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Hyperuricemia is characterized by abnormally high level of circulating uric acid in the blood
and is associated with increased risk of kidney injury. The pathophysiological mechanisms
leading to hyperuricemic nephropathy (HN) involve oxidative stress, endothelial
dysfunction, inflammation, and fibrosis. Mangiferin is a bioactive C-glucoside xanthone,
which has been exerting anti-inflammatory, anti-fibrotic, and antioxidative effects in many
diseases. This study aimed to evaluate the effect of mangiferin treatment in HN. In a mouse
model of HN, we observed lower circulating urate levels and ameliorated renal dysfunction
with mangiferin treatment, which was associated with reduced renal inflammation and
fibrosis. We next investigated the mechanism of urate lowering effect of mangiferin.
Metabolic cage experiment showed that mangiferin-administrated mice excreted
significantly more urinary uric acid due to elevated urine output, but no marked change
in urine uric acid concentration. Expressions of water channels and urate transporters
were further assessed by western blot. Renal AQP2 expression was decreased, yet urate
transporters URAT1, GLUT9, and OAT1 expressions were not affected by mangiferin in
HN mice. Moreover, mangiferin treatment also normalized xanthine oxidase and SOD
activity in HN mice, which would decrease uric acid synthesis and improve oxidative
stress, respectively. Therefore, our results reveal a novel mechanism whereby mangiferin
can reduce serum uric acid levels by promoting AQP2-related urinary uric acid excretion.
This study suggested that mangiferin could be a multi-target therapeutic candidate to
prevent HN viamechanisms that involve increased excretion and decreased production of
uric acid and modulation of inflammatory, fibrotic, and oxidative pathways.
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INTRODUCTION

Hyperuricemia is one of the major causes of gout, due to
circulating urate accumulation and crystallization. Moreover,
experimental and epidemiological studies suggest that
hyperuricemia is also a risk factor or predictor in the
progression of several diseases, including hypertension
(Richette and Bardin, 2010), cardiovascular diseases (Feig et al.,
2008), metabolic syndrome (Ciarla et al., 2014), and chronic
kidney disease (CKD) (Jalal et al., 2013; Johnson et al., 2013),
although this is not supported by the results of Mendelian
randomization studies (Jordan et al., 2019). Experimental
studies showed that high level of uric acid activated oxidative
stress, inflammation, fibrosis pathway, and induced kidney
dysfunction (Jalal et al., 2013).

Excessive production and/or less excretion of uric acid are
two major causes leading to the development of hyperuricemia.
As the key enzyme in uric acid formation, xanthine oxidase (XO)
catalyzes the oxidation from hypoxanthine to xanthine, then
from xanthine to uric acid. During these enzymatic reactions,
reactive oxygen species (ROS) are generated as a byproduct,
inducing oxidative stress when accumulated (Harrison, 2004). It
has been reported that XO activity was increased under
hyperuricemia condition, activating oxidative stress pathway
and causing kidney injury (Boban et al., 2014). These studies
demonstrated that XO played a vital role in HN by both
catalyzing uric acid generation and inducing oxidative stress.
The selective XO inhibitors febuxostat and allopurinol are currently
used in clinic to treat hyperuricemia and associated complications.

Two thirds of circulating uric acid undergoes renal excretion
while the remaining one third is excreted in feces (Ichida et al.,
2012). In the kidney, urate is freely filtered in the glomerulus, and
about 90% is reabsorbed into the systemic circulation through
urate transporters, and the remaining part is excreted in the
urine (de Oliveira and Burini, 2012). Among the multiple urate
transporters participating in urate handling in kidney, URAT1,
located in the apical membrane of the proximal tubules, is an
essential protein that mainly recognizes urate as substrate
(Hosoyamada et al., 2004). Located in the apical and
basolateral membrane of the proximal tubules, GLUT9 is
another important urate transporter that reabsorbs uric acid in
the kidney. Although also considered as a fructose transporter,
genetic polymorphism of GLUT9 accounts for about 5% of
serum uric acid variance (Vitart et al., 2008). In addition,
OAT1 as another transporter expressed in the proximal
tubules facilitates urate efflux from epithelial cells to the
interstitium (Nigam et al., 2015). Currently, clinically used
uricosuric drugs include benzbromarone, probenecid, and
lesinurad. Use of these medications down-regulates urate
transporters URAT1 or GLUT9 expression, promoting uric
acid excretion (Tan et al., 2016; Tan and Miner, 2017).
Although still a good choice for gout patients, use of
benzbromarone caused liver toxicity in several cases (Kaufmann
et al., 2005). Graded dosage increase was suggested to lower the
incidence (Lee et al., 2008). Short half-life of probenecid limited its
Frontiers in Pharmacology | www.frontiersin.org 2
clinical use (Melethil and Conway, 1976). Selective URAT1
inhibitor lesinurad is suggested to be administrated in
combination with an XO inhibitor to achieve the best medical
effectiveness (Pan and Kong, 2016). When treating hyperuricemic
nephropathy (HN), it would be desirable to have a drug that reduces
the synthesis and increases the renal excretion of circulating uric
acid, and have direct therapeutic effect on kidney injury, such as
inflammation, fibrosis, and oxidative stress.

There are already some compounds that have dual effect in
the kidney. For instance, Arhalofenate, which exhibited both XO
inhibitive effect and anti-inflammatory effect (Stamp et al., 2018).
Mangiferin is a natural C-glucoside xanthone that commonly
exists in young leaves and bark of mango trees (Telang et al.,
2013). Mangiferin was reported to lower serum uric acid levels
(Niu et al., 2012; Yang et al., 2015) and exerts anti-inflammatory,
anti-fibrotic, and antioxidative effects in diseases including
diabetic nephropathy, acute kidney injury, NAFLD (He et al.,
2014; Pal et al., 2014; Wang et al., 2017). These findings brought
us the interest to investigate the effect of mangiferin on
hyperuricemic nephropathy (HN). Moreover, the principal
metabolite of mangiferin in the intestinal tract exhibited strong
inhibition of XO (Niu et al., 2016).

The aim of the current study was to evaluate whether
mangiferin could be a novel multi-target candidate to treat HN
and explore the possible mechanisms. Based on these previous
findings, we hypothesized that mangiferin might protect against
HN through multiple pathways.
MATERIALS AND METHODS

Animals and Experimental Procedures
Male ICR mice (18–22 g) were purchased from the Animal
Center of Institute of Laboratory Animal Sciences, Chinese
Academy of Medical Science, and Peking Union Medical
College (CAMS & PUMC), Beijing, China. The mice had free
access to water and regular rodent chow were housed under
controlled temperature (21–23 °C) and humidity (40–60%) in a
constant 12 h light/dark cycle. All animal experiments were
carried out in accordance with the guidelines established by the
National Institutes of Health for the care and use of laboratory
animals and were approved by the regional Animal Care
Committee of CAMS & PUMC.

Acclimated mice were randomly divided into four groups, i.e.
control group (Con), mangiferin-treated control group (Con
+Mang), hyperuricemic nephropathy model group (HN), and
mangiferin-treated hyperuricemic nephropathy group (HN
+Mang). Mangiferin (50 mg/kg/day, 0.1 ml/10 g body weight)
was administrated 7 days in advance to model induction and also
the following 10 days of induction by gavage. HN mice were
induced by 300 mg/kg hypoxanthine (0.1 ml/10 g body weight)
by gavage and 300 mg/kg oteracil potassium (0.2 ml/10 g of body
weight, suspended in 0.5% sodium carboxymethyl cellulose
solution) by subcutaneous injection (Meng et al., 2017) for 10
constitutive days. Negative control mice received vehicle.
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Metabolic cage experiment was performed at the last day of the
induction. Mice had free access to water and chow in metabolic
cages. The total 24 h urine output volume (V) was determined
and aliquots were frozen for later analysis of uric acid levels
(uUA) and total 24 h urinary uric acid excretion (uUAex)
calculated as uUAex = uUA × V. Orbital blood samples were
collected and the mice were euthanized to collect tissues for
later analyses.

Chemicals and Regents
Frontiers in P
Mangiferin was purchased from the Innochem (Beijing,
China). The purity was measured by HPLC-MS: 97.5%. The
structure of mangiferin was determined by 1H NMR and MS
spectrum. 1H NMR (400 MHz, DMSO-d6) d 13.76 (s, 1H), 10.68
(s, 1H), 10.57 (s, 1H), 9.79 (s, 1H), 7.38 (s, 1H), 6.87 (s, 1H), 6.38
(s, 1H), 5.06–4.23 (m, 1H), 4.05 (t, J = 9.1 Hz, 1H), 3.75–3.65
(m, 1H), 3.41 (dd, J = 11.8, 5.8 Hz, 1H), 3.26–3.09 (m, 3H),
ESI MS [M+Na]+ = 445.3.

AQP2, a-SMA, NLRP3, p-JNK, JNK, and OAT1 antibodies
were purchased from Cell Signaling Technology (Danvers, MA,
USA), URAT1, AQP1, p-PKCbI (Thr 641), and PKCbI
antibodies were purchased from Santa Cruz Biotechnology
(Dallas, TX, USA). GLUT9 antibody was purchased from
Abcam (Cambridge, MA, USA). Commercial kits for detecting
uric acid, creatinine, BUN, SOD, and XO were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
RIPA buffer, ECL reactions were purchased from Applying
Technologies Inc. (Beijing, China).

Determination of Uric Acid, Creatinine,
BUN, XO, and SOD Levels
Blood samples were centrifuged at 3000 × g for 4 min to obtain
serum. Levels of serum, urine, kidney uric acid, creatinine, BUN,
XO, and SOD were measured using commercial standard kits
accordingly with the manufacturer’s protocol.

Histopathology Staining
Mice kidneys were fixed with 4% paraformaldehyde for 24 hours,
paraffin-embedded, and sectioned into 5mm-thick slices for
further H&E, Masson’s trichrome and F4/80 staining and
assessed by light microscopy. F4/80 positive brown staining
was analyzed by Image-pro plus 6.0 (Media Cybernetics, Inc.,
Rockville, MD, USA) by an independent company Servicebio
(Wuhan, China) in a blinded way (i.e. without any knowledge
about the experimental groups).
harmacology | www.frontiersin.org 3
Western Blot Analysis
Whole kidney tissues were cut and homogenized in ice-cold
RIPA buffer, followed by ultrasonication. The lysates were placed
on ice for 30 min and centrifuged at 12,000 × g for 10 min. The
supernatant was collected and protein levels were measured by
BCA assay. Equal amount of protein was mixed with 5 × loading
buffer. Samples were boiled at 100 °C for 5 min and cooled on ice
for 5 min, then stored at −80 °C for further use.

Protein samples were separated by 10% SDS-PAGE and then
transferred to PVDF membranes. The membrane was blocked by
2% BSA for 1 h at room temperature and then incubated with
primary antibodies diluted at 1:1000 overnight in 4 °C. The
secondary antibodies were incubated at room temperature for 1
h, at dilution of 1:5000. Then the membranes were applied
electrogenerated chemiluminescence and analyzed by gel image
analysis system (Flurochem 5500, Alpha Innotech, USA).

Statistical Analysis
All the data was presented as means ± SD and analyzed by one-
way or two-way ANOVA, followed by appropriate posthoc test,
using Graphpad Prism6 software. P value less than 0.05 were
considered statistically significant.
RESULTS

Mangiferin Lowered Serum Uric Acid Level
and Alleviated Renal Dysfunction in
Hyperuricemic Mice
HN mice were induced by oteracil potassium and hypoxanthine.
Using this model, serum uric acid level was increased by more
than 60% compared with that of control mice (Figure 1A).
Markers of kidney dysfunction and injury, including kidney/
body weight ratio (kidney index), serum BUN, and creatinine
levels were all found to be elevated in mice treated with oteracil
potassium and hypoxanthine (Figures 1B–D). Moreover, H&E
staining of kidney sections showed massive glomerular
hypertrophy and tubular dilation in hyperuricemic mice,
indicating severe glomerular and tubular injury (Figure 1E).

In this HN model, simultaneous treatment with mangiferin
prevented the increase in serum uric acid level, attenuated the
kidney index, reduced serum BUN levels, and normalized serum
creatinine levels (Figures 1A–D). Besides, mangiferin improved
glomerular and tubular structures (Figure 1E). Meanwhile,
mangiferin did not have any significant effects in normal
control mice. Taken together, in an established and validated
model of HN, mangiferin treatment was associated with several
renal protective effects.

Mangiferin Reduced Renal Inflammation
in HN Mice
Activation of the immune system and subsequent infiltration of
inflammatory cells into the kidney is crucially involved in the
pathology of kidney injury. We performed immunohistochemical
staining of F4/80 to assess macrophage infiltration of the kidney.
F4/80 positive staining area was significantly increased inHNmice
February 2020 | Volume 11 | Article 49
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compared with that in control mice (Figures 2A, B). These
inflammatory changes were markedly reduced by mangiferin.
There was no distinction at F4/80 staining in control mice with
or without mangiferin administration.

We then measured inflammation-related protein expression
and marker of apoptosis. NLRP3 expression was increased in HN
mice and was reversed by mangiferin, as well as the ratio of
p-JNK/JNK (Figures 2C–E). These results suggest anti-
inflammatory and cell protective effects of mangiferin in the
kidney of HN mice.

Mangiferin Suppressed Renal Fibrosis
in HN Mice
Kidney fibrosis was assessed by Masson’s trichrome stain.
Multiple blue-stained areas were observed in the tubular
interstitium of kidneys from HN mice, indicating collagen
accumulation. Mangiferin administration effectively reduced
the renal interstitial fibrosis (Figure 3A). Similar result was
observed in a-SMA staining (Figure 3A), as well as the change
Frontiers in Pharmacology | www.frontiersin.org 4
in a-SMA protein expression (Figure 3B). Furthermore,
simultaneous treatment with mangiferin reversed the increased
expression of fibronectin in kidneys of HN mice, further
supporting the histological findings (Figures 3B–D). Normal
control mice showed no difference in histological staining or
fibrosis-related protein expression with or without mangiferin
administration. Activation of the PKCb pathway is thought to
contribute to renal fibrosis in diabetic nephropathy (Toyoda et al.,
2004). We also found increased expression of p-PKCb in the HN
model of ourmice, which was reduced bymangiferin (Figures 3B, E),
suggesting that therapeutic effect of mangiferin on fibrosis is at least in
part mediated via modulation of PKCb activation.

Mangiferin Promoted Uric Acid Excretion
Through Urine in HN Mice
To further investigate the mechanisms contributing to
renoprotection following mangiferin treatment in HN mice, we
focused on uric acid generation and its renal excretion. Urine
output was measured by collecting 24 h urine from metabolic
FIGURE 1 | Effects of mangiferin on uric acid level and renal injury. Serum uric acid was measured (A). Kidney injury was evaluated by calculated kidney index (B),
level of serum creatinine (C), and BUN (D). Kidney sections were applied to H&E staining (200×) (E). n = 4-6. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. Con; *P < 0.01
vs. HN; △△P < 0.01, △△△P < 0.001 vs. Con+Mang.
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cages. Increased urine output was found in the HN group,
compared with control mice, but it was also found significantly
higher in the HN group with simultaneous mangiferin treatment,
compared with HN group (Figure 4A).

To figure out whether the increasing urine volume
contributed to a rise in urinary uric acid excretion, uric acid
levels were measured in the collected urine samples. There was
no significant difference in urine uric acid levels among the four
groups, albeit a slight rise was observed in the HN groups
compared to control mice (Figure 4B). Calculated 24 h urine
uric acid excretion was non-significantly higher in the HN group
Frontiers in Pharmacology | www.frontiersin.org 5
compared with control mice (p = 0.11), but markedly increased
in HN mice treated with mangiferin compared to HN mice
(Figure 4C). Normal mice with only mangiferin administration
showed similar urinary uric acid excretion and urine output
compared to normal control mice. Urine uric acid level
normalized by urine creatinine (uUA/uScr) was calculated to
evaluate uric acid excretion independent of urine volume. As
shown in Figure 4D, there is significant increase of uUA/uScr
level in HN and HN+Mang group compared to control group.
However, no significant difference of uUA/uScr level was
observed among HN mice with or without mangiferin
FIGURE 2 | Protective effect of mangiferin on renal inflammation. F4/80 staining was applied to present macrophage infiltration in kidney (200×) (A). The positive
brown-stained area was calculated (B). Expression of NLRP3, p-JNK and JNK was determined by western blot (C) and quantifications (D). ##P < 0.01, ###P < 0.001
vs. Con; *P < 0.05, **P < 0.01, ***P < 0.001 vs. HN.
February 2020 | Volume 11 | Article 49
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treatment. Our result indicated that total urinary uric acid
excretion was increased in HN mice, and further enhanced by
mangiferin, which was mainly due to the increase of
urine output.

Mangiferin Elevating Uric Acid Excretion
Was AQP2-Related While Urate
Transporter-Independent
Given the elevated 24 h urinary volume and 24 h uric acid
excretion observed in mangiferin-treated HN mice, we next
investigated possible underlying mechanism. Aquaporin 1
(AQP1) and aquaporin 2 (AQP2) are two major water
channels located mainly on the apical membrane of proximal
and collecting tubular cells, respectively. These channels mediate
water reabsorption from the lumen to interstitium, thus modulating
the urine output. We detected the expression level of AQP1 and
AQP2 in kidneys (Figure 5A). AQP1 expression was not
significantly different among the four groups (Figure 5B).
However, AQP2 expression was significantly reduced in HN mice
with mangiferin treatment, compared with HN mice (Figure 5C).
Of note, mice treated with only mangiferin also showed significant
decrease of AQP2 expression compared to normal control mice,
indicating a direct influence of mangiferin on AQP2, independent
of urate.

The expression of major urate transporters (i.e. URAT1,
GLUT9, OAT1) in the kidney was also examined by the
western blot (Figure 5A). These transporters were all down-
Frontiers in Pharmacology | www.frontiersin.org 6
regulated in HN mice, and was not affected by mangaferin
treatment (Figures 5D–F). Therefore, decreased expression of
urate transporters might contribute to the slight rise of uric acid
excretion in HN mice, but was not influenced by mangiferin. It
was rather the down-regulation of AQP2 that finally contributed
to the increased uric acid excretion in mangiferin treated
HN mice.

Mangiferin Normalized XO Activity in
HN Mice
In addition to uric acid excretion, we also explored the effect of
mangiferin on uric acid generation in this study. The activity of XO,
a key enzyme catalyzing uric acid production, was assessed.
Mangiferin attenuated the increased serum XO activity in HN
mice (Figure 6A). Both normal and HN mice exhibited lower
kidney XO activity with mangiferin administration (Figure S1A),
which further confirmed the XO inhibitive effect of mangiferin
specifically in the kidney. The inhibition rate of 100 mMmangiferin
on XO activity in vitro was less than 40% (Figure S2), whereas 0.04
mM febuxostat, the clinical anti-hyperuricemic XO inhibitor,
reached the inhibition rate of 95.4%.

Given that ROS (i.e. superoxide and hydrogen peroxide) are
generated as by-products during XO-catalyzed reaction of
hypoxanthine to xanthine and further to uric acid, it is
predicted that mangiferin may exhibit some antioxidative
properties by inhibiting XO activity. We also measured the
activity of SOD in serum and kidney, one of the key
FIGURE 3 | Protective effect of mangiferin on renal fibrosis. Kidney sections were applied to Masson’s trichrome stain (200×) (left) and a-SMA staining (200×) (right)
(A). Expression of fibronectin, a-SMA, p-PKCb, and PKC-b was determined by western blot (B) and quantifications (C–E). ##P < 0.01, ###P < 0.001 vs. Con;
*P < 0.05, ***P < 0.001 vs. HN; △△△P < 0.001 vs. Con+Mang.
February 2020 | Volume 11 | Article 49
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antioxidant defense systems to eliminate ROS. Interestingly,
SOD activity in serum was slightly but significantly decreased
in HN mice, and this was reversed by mangiferin treatment
(Figure 6B). Nevertheless, significantly higher kidney SOD
activity was observed in HN mice without mangiferin
treatment compared to normal mice (Figure S1B), which was
the opposite of its change in the serum. There was no significant
difference among the four groups of mice in kidney MDA
activity (Figure S1C). HN mice did not exhibit higher MDA
activity in kidney, which was supposed to be related to its high
kidney SOD level.

Taken together, our results demonstrated an inhibitory effect
of mangiferin on XO activity and modulation of serum SOD in
vivo, which together contributed to less uric acid generation and
potential reduction of oxidative stress.
DISCUSSION

In recent years, it has been found in basic research that
hyperuricemia induced oxidative stress and compromised
eNOS function, leading to renal endothelial dysfunction
Frontiers in Pharmacology | www.frontiersin.org 7
(Sanchez-Lozada et al., 2012). In addition, hyperuricemia-
associated activation of the renin-angiotensin system promoted
vascular intima proliferation, causing hypoperfusion of the renal
tubules, and induced renal inflammation and fibrosis,
contributing to HN (Kang et al., 2002; Jalal et al., 2011). In this
study, we established a hyperuricemic nephropathy (HN) model
in mice (Figure 1), which recapitulates many of the features
characterizing this pathological condition (e.g. elevated serum
uric acid level, impaired kidney function, renal injuries and
fibrosis, as well as infiltration of inflammatory cells).

Mangiferin has been found protective in several diseases,
including diabetic nephropathy (Li et al., 2010), cardiomyopathy
(Hou et al., 2016), sepsis-induced acute kidney injury (He et al.,
2014), and NAFLD (Wang et al., 2017). Among the underlying
mechanisms, anti-inflammatory, anti-fibrotic, and antioxidative
effects of mangiferin have been suggested to importantly
contribute to its therapeutic effects. In this study, our results
showed that mangiferin treatment effectively ameliorated both
hyperuricemia and renal injury in the HN model, as evident from
improved kidney index, normalized serum creatinine, and BUN
levels. Moreover, the positive F4/80 and Masson’s trichrome
staining of the kidney was significantly reduced by mangiferin,
FIGURE 4 | Effect of mangiferin on urinary uric acid excretion. The 24-hour urine output (A) and urine uric acid level was determined (B) from collected 24-hour urine. The
24-hour urine excretion was calculated (C). Urine uric acid normalized by urine creatinine (uUA/uScr) was calculated (D). Data was presented as normalized ratio comparing to
control group. n = 3-6. #P < 0.05 vs. Con; ##P < 0.01 vs. Con; *P < 0.05, **P < 0.01 vs. HN; △△P < 0.01 vs. Con+Mang; △△△P < 0.001 vs. Con+Mang.
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indicating also anti-inflammatory and anti-fibrotic effects of
mangiferin in the HN model.

Hyperuricemia has been reported to induce renal
inflammation through multiple mechanisms, including
activation of JNK signaling pathway (Nomura et al., 2013) and
NLRP3 inflammasome (Braga et al., 2017). JNK signaling
pathway was closely associated with macrophage infiltration in
distinct kidney injury models (de Borst et al., 2009; Tesch et al.,
Frontiers in Pharmacology | www.frontiersin.org 8
2016). NLRP3 inflammasome was activated in tubulointerstitial
and glomerular diseases, promoting proinflammatory cytokines
IL-1b and IL-18 production and excretion, causing renal
inflammatory injuries (Chang et al., 2014). Our data showed
substantial macrophage infiltration in glomeruli and
tubulointerstitium of kidneys from HN mice, which was
ameliorated by mangiferin. Furthermore, mangiferin prevented
HN-induced activation of both JNK and NLRP3 in the kidney,
FIGURE 5 | Effect of mangiferin on uric acid excretion-related transporters. Expression of AQP1, AQP2, URAT1, Glut9, and OAT1 was determined by western blot
(A) and quantifications (B–F). #P < 0.05, ##P < 0.01, ###P < 0.001 vs. Con; ***P < 0.001 vs. HN; △P < 0.05, △△△P < 0.001 vs. Con+Mang.
FIGURE 6 | Effect of mangiferin on XOD activity and level of SOD. Serum XO (A) and SOD (B) activity was measured. n = 3-6. #P < 0.05, ###P < 0.001 vs. Con;
*P < 0.05, **P < 0.01 vs. HN.
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which supports an anti-inflammatory effect of mangiferin also in
this model. Nevertheless, due to the urate lowering and anti-
inflammatory effects of mangiferin in other diseases (Niu et al.,
2012; He et al., 2014; Wang et al., 2017), mangiferin was
speculated to improve kidney inflammation by both decreasing
uric acid level and direct inhibition of immune cell activation
and infiltration.

In diabetes, hyperglycemia-associated activation of the
PKCb-MAPK pathway led to collagen accumulation and
TGFb-mediated extracellular matrix deposition, contributing to
progressive renal fibrosis (Toyoda et al., 2004). Specific PKCb
inhibitors, such as ruboxistaurin, have been developed to prevent
or treat diabetic nephropathy (Tuttle et al., 2005). Furthermore,
the effects of PKCb inhibition have also been investigated in
models of non-diabetic progressive nephropathy. For example,
in rats with subtotal nephrectomy, PKCb inhibition with
ruboxistaurin, significantly reduced TGFb-mediated kidney
fibrosis (Kelly et al., 2009). In our study, renal fibrosis in
tubulointerstitial areas of HN kidney was associated with
elevated fibronectin, a-SMA, and PKCb expression, which
were all prevented by mangiferin treatment. Taken together, it
is proposed that mangiferin may alleviate kidney fibrosis via
mechanisms that involve modulation of PKCb activation.

It has been found in hyperuricemic rats that early urate-
lowering therapy (ULT) using febuxostat and allopurinol both
ameliorated kidney dysfunction (Sanchez-Lozada et al., 2005;
Sanchez-Lozada et al., 2008a; Sanchez-Lozada et al., 2008b). A
long-term quantitative study in gout patients also showed that
decreased UA level by using febuxostat was correlated with eGFR
improvement (Whelton et al., 2011). Therefore, lower uric acid
level by mangiferin treatment was supposed to contribute to the
kidney function improvement in HN mice. To further
understand the mechanism(s) of mangiferin-mediated lowering
of circulating uric acid, we focused on its role in modulating uric
acid excretion and production.

Uricosuric drugs are usually known to promote uric acid
excretion through urate transporters in hyperuricemia. The
uricosurics benzbromarone and probenecid have been reported
to inhibit GLUT9 and URAT1 (Hosoyamada et al., 2004; Anzai
et al., 2008), and lesinurad inhibited URAT1 and OAT4 (Miner
et al., 2016), leading to reduced urate reabsorption. However,
reduction of urate reabsorption may cause substantial urate
accumulation in the renal tubules before being excreted. This
may increase the risk of uric acid crystallization and subsequent
nephrotoxicity (Corrado et al., 2006). Unlike most uricosuric
drugs, mangiferin promoted total urinary uric acid excretion
mainly by elevating urine output, with no significant change in
urine uric acid level. Increased uUA/uScr level in HN mice with
or without mangiferin treatment indicated increased kidney uric
acid excretion independent of urine volume (Figure 4D). This is
in accordance with the decreased expression of urate
transporters observed in these two groups (Figure 5A), which
caused reduced reabsorption and elevated excretion of uric acid
in kidney. uUA/uScr level among these two groups further
confirmed that mangiferin did not affect urinary uric acid
excretion when eliminating the factor of urine volume. The
Frontiers in Pharmacology | www.frontiersin.org 9
decreased urate transporters expression might be due to low
levels of urate being filtered as a consequence of glomerular
injuries (Nagura et al., 2016).

AQP2 channels, located primarily in the collecting duct, are
usually activated by arginine vasopressin (AVP), leading to
considerable water reabsorption (Christensen et al., 2000). In
our study, we observed that mangiferin treatment reduced AQP2
expression in control kidneys and this effect was more
pronounced in HN mice, and was accompanied with
significantly higher urine output. As demonstrated in previous
studies, variation of urine flow rate was positively related to the
change of urate excretion (Diamond et al., 1972; Meisel and
Diamond, 1976). However, the underlying mechanism(s) for this
is not clear. Increased urate excretion by mangiferin treatment
observed in HN mice in our study was also associated with
increased urine flow rate, which was likely due to decreased
AQP2 expression. Additionally, the significant decline of AQP2
expression in mangiferin-administrated control mice indicates a
direct inhibitory effect of mangiferin on AQP2 regulation. Urine
output in control mice with mangiferin treatment was not
different from that in normal controls, which was probably
adjusted through a compensatory mechanism. Finally,
mangiferin did not affect AQP1 expression in any of the
experimental groups.

As the key enzyme in catalyzing uric acid production, XO has
been considered a classic drug target in anti-hyperuricemic
treatment. Febuxostat and allopurinol are still first-line anti-
hyperuricemic XO inhibitors. Previous report showed that
norathyriol, a mangiferin metabolite in vivo, exerted XO
inhibition and hypouricemic effects in mice (Niu et al., 2016).
Consistently, we detected significantly decreased serum XO
activity in HN mice treated with mangiferin. Apart from
promoting uric acid excretion, the inhibitory effect on XO activity
by mangiferin may also contribute to the lowering of serum uric
acid in HNmice. Furthermore, as a by-product of the XO-catalyzed
reaction, excessive ROS leads to oxidative stress with increased risk
of several pathologies including kidney dysfunction and injuries
(Daenen et al., 2019). Based on our result, HN mice displayed
reduced serum SOD but increased kidney SOD. Opposite SOD
levels were also reported in previous research. P.K. Gupta group
used STZ to induce oxidative stress in rats. However, distinct SOD
activities were found between heart and kidney (Muruganandan
et al., 2002). Here, we speculated that a compensatory antioxidative
mechanism occurred in the kidneys of HN mice, while the
antioxidative defense was in general decreased in the systemic
circulation and reversed by mangiferin.

Genetic variants of urate transporters such as ABCG2,
URAT1, GLUT9 in human are a common cause of clinical
hyperuricemia, which is harder to control and progress easily
(Woodward et al., 2009; George and Keenan, 2013; Woodward,
2015). Given the multi-target therapeutic effects of mangiferin on
HN independent of urate transporters, it is predicted that
mangiferin might play a better role in the urate transporter
dysfunction-related HN models. Loss of ABCG2 function caused
urate overload in mice kidney (Matsuo et al., 2014). Future
studies using ABCG2 Q140K mouse model will be of great
February 2020 | Volume 11 | Article 49
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interest and have clinical significance (Woodward and
Hoque, 2017).

To summarize, our study revealed a novel mechanism
whereby mangiferin reduced serum urate levels by promoting
urate renal excretion via inhibition of AQP2-dependent water
reabsorption. Mangiferin suppressed renal injuries,
inflammation, and fibrosis in a model of hyperuricemic
nephropathy (HN), induced by oteracil potassium and
hypoxanthine. The mechanism is proposed to be dual via a
urate lowering effect and modulation of anti-inflammatory, anti-
fibrotic, and antioxidative pathways (Figure 7). Our findings
suggest that mangiferin might be a novel multi-target candidate
to treat HN, with lower risk for kidney toxicity caused by highly
concentrated uric acid in the renal tubules before excreted.
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