 T-CELL CYTOKINES

When adaptive immunity to Leishmania infection ensues, T-cell
cytokines IFN-g and IL-4 play a major role, by inducing classically
and alternatively-activated macrophages. Nevertheless, whereas
Th1 and Th2 cytokines correlate well with resistance and
susceptibility to infection in certain experimental Leishmania
models, some observations do not fit well with this paradigm and
the role of IL-4 is particularly controversial (29). Only recently,
Carneiro et al. (46) fully addressed how IFN-g and IL-4 signalling
pathways coordinate inflammatory monocyte responses in
Leishmania amazonensis infection. Interestingly, although IFN-g
mediated monocyte recruitment to the infection site and induced
parasite control by infected monocytes, many other monocytes
harboured parasites and sustained infection (46), adding evidence
to the notion that monocytes can be parasite-permissive host cells
(7, 47). Paradoxically, by downmodulating IFN-g-mediated
recruitment of parasite-permissive monocytes, IL-4 signalling
helped resistance rather than susceptibility, particularly in those
models where strong Th1 and Th2 responses coexist (46).

In this regard, we previously observed increased Th1 and Th2
responses to L. major in vFLIP (caspase-8 inhibitor) transgenic
mice, most likely owing to inhibited Fas-mediated apoptosis of
CD4 T cells. Moreover, infected B6.vFLIP mice were more
resistant to infection than WT mice in an IL-4-dependent
Frontiers in Immunology | www.frontiersin.org 3
fashion (48). Another non-excluding hypothesis to explain IL-
4-mediated resistance to L. major is the synergism between IL-4
and IFN-g on macrophage activation for parasite killing (49).
Likewise, monocytes from L. major-infected B6 mice responded
in vitro to recombinant IL-4 and IFN-g versus IFN-g alone, by
increasing NO-dependent L. major killing (37).

Overall, these studies indicate that monocytes play a key role
in innate immunity either as effector cells or permissive hosts for
Leishmania parasites and that monocyte phenotypes can be
modulated by cytokines in adaptive immunity. Therefore,
monocytes express functional plasticity and stand as
preferential targets for immunomodulation in infectious and
inflammatory diseases.

Discrete M1 (IFN-g/LPS) andM2 (IL-4)-induced macrophages
show polarized responses regarding to L-Arginine metabolism
(iNOS versus Arg1), NO-dependent microbial killing versus tissue
repair functions, inflammatory cytokines versus certain chemokine
and surfacemarker expression (11–14, 17). To address howmouse
strain genotype affects monocyte plasticity, we generated BM-
derived macrophages (BMDMs) from B6 and BALB/c in the
presence of M-CSF. F4/80int BMDMs were then treated with
IFN-g, IL-4, and LPS to provide altogether the environmental
correlates of both M1 and M2 conditions. We showed that
BMDMs from B6 and BALB/c mice expressed equivalent M1
responses, such as TNF-a and CXCL9 proinflammatory
cytokines, as well as NO production in response to mixed M1/M2
conditions (36). Therefore, BMDMs from BALB/c and B6 mice
express similar plasticity to respond toTh1 andTh2 cytokines in the
infection environment, mimicked by LPS stimulation. It is likely
that these experimental settings (M-CSF followed by mixed
cytokines and LPS) compensated the BALB/c deficit in the
production of BM-derived monocytes (38). We suggest that
stronger proinflammatory stimuli, such as LPS plus IFN-g or L.
braziliensis versus L. major parasites are less likely to unveil
functional differences between BALB/c and B6 monocytes.

In addition to the prototype Th1 and Th2 cytokines, we
investigated the role of RANKL, which confers resistance to L.
major infection in CD40L-defective B6 mice (50). In the B6
model, we cocultured splenic CD4 T cells (from 5 weeks-infected
mice) with monocytes (recruited 24 h post i.p. infection), which
were then reinfected with L. major parasites. We observed that
monocytes secreted IL-12 in response to endogenous RANKL
and IFN-g produced during the crosstalk between CD4 T-cells
and infected monocytes. In turn, RANKL-stimulated monocytes
increased Th1 responses (51). In the next section, we will discuss
how RANKL and IFN-g affect the phenotype of inflammatory
monocytes to promote immunity to L. major infection (51).
TARGETING INFLAMMATORY
MONOCYTES: RANKL HELPS A M2-LIKE
TO M1 PHENOTYPE SHIFT

RANKL (or TRANCE) binds to the Receptor Activator of
Nuclear Factor-Kappa B (RANK) and activates osteoclasts,
macrophages, and DCs (52–54). To address the potential of
June 2021 | Volume 12 | Article 704429
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RANKL to modulate monocyte phenotype, we employed
inflammatory peritoneal cells induced upon thioglycolate
injection, which expressed RANK. In addition, inflammatory
monocytes from B6 mice expressed F4/80int and a M2-like
phenotype, characterized by heterogeneous expression of M2
markers such as MGL (CD301), mannose receptor (CD206), IL-
4Ra and IL-10 (51). Strikingly, treatment with either RANKL or
IFN-g induced monocytes to express F4/80hi and M1 features,
such as IL-12p35 and iNOS expression, IL-12 and TNF-a
production, coupled with reduced M2 MGL marker (51). We
also observed an intermediate M1-M2 subset, which expressed
both MGL and iNOS after treatment with RANKL (51).
Likewise, monocytes can co-express iNOS and Arg1, where
Arg1 outcompetes iNOS for the L-arginine substrate and
promotes L. major infection (55). These observations indicate
that M2 to M1-phenotypical transition can occur through
intermediate phenotypes and it is not an all-or-nothing process.

More importantly, RANKL and suboptimal IFN-g doses
cooperated for the induction of fully-effector M1-macrophages,
which showed higher iNOS/NO expression and killed L. major
parasites in a NO and ROS-dependent fashion (51). Likewise,
RANKL and IFN-g synergized to increase NO production by
BALB/c inflammatory monocytes (51). Overall, these findings
extend previous observations (50) and indicate a protective role
of RANKL in Leishmania infection, by inducing M1-mediated
immunity (51). Nonetheless, the outcomes of treatment with
RANKL in vivo depend on the immune context to induce M1
(56) or M2 (57) macrophages. In addition, the systemic
therapeutic use of RANKL might affect bone homeostasis, by
promoting osteoclast differentiation and activation (54). By
contrast, the local uses of RANKL in immunization (58, 59)
and in therapeutic vaccines stand as a potential means to
improve the activation of DCs and shape macrophage
phenotypes in Leishmania infection. Interestingly, both
RANKL and its inhibitor osteoprotegerin were detected in
cutaneous lesions after human infection with Leishmania
tropica (60).
ATRA AFFECTS MONOCYTE-MEDIATED
IMMUNITY TO LEISHMANIA BY SKEWING
M1 INTO M2-PHENOTYPE

All-trans-retinoic acid (ATRA), a vitamin A active metabolite
that binds to intracellular receptors (61), has been proposed as a
potential tool to enhance anti-tumoral immunity, by reducing
MDSC-mediated suppression of T cell responses (39, 62). We
tested this concept in B6 mice, which were treated with ATRA in
the footpads at the time of L. major infection. After 17 days,
ATRA improved polyclonal T-cell responses concomitant with
reduced spontaneous NO production in draining LNs (37).
However, treatment with ATRA also increased development of
lesions and parasite loads. Moreover, these deleterious effects
were recapitulated in peritoneal exudate cells (PECs) collected
24 h after L. major infection and then reinfected in vitro (37). We
observed that treatment with ATRA: (i) increased monocyte
Frontiers in Immunology | www.frontiersin.org 4
differentiation into macrophage; (ii) reduced NO-responses to
T cell cytokines; (iii) increased parasite burden in PECs and
sorted MDSCs (37). Therefore, ATRA induced monocytes to
differentiate into macrophages that were unable to control
L. major infection, by uncoupling maturation and development
of effector functions in monocyte-derived macrophages.

Because treatment with ATRA during infection could have
other effects, such as induction of regulatory T cells (61), we
further addressed how ATRA affects monocytes, by injecting
ATRA i.p. 24 h after L. major infection. Increased proportions of
F4/80+ PECs harboured parasites in the following day after
treatment with ATRA, concomitant with reduced detection of
inflammatory cytokines in peritoneal exudates from both B6 and
BALB/c mice (36). Likewise, reinfection in vitro resulted in
increased parasite burden in PECs from mice treated with
ATRA (36). We concluded that ATRA induced parasite-
permissive macrophages regardless of the B6 or BALB/c
background. Similarly, vitamin A supplement increased
parasite infection in experimental visceral leishmaniasis (63).
Conversely, vitamin A might play a protective role in immunity
to extracellular parasites (64, 65). Moreover, vitamin A
metabolism is part of the alternative macrophage program (65,
66) and contributes to tissue repair (67).

To formally address whether ATRA interferes with the
development of M1 and M2 phenotypes, we used the mixed
M1/M2 conditions, as described in the previous section (36).
Strikingly, BMDMS from both BALB/c and B6 mice developed
reduced M1 responses, such as production of CXCL9 and NO,
but increased production of M2 chemokines after treatment with
ATRA. Moreover, ATRA reduced iNOS expression in F4/80+

cells both in vitro and in vivo (36). Therefore, irrespective of
experimental settings and genetic background, treatment with
ATRA skewed M1 into M2 or M2-like phenotype, which might
be more permissive to intracellular L. major parasites.

More research is needed to address the potential of ATRA for
restricting exacerbated macrophage responses to L. braziliensis
infection as it has been suggested for other inflammatory diseases
(68). ATRA reduced inflammatory responses in vivo, by limiting
NF-kB-activation in macrophages (68). Otherwise, induction of
NF-kB signalling pathway underlies increased M1 responses to
RANKL plus IFN-g in inflammatory macrophages (51). Further
investigation might formally address the common mechanisms
involved in reciprocal M1-M2 phenotype changes induced
by ATRA, RANKL (Figure 1) , and other potential
pharmacological tools.
CONCLUSION

The targeting of M1-M2 phenotypes includes a range of cell
metabolism, signalling, epigenetics, transcriptional and post-
transcriptional (i.e. miRNA) (69) targets, which might be able
to guide the generation of therapeutic tools able to modulate
exacerbated or defective immune responses in inflammation,
autoimmunity, cancer, metabolic, and infectious diseases (16, 27,
66, 70–73).
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Additionally, the clearance of apoptotic cells changes monocyte
phenotype to promote parasite infection (74, 75) and stands as a
potential therapeutic target for other diseases as well (76, 77). In a
Leishmaniamodel, efferocytosis contributes to parasite transfer from
apoptotic neutrophils to tissue-resident macrophages and inhibits
M1 phenotype to favour infection (9). Accordingly, mouse defective
in certain efferocytosis receptors had reduced parasite burden
coupled with increased pathology (9). This example highlights the
need of accessing the possible outcomes of intervening with the
multiple effector and tissue repair macrophage functions to advise
caution and prevent potential side effects.

Finally, the use of currently-identified therapeutic tools to
modulate monocyte phenotypes demands further research to
safely translate preclinical findings into clinical trials and
reliable therapies.
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