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An MCEM Framework for Drug 
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Delayed drug safety insights can impact patients, pharmaceutical companies, and the whole society. 
Post-market drug safety surveillance plays a critical role in providing drug safety insights, where real 
world evidence such as spontaneous reporting systems (SRS) and a series of disproportional analysis 
serve as a cornerstone of proactive and predictive drug safety surveillance. However, they still face 
several challenges including concomitant drugs confounders, rare adverse drug reaction (ADR) 
detection, data bias, and the under-reporting issue. In this paper, we are developing a new framework 
that detects improved drug safety signals from multiple data sources via Monte Carlo Expectation-
Maximization (MCEM) and signal combination. In MCEM procedure, we propose a new sampling 
approach to generate more accurate SRS signals for each ADR through iteratively down-weighting their 
associations with irrelevant drugs in case reports. While in signal combination step, we adopt Bayesian 
hierarchical model and propose a new summary statistic such that SRS signals can be combined with 
signals derived from other observational health data allowing for related signals to borrow statistical 
support with adjustment of data reliability. They combined effectively alleviate the concomitant 
confounders, data bias, rare ADR and under-reporting issues. Experimental results demonstrated the 
effectiveness and usefulness of the proposed framework.

Adverse drug reactions (ADR) cause a global and substantial burden accounting for considerable mortality and 
morbidity, as well as extra costs due to increased hospitalization, prescription cascades, and other ADR conse-
quences1. Unanticipated ADRs may occur after a drug has been approved due to its use or prolonged use on large, 
diverse populations. Therefore, the post-marketing drug safety surveillance, also referred to as pharmacovigi-
lance2, has become an essential component to monitor unanticipated ADRs, generate more complete drug safety 
profiles, and assist governmental drug administration agencies to take actions against these risks3.

To facilitate pharmacovigilance research, Real World Evidence (RWE) data that are generated from real world 
practice to reflect actual patient experience become increasingly important. The drug-related RWE mainly com-
prises of two types of data: the reports from Spontaneous Reporting Systems (SRS) submitted by pharmaceutical 
companies, healthcare professionals and consumers, as well as the Observational Health Data (OHD) including elec-
tronic health records, patient registries, and administrative claims. Among the two types of RWE, the SRS has served 
as a cornerstone for post-marketing drug surveillance, and the FDA Adverse Event Reporting System (FAERS) is 
one of the most prominent SRSs. The FAERS consists of a collection of case reports, each of which includes a few 
adverse events associated with the administration of several drugs. These case reports have provided rich evidence to 
assist the early identification of drug safety signals and generate hypothesis for further confirmatory investigations, 
sometimes regulatory warnings and changes of product information4, and even withdrawals of marketing authori-
zations5. For example, signals indicating the strong associations between cerivastatin and rhabdomyolysis has led to 
various regulatory decisions between 1999 and 20016; signals indicating associations between antihistamine Seldane 
and fatal heart rhythm disturbance caused the drug to be pulled out of market7.
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Due to the valuable information SRS data can provide, mining drug safety signals from SRS has become a 
highly active research area8–10. During the past decades, a series of Disproportionality Analysis (DPA) methods 
were developed to automatically detect drug safety signals from SRS. The basic idea of disproportionality anal-
ysis lies on the assumption that combinations of a drug and a clinical event that are disproportionately highly 
represented in the database may indicate an important risk signal based upon a difference from the background 
frequency. The most widely cited DPA measurements are the Relative Reporting Ratio (RRR), Proportional 
Reporting Rate (PRR) and Reporting Odds Ratio (ROR)11,12. However, they all suffer from the sampling vari-
ance issue13,14. To address this issue, two Bayesian methods, Multi-item Gamma Poisson Shrinker (MGPS)15 and 
Bayesian Confidence Propagation Neural Network (BCPNN)16 were proposed. Both approaches handle sam-
pling variance by shrinking relative reporting ratio or information component towards a prior when less data 
concerning the drug-ADR pair is available15,16. Particularly, MGPS is considered reliable and in routine use by 
FDA. As for OHD data, recent years it becomes an emerging promising resource of pharmacovigilance17–20. Also, 
since different types of RWE data are collected with various designs and approaches, weaving together multiple 
RWE sources could further improve the quality and efficiency of drug safety detections. Previously, a Bayesian 
hierarchical model10 was proposed to combine signals from SRS and OHD, while ranking methods were applied 
to combine signals from SRS and literature17. However, the aforementioned signal detection and combination 
methods still have large potentials of improvement. We identify several challenges as below.

	(1)	 Challenges of Explicit Handling Concomitant Confounders in SRS Data: Concomitant drugs partially inherit 
each other’s associations8. When only one drug is the cause of a particular ADR, the concomitant drugs 
become confounders. Such issue has rarely been explicitly handled by existing works.

	(2)	 Challenges of Data Related Issues in Single RWE Data: There are several data related issues for a single 
source of RWE data, including (i) ADR cases in the SRS are known to be under-reported14, (ii) Although 
RWE data is a potentially transformative force in healthcare, these data still do not yet suffice to fully over-
come the fundamental issues of data quality and bias21,22, and (iii) True drug-ADR associations are often 
considered rare events compared with large amounts of case reports.In order to capture rare but critical 
ADRs, the DPA methods (e.g. MGPS) would suffer from high false positive rates16.

In this work, we propose to alleviate these issues with the following two steps.

	(1)	 Monte-Carlo Expectation Maximization Step (MCEM): To filter out concomitant confounders in each case 
report, we propose a new Monte Carlo sampling procedure that could assign each ADR with its major 
associated drug determined by drugs’ contribution to that ADR (e.g. measured by normalized MGPS) in 
the case report. This is achieved via an iterative procedure: we start with calculating MGPS scores for all 
drug-ADR pairs based on all reports, then for each report we normalize the MGPS scores across drugs in 
the report to obtain drugs’ probability proportional to their MGPS scores related to the given ADR. Next 
we perform iterative Monte Carlo sampling to sample one drug based on such probability. In each itera-
tion, the sampled drug is added to the report saved throughout previous iterations and MGPS scores are 
re-calculated for the current report. With such a procedure, we can generate more accurate SRS signals for 
each ADR through iteratively down-weighting their associations with irrelevant drugs in case reports.

	(2)	 Signal Combination Step: To alleviate the issues of under-reporting, data bias, and rare ADR detections 
from a single RWE source, we adopt an empirical Bayesian approach to combine different signals gener-
ated from multiple and different types of RWE sources. It not only generates improve drug safety signals, 
but also has a smoothing effect to prevent performance degradation due to anomalies and artifacts in some 
data source. Moreover, to account for the data quality, we propose a new summary statistic that takes a 
pooling strategy to put more emphasis on more reliable data sources.

Materials and Methods
Data Description.  FDA Adverse Event Reporting System (FAERS).  The SRS data used in this study is the 
FAERS data from 2007 to 2014, including 437,317 reports per year on average. To preprocess the data, Banda 
et al. has curated a cleaned and standardized version of FAERS with duplicate case records removed, mapping 
drug names to RxNorm concepts and ADR outcomes to MedDRA concepts23 (http://datadryad.org/resource/
doi:10.5061/dryad.8q0s4). Based on this dataset, we further mapped relevant MedDRA concepts to four ADRs of 
interest in the gold standard supplied by OMOP, including acute myocardial infarction (AMI), acute liver injury 
(ALI), acute renal failure (ARF), and upper GI bleeding (UGB).

Canada’s Spontaneous Reporting System (MedEffect).  To test the robustness of the MCEM approach, we further 
evaluated on another independent adverse event database, Canada’s MedEffect database (https://www.canada.
ca/en/health-canada/services/drugs-health-products/medeffect-canada.html). MedEffect is a Canadian version 
of the FAERS and contains ~250,000 adverse event reports from 2004 to 2014. To preprocess the data, we also 
mapped drug names to RxNorm concepts and ADR outcomes to MedDRA concepts. Based on this dataset, we 
further mapped relevant MedDRA concepts to three ADRs of interest in the gold standard supplied by OMOP, 
including AMI, ALI, and UGB. Unlike FAERS, ARF was not included here since the preferred MedDRA term 
of ARF (term ID: 10038436) did not appear in MedEffect database. The final OMOP reference standard for 
MedEffect database involves three ADRs of interest, 61 true positive cases and 15 true negative cases.

http://datadryad.org/resource/doi:10.5061/dryad.8q0s4
http://datadryad.org/resource/doi:10.5061/dryad.8q0s4
https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada.html
https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada.html
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Observational Healthcare Database (OHD).  For the signal combination step, the OHD used in this work is 
from Truven Health Analytics Commercial Claims and Encounters (CCAE) (http://truvenhealth.com/markets/
life-sciences/products/data-tools/marketscan-databases), which represents the privately insured population and 
captures administrative claims with patient-level de-identified data from inpatient and outpatient visits, and 
pharmacy dispensing claims from the outpatient setting12. The database used in the study involves 46.5 million 
patients from 2003 to 2009, among them, 49% are male and the mean age is 31.4. In total, it includes 1,030.6 mil-
lion national drug codes from pharmacy dispensing claims and 1,257.5 million ICD9 codes from inpatient and 
outpatient claims.

The Signal Detection and Combination Framework.  In this section, we propose the signal detection 
and combination framework. The objective is to generate a grand risk score for each drug-ADR pair, where 
confounders will be filtered using MCEM and the signals will be enhanced via combining multiple data with a 
Bayesian hierarchical model.

The overall framework is illustrated in Fig. 1, where D = {d1, …, dI} represents a set of drugs given for a case 
report and R = {r1, …, rj} denotes a set of ADRs. There are multiple co-occurrences between one ADR and several 
drugs as shown in Fig. 1. However, it is assumed that for each ADR in each report there exists a single drug as 
its major cause while the other drugs are confounders that need to be filtered out. This assumption consequently 
leads to an improved drug-ADR co-occurence count used in MGPS computation, and thus yields more accurate 
results. Improved drug-ADR counts are obtained by the MC sampling procedure, where for each ADR, drugs are 
sampled with a probability proportional to its MGPS score, which effectively gives more emphasis on the drugs 
with higher probability to be associated with the corresponding ADR. After the enhanced counts are obtained, 
we can compute final MGPS scores for each drug-ADR pair. In the signal detection step, we combine signal scores 
from SRS with their counterpart safety signal scores from other OHD (e.g. claims) data via an empirical Bayesian 
model that enables related signals to borrow statistical support from one another with adjustment of data reliabil-
ity. In the following sections, we discuss each step of the proposed framework.

The Multi-item Gamma Poisson Shrinker (MGPS) Method.  The spontaneous reporting systems (SRS) used in 
this study are of the following structure: each dataset consists of numerous records and each record contains a set 
of patient reported ADR instances along with drugs that are suspected to cause the ADRs. The MGPS method15 
is a leading disproportionality analysis method for detecting potential drug safety signals from the SRS. It focuses 
on low-dimensional projections of the data, specifically 2-dimensional contingency tables as illustrated in Table 1. 
The MGPS method is computed as follows: let n00(i, j) denote the Nij entry for the number of events regarding the 
ith drug and the jth ADR. Assume each observation of Nij is drawn from a Poisson distribution with an unknown 
mean μij, then the theoretical value of relative risk between the ith drug and the jth ADR, λij, can be computed 
using Eq. 1.
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Figure 1.  The proposed signal detection and combination framework: For a particular case report, given a 
set of drugs and a set of ADRs, MCEM procedure is used to filter out the concomitant drug confounders to 
associate each ADR with one major drug. To further enhance the signal strength, an empirical Bayesian based 
signal combination approach is used to combine signals from OHD data with signals from SRS case reports.

Report with ADR Report without ADR

Report with Drug n00 n01

Report without Drug n10 n11

Table 1.  2 × 2 Contingency Table.

http://truvenhealth.com/markets/life-sciences/products/data-tools/marketscan-databases
http://truvenhealth.com/markets/life-sciences/products/data-tools/marketscan-databases
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+n i j n i j( , ) ( , )10 01 . Here we regard the geometric mean of the posterior distribution for each λij as the MGPS 

scores. And λij is assumed to arise from a particular 5-parameter prior distribution, namely a mixture of two 
gamma distributions as given in Eq. 2.

λ α β α β∼ + −wGa w Ga( , ) (1 ) ( , ) (2)ij 1 1 2 2

where Ga indicates the Gamma distribution, and α1, β1 and α2, β2 are their hyperparameters.
Then then posterior distribution of λij is iteratively fitted based on the observations of data under the Bayesian 

framework as is given by Eq. 3.
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Based on the posterior, the criteria for generating a signal is initially proposed by DuMouchel15 as ranking 
drug-ADR pairs by their posterior expectation of log2(λij), which can be expressed by the following Eq. 4.
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where ψ is the diagamma function and Qn can be computed from Eqs 5 and 6.
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To conclude, the adoption of MGPS method not only provides a shrinkage estimate of relative risk to address 
the sampling variance issue, but also works efficiently on large-scale data. It is considered an important improve-
ment, and thus becomes the most widely used methods that is in routine use by regulators (e.g. FDA) and phar-
maceutical manufacturers worldwide. However, the confounders induced by concomitant drugs still remain and 
would cause inaccurate detections. In the following, we introduce an MCEM framework to further address such 
confounding issues in MGPS.

Monte Carlo Sampling Step.  To alleviate the confounding effects induced by concomitant drugs, we borrow the 
idea of discrete choice models24 and try to filter out these confounders by assuming for each case report, each 
ADR has at most one major associated drug. Although some ADRs could be induced by drug combinations (i.e. 
drug drug interactions (DDI)), previous study confirmed the DDI incidences could be quite rare among reports 
involving at least two drugs in SRS databases25. Therefore, for most cases the “one major drug” assumption holds, 
though this procedure could be extended to multiple drugs. Based on such assumption, we propose the following 
MCEM procedure.

Here is a practical guide for the MCEM procedure. In an MCEM procedure, the maximizer of the posterior 
probability is approximated with sampled data in the E-step and the value of the maximizer is optimized in the 
M-step. In our case, we first compute MGPS scores for all drug-ADR pairs across all reports in the SRS system. 
Then, for each ADR in each report, we normalize the MGPS scores across only drugs in this report to obtain these 
drugs’ contribution ratio proportional to their MGPS scores related to the given ADR. And these contribution 
ratio will be used as the sampling probabilities and we will draw from multinomial distribution to assign the 
major drug to the target ADR in the next step. In the next step, we perform iterative Monte Carlo sampling to 
sample one drug based on the aforementioned probabilities. In each iteration, the sampled drug is added to the 
report saved throughout these iterations and MGPS scores are re-calculated for the current states over all reports. 
In the next iteration, updated MGPS scores for all drug-ADR pairs are used and we iterate the process until the 
difference between the optimal values of the maximizer in consecutive iterations is less than a heuristic threshold 
(e.g. 10−3, 10−5). Last we compute final MGPS scores for all drug-ADR pairs. Note that a general description of 
MCEM algorithm is provided in Appendix A1. and an algorithmn version is in Procedure A2.

Significance.  The Monte Carlo sampling procedure assigns the major drug for each ADR ranked by their 
contribution to the risk score. After iterations, the procedure will down-weight irrelevant causes (e.g. drugs) for 
each ADR and thus generate improved the count of co-occurrence of a drug and ADR pair for all drug-ADR 
pairs.

Signal Combination Step.  In the signal combination step, we employ an empirical Bayesian strategy to combine 
drug safety signals obtained from multiple data sources. We formulate the signal combination as a Bayesian hier-
archical model that assumes signals are independently and identically distributed with shared hyper-parameters. 
Index drug-ADR pair (i, j) with ∈ l L{1, , }, and ylk as the quantified relationship between l-th drug-ADR pair 
from k-th ∈ k K( {1, , }) data source. In addition, we define σ = Var y( )lk lk

2  as the observed variance of ylk. Then 
the objective becomes to estimate the combined score φl for the l-th drug-ADR pair with =Y y{ }lk  and σ=S { }lk

2 . 
Here we follow the idea in Harpez et al10. and assume the observed scores 

y y, ,l lK1  follow a Gaussian process 
centered around φl, where φl follows a Gaussian distribution centered around grand prior mean θ which allows 
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related signals to share statistical properties. These relations are given by the following distributions defined in 
Eqs 7 and 8:

φ θ φ σ| ∼p y N( , ) ( , ) (7)l
l l l

( ) 2

φ θ θ τ| ∼ .p N( ) ( , ) (8)l
2

And the signal combination is computed as the estimate of φl as given by Eq. 9:

φ θ= + −ˆ c y c(1 ) (9)l l
l

l
( )

where y l( ) is a summary statistic that is meant to summarize the information (signal scores) provided by each data 
source for a given drug-ADR association. The summary statistic y l( ) is for approximating the joint density of the 
scores and φ, which is used to obtain the posterior distribution of φ and = τ

τ σ+
cl

l

2

2 2
. In addition, we also follow 

the notation as in Harpez et al10. to denote φ̂l as the mean of the posterior distribution of φl given θ, τ2 and the 
scores.

Here, τ2 and θ are estimated via expectation maximization (EM) with the independently distributed observa-
tions y l( ) conditioned on φl. Thus, we perform maximum likelihood estimation of the hyper-parameters using the 
posterior distribution of φ given the scores and their variances in each iteration. Note that, in Harpez et al.10, 
summary statistic y l( ) is defined assuming signals from different sources have approximately the same scale. 
While in our work, we define y l( ) in a way that the signal sources with less uncertainty would be emphasized more. 
To be specific, y l( ) is calculated as a weighted average of the scores obtained by the same source first, then average 
of variances of individual scores is used as a weighting coefficient to combine different data sources. The formula 
is given below by Eqs 10 and 11.
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where Nk is the number of signals from the k-th source.

Significance.  The proposed signal combination step can be considered a pooling strategy: For the same 
drug-ADR pair, if the average uncertainty of one data source is high overall, then signal combination will put 
more weights on other data sources with less uncertainty. This approach also provides a smoothing effect since 
each drug-ADR pair has safety scores (e.g. MGPS or RR) from several sources, combining signals from multiple 
sources will prevent the performance of signal detection from degradation when there is artifact or data anomaly 
in one or more sources.

Evaluation Method.  We evaluate the proposed methodology using a gold standard created and validated by 
the Observational Medical Outcomes Partnership (OMOP), including 380 positive and negative test cases 
(drug-outcome pairs) in total. Positive test cases are true ADR associations asserted from drug labeling (mention 
of an outcome as an adverse reaction) and literature. While negative test cases are associations that lack this level 
of evidence in their labeling or literature. The entire gold standard includes 181 drugs and is divided into four 
sets, each associated with a unique outcome including acute myocardial infarction, acute renal failure, acute liver 
injury, and upper gastrointestinal bleeding, which represent four of the most significant and actively monitored 
drug safety outcomes26.

In performance comparison, we use the area under the ROC curve (AUC) as the evaluation metric. We are 
also interested in performance at fixed thresholds and levels. For example, the lower bound of the 90% confidence 
interval for the Empiric Bayes Geometric Mean. denoted as EB05, is greater than 2 (i.e. EB05 > 2). The EB05 > 2 
is a popular fixed definition of drug safety signal11,23.

Data Availability.  The FAERS datasets used in the current study is available in http://datadryad.org/
resource/doi:10.5061/dryad.8q0s4. The proposed framework implemented using R, along with results generated 
in the study are available in the mcem-drug-safety repository, https://github.com/danicaxiao/mcem-drug-safety.

Results
Performance evaluation on Real-World Data.  Performance for the MCEM Step.  In this part, we eval-
uate the performance of the MCEM step. Average AUCs based on ADRs of interest are reported in Tables 2 and 3.  
Results show that the proposed MCEM step generates more accurate signals, and thus brings significant AUC 
gains for overall data, as well as most ADRs. For the ALI cases, the proposed method did not work well, which 
could be due to the unusual data distribution of ALI, e.g. more cases than controls. Typically ADRs are rare 
events, where there are many more controls than cases. In the ALI case, our method could under-estimate the risk 
significance of some true positive cases when there are more positive cases in the data.

Also we evaluate the performance by the reporting ending years in Table 4. From the results, we observe the 
following trend: the more years of reports we collect, the better prediction performance we can achieve with the 
proposed MCEM procedure. However, MGPS calculation based on original reports could not guarantee this. 

http://datadryad.org/resource/doi:10.5061/dryad.8q0s4
http://datadryad.org/resource/doi:10.5061/dryad.8q0s4
https://github.com/danicaxiao/mcem-drug-safety
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Comparing between the proposed method and the original approach, we can see that the proposed MCEM step 
generates more accurate signals for every reporting year.

In addition to performance evaluation, we also examine false positive predictions of the proposed method. 
We have considered 102 drugs for AMI, 115 drugs for ALI, 88 drugs for ARF, 91 drugs for UGB. The drugs were 
selected according to the strict criteria in27. We report the precision for both proposed method and baseline 
methods in Table A4. Here our fucos is on showing some of false positive signals may be the true signals are listed 
in Fig. 2. The drugs are selected based on the criteria of EB05 > 2 for each year. Among the four ADRs, the UGB 
has the most false positive drugs. The reason could be related to what has been discussed in Hauben et al.28, where 
a study discovered that 40 ‘negative controls’ in the reference standard might have been misclassified. According 
to the evidence28, six drug-ADR pairs that are identified as false positive cases are in fact true positive signals 
(shaded in green color).

SRS Dataset
Average AUC 
(MGPS)

Average AUC 
(MCEM MGPS)

All ADRs 0.6787 0.7225

Acute Myocardial 
Infarction (AMI) 0.5834 0.6109

Acute Liver Injury(ALI) 0.6659 0.6512

Acute Renal Failure (ARF) 0.6926 0.8243

Upper GI Bleeding (UGB) 0.6610 0.7660

Table 2.  Comparison of the standard MGPS score and MCEM MGPS score based on ADRs of interest in 
FAERS.

SRS Dataset
Average AUC 
(MGPS)

Average AUC 
(MCEM MGPS)

All ADRs 0.7366 0.7683

Acute Myocardial 
Infarction (AMI) 0.7500 0.7812

Acute Liver Injury(ALI) 0.6829 0.4756

Upper GI Bleeding (UGB) 0.7500 0.7870

Table 3.  Comparison of the standard MGPS score and MCEM MGPS score based on ADRs of interest in 
MedEffect.

SRS Dataset AUC (MGPS) AUC (MCEM MGPS)

As of FAERS 2007 0.6994 0.7265

As of FAERS 2008 0.6936 0.7067

As of FAERS 2009 0.6889 0.7096

As of FAERS 2010 0.6853 0.7282

As of FAERS 2011 0.6868 0.7353

As of FAERS 2012 0.6907 0.7146

As of FAERS 2013 0.7091 0.7261

As of FAERS 2014 0.7012 0.7385

Table 4.  Comparison of the standard MGPS score and MCEM MGPS score by reporting ending years.

Figure 2.  False positive signals detected by MCEM.
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Performance of Signal Combination.  For the signal combination step, we consider the following inputs: MGPS 
scores computed from the MCEM step, and the safety scores calculated from OHD. For baselines, we also con-
sider combining original MGPS scores with safety scores calculated from OHD. For the combination method, 
rank aggregation29 and the empirical Bayesian (EB) signal combination method10 are reported as baselines. Signal 
combination results are given in Table 5. In experiments, the signal combinations are applied on the common 
drug-ADR pairs obtained from all sources.

From Table 5, we can see that the proposed framework outperforms all baseline methods significantly. The bad 
performance of rank aggregation is due to the high reliability variance across different years (e.g. AUC ranging 
from 0.6489 to 0.7614), as well as the label imbalance for each year (e.g. much more cases than controls). Since the 
rank aggregation method is optimized to reach a consensus among all base rankers, drug-ADR pairs that show 
signals in some years will be compromised due to lack of signals in other years. Thus, many cases would be incor-
rectly labeled as controls, which consequently degrades the combined list such that the final results are generally 
worse than individual rankers. Another baseline EB, which was proposed in Harpez et al.10, is a state-of-the-art 
method. Since it takes weighted average without considering the reliability of different data sources, the perfor-
mance is not as good as the proposed method.

Case Studies.  Sampling mechanism and its effect on the SRS.  The sampling step is designed to select the 
major drug from multiple drugs for a particular ADR within each case report. Note that case reports mention 
multiple drugs have accounted for 48% of overall case reports between the years of 2007 and 2014. For the 
reports that mention multiple drugs, we compare the agreement between the drugs assigned by the sampling 
step and primary suspected drugs assigned by reporters. On average, 34.4% of assignments were the same by two 
mechanisms.

Early detection of true positive signals.  As shown in Fig. 3 (upper-left), by using the industrial threshold 
EB05 > 2, the proposed method was able to detect the ketoprofen-ARF (i.e. acute kidney injury) signal as early as 
of 2008. As a contrast, the traditional MGPS based on full data set was not able to detect this signal, and the MGPS 
based on primary suspected data set was only able to detect it until 2014. Figure 3 (lower-left) shows that there 
was only one case report specified by the reporter that ketoprofen was the causal drug for acute failure in 2008, 
however, the proposed method identified that in fact in 13 case reports acute renal failure was caused by keto-
profen in 2008. We further evaluated these 12 discordant case reports manually, whereas celecoxib, zoledronic 
acid, acetaminophen/tramadol oral tablet, capecitabine, dipyridamole, ibuprofen, simvastatin, and valsartan were 
mentioned by the reporters to be the causes of acute renal failure, respectively.

Another example in Fig. 3 (upper-right) is the detection of methotrexate inducing ALI. The MCEM method 
can identify this signal in 2008, 2012, 2013 and 2014 respectively while neither MGPS nor MGPS* (that indicates 
the MGPS scores computed based on primary drugs identified by patients themselves) can detect this signal. In 
2008, the reporters mentioned the methotrexate as the primary suspected reason for ALI in 25 case reports, while 
MCEM method selected methotrexate as the major drug for ALI in 104 case reports. Among 79 discordant case 
reports, etanercept (36 times), adalimumab (13 times) and busulfan (8 times) were the most frequently men-
tioned as primary suspected drugs. In general, 16 true positive signals were only detected by the MCEM, two true 
positive signals were only detected by MGPS* and neither of true positive signals was detected by MGPS alone.

ADR evidence strengthen through signal combination.  In Fig. 4, we compare the rankings of a few signals that 
indicate certain drugs would cause UGB. The signals in comparison are obtained using rank aggregation based 
on traditional MGPS, rank aggregation based on MCEM MGPS, EB with traditional MGPS, EB with MCEM 
MGPS, and the proposed method for all data are compared,. In addition, rankings of the traditional MGPS scores 
and MCEM MGPS scores for the combination of all the FAERS years only and combination of claims scores only 
based on EB in Harpez et al.10 are also included and named as FAERS Only MGPS, FAERS Only MCEM-MGPS, 
Claims Only.

On the horizontal axis drug names are given and 1 indicates a positive drug-ADR pair, whereas 0 indicates a 
negative pair. On the vertical axis ranking is given as percentile which was computed as ×100 rank of the pair

length of the list
 after 

sorting the obtained list in a descending order. For positive pairs, the proposed method is expected to enhance the 
signal and move the pair a higher rank compared to baseline methods. In the case of negative samples, the pro-
posed method should not produce false positives in terms of rankings.

From Fig. 4, the proposed method behaved perfectly for Potassium Chloride, Lactulose, Itraconazole and 
Loratadine. For Melaxiam (positive sample) and for Fluticasone (negative sample), the proposed method gives 

AUCs of Different Combination Methods

Rank Aggregation
Empirical 
Bayesian in10

Proposed 
Framework

Signals

Raw MGPS + OHD 0.5176 0.7540 X

MCEM MGPS + OHD 0.6290 0.7584 0.8606

Table 5.  Performance comparison of risk signal combination methods.
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higher and lower rankings compared to most of the baseline methods. If we look at the overall tendency, we 
observe that methods using MCEM MGPS can generate better rankings compared to traditional MGPS scores.

Discussion
In this paper, we presented a new framework that detects improved drug safety signals from multiple and hetero-
geneous data sources via Monte Carlo Expectation-Maximization (MCEM) and signal combination. The MCEM 
procedure was designed to explicitly handle concomitant confounders in SRS data, where we propose a new 
sampling approach to generate more accurate SRS signals for each ADR through iteratively down-weighting their 
associations with irrelevant drugs in case reports. The signal combination step was designed to solve multiple data 
challenges of RWE, including data quality variance and bias, rare ADR and under-reporting issues. To alleviate 

Figure 3.  Comparison of early detection of true positive signals: ketoprofen causing acute kidney injury (left), 
and methotrexate causing acute liver injury (right).

Figure 4.  Comparison of signal strength for upper GI bleeding.
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these issue, we adopted Bayesian hierarchical model and proposed a new summary statistic such that SRS signals 
could be combined with signals derived from other observational health data allowing for related signals to bor-
row statistical support with adjustment of data reliability. We evaluated the proposed framework using real-world 
SRS and OHD data. Results demonstrated that the proposed framework outperformed state-of-the-art baselines 
and also detected many true signals that the baseline methods could not detect.

Future directions include (1) incorporate prior knowledge about drug-drug interaction (DDI) to filter out 
DDI confounders with modifications to the MCEM step. For example, for possible DDIs, we could draw from 
Binomial distribution to determine whether drug pairs are associated to a particular ADR, or (2) since different 
patient cohort could have different effects or reactions to drugs, it is necessary to identify cohort-specific signals. 
Given pre-defined cohorts, initial thoughts include for cohort-specific MGPS calculation, we could replace the 
Gamma-Poisson model by a Beta-Binomial model to identify cohort specific drug reaction signals.

In addition to future directions, we also identify some limitations in our study:

•	 One limitation is in the MCEM step, the iteration stopping is still based on a heuristic threshold determined 
by empirical studies. Therefore, the performance of the MCEM step is still sub-optimal. It could be further 
improved with better iteration stopping criteria.

•	 The second limitation is that although ADR instances induced by the combined use of two or more drugs are 
quite rare, it might be good to also handle these cases, i.e. the DDI cases. We did not handle DDI in this work, 
but proposed some possible approach as future studies.

•	 The third limitation is that the likelihood of drug-ADR associations might differ for different patient cohorts 
(e.g. demographic, gender, etc.) The proposed framework did not tackle this issue. We have also brainstormed 
some future directions to perform cohort-specific signal detection in our discussion of future work.
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