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Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design

cycle based on specifications, modelling, analysis, experimental implementation, testing and

validation to modify natural or design new, synthetic biology systems so that they behave in a

predictable fashion. Motivated by the need for truly plug-and-play synthetic biological

components, we present a comprehensive review of ways in which the various parts of a

biological system can be modified systematically. In particular, we review the list of ‘dials’ that are

available to the designer and discuss how they can be modelled, tuned and implemented. The

dials are categorized according to whether they operate at the global, transcriptional, translational

or post-translational level and the resolution that they operate at. We end this review with a

discussion on the relative advantages and disadvantages of some dials over others.

Introduction

The primary goal of Synthetic Biology is to create new or
add additional functionality to biological systems by
constructing new parts, or modifying existing biological
systems (Purnick & Weiss, 2009). Central to this goal is the
idea that the synthetic organism is designed following a
systematic design framework with a specific objective in
mind designed a priori. Ideally such design objectives
can be formulated in a quantitative manner so that the
performance of the designed component can be quantified
and compared to the original design specification. This
design framework is required both to improve reliability of
individual biological components and to build functioning
genetic systems with a larger number of interconnected
parts (Purnick & Weiss, 2009), both considered to be
current challenges of Synthetic Biology. Currently, one of
the main efforts of Synthetic Biology is on building genetic
systems in micro-organisms, not only because of their
relative simplicity but as it is envisioned that small
genetic circuits can potentially be used as a foundation
for building more complex systems (Andrianantoandro
et al., 2006).

Although Synthetic Biology has been described as the
‘Engineering of Biology’, a systematic design cycle is still
not realized to its full potential, limiting the advancement
of the field in terms of functionality, reliability and size of
the genetic systems (Purnick & Weiss, 2009). A design
framework involves design specifications, modelling, con-
ceptual and detailed design, as well as implementation and
testing (Fig. 1). In Synthetic Biology, carrying out
conceptual design (e.g. choosing the basic genetic system
layout) is currently relatively simple due to the limited size
of present-day synthetic genetic systems, but this will
become more involved as more complicated systems can be
built (Purnick & Weiss, 2009; Slusarczyk et al., 2012).
Similarly, methods are being developed to design modules
for spatial organization of the cell (Chau et al., 2012; Lim
et al., 2012), metabolic pathways and microbial com-
munities (Shong et al., 2012). At the same time, the present
design framework needs to be improved with respect to
how specifications, more detailed design and robust
implementation are performed. An improved forward-
engineering framework would consist of a mathematical
model of the system chosen in the conceptual design stage,
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which can provide a basis for the design, construction,
characterization and testing of the developed system. The
parameters in this model can then be ‘tuned’ in a
systematic manner in order to ensure that the resulting
model meets the design specifications. The model with the
chosen parameters and predicted performance can be built
and its behaviour can then guide subsequent design,
implementation and testing.

However, this is easier said than done. Indeed, when ‘tuning’
the different biological dials it is important to fully
understand the relationship between specifications, model
parameters, biological parts and implementation in order to
carry out the design process. The dials used to redesign a
biological system can include tuning global parameters or
transcriptional, translational and post-translational para-
meters in the mathematical models. Experimentally this can
be achieved by using different plasmid replicons for
controlling gene copy number, different promoters to
control the rate of transcription initiation, different ribo-
some-binding sites (RBSs), or different synonymous codons
for controlling translation levels or degradation rates of all
the species in the systems. The models used for the basic
design of genetic systems often contain parameters repre-
senting multiple biological parts and so tuning a parameter
in a mathematical model can be implemented experimentally
in different ways. For example, in the simplest models of gene
expression, one parameter often represents many different
biological characteristics, such as a ‘transcription’ parameter
representing promoter strength, transcription rate and gene
copy number. Each of these has different tuning ranges,
uncertainties and ease of experimental modification.

In this paper, we present a comprehensive review of ways
in which the various parts of a biological system can be

modified systematically, focussing in particular on building
genetic systems. We first discuss design and modelling of
genetic systems, before reviewing in detail the typical dials
that can be modified in a Synthetic Biology project. We
then present various ways to tune these dials in order to
achieve a desirable objective and show how tuning the
parameters for each of these dials affects the output of a
simple genetic system.

System design and parameter tuning

Synthetic Biology aims to be the ‘Engineering of Biology’,
where an engineering design cycle is used to systematically
improve existing biological systems and create new ones
(Anderson et al., 2012). A traditional engineering example
is the design of a chemical plant. In this case specifications
may include the concentrations of the final products, a
conceptual design may determine the order of processes
and reactions, while a more detailed design may set
variables such as concentrations and flow rates in these
processes, followed by further component details based on
these variables such as sizes of pipes and reaction vessels
(Perry & Green, 1999). Similarly, in a biological system, the
specifications may be based on protein concentrations and
their response characteristics, while a conceptual design
determines the layout of a genetic system needed to achieve
the specifications. A more detailed design may tune some
of the parameters in the mathematical model(s), such as
biochemical rate constants, followed by the design of
individual biological parts fulfilling these parameters such
as the design of a RBS to achieve a particular translation
rate. In this framework, relevant models are developed and
analysed at the different design stages in order to evaluate
the candidate designs and predict whether they will meet
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Fig. 1. A proposed forward engineering design cycle. Steps 1–4 take place in silico and follow a classical engineering design
approach: specification, design, modelling and analysis. Steps 5, 6 and 7 take place in the laboratory where the system is
assembled, might be evolved for tuned biological function, and is characterized. The cycle can be iterated if the design does not
perform to the specifications. Adapted from MacDonald et al. (2011).
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specifications. Once a detailed design is completed and
verified, the system can be built and then tested to validate
the design, with the design cycle repeated if at any stage the
resulting functionality is not acceptable or requires
improvement (RAEng, 2009).

The first step in the design of a genetic system is to specify its
functionality for defined inputs and outputs. For example,
the system may be required to act as a memory device or a
switch (Gardner et al., 2000) where the input is the
concentration of an inducer and the output is the
concentration of a protein. Performance specifications are
required in order to determine whether the functionality is
met for a particular design (Sen & Murray, 2012). These
specifications can be composed of several metrics (Canton
et al., 2008; Del Vecchio et al., 2008; Sen & Murray, 2012).
For a switch, for example, there could be a requirement for
the (time) mean protein concentration to be between set
limits when the switch is ‘on’ or ‘off’. Retroactivity
specifications, or insulation, may also be required. This
ensures that the functionality of the genetic system is
not negatively affected when it is connected to another
system upstream or downstream (Del Vecchio et al., 2008).
Another metric could be the response time: the time it takes
for the protein concentration to switch from low to high
with a change in inducer concentration (Canton et al., 2008).
Also, there may be requirements on the limits of variability
or noise around the mean of a protein concentration level
(Lestas et al., 2010). Finally, a genetic system design should
meet all performance metrics despite noise and uncertainty
associated with the components and chassis of the system, as
well as the uncertainty in cell size due to growth.

Once specifications are set, the design of a genetic system
consists of a conceptual phase (e.g. determining genetic
system topology) and then using appropriate models to
complete a more detailed design. The latter involves
determining model parameters to meet the design
specifications set. In the conceptual phase, different system
topologies can be used to obtain a desired behaviour, e.g.,
oscillators (Purcell et al., 2010; Slusarczyk et al., 2012;
Strelkowa & Barahona, 2010), switches (Pfeuty & Kaneko,
2009) and adaptive systems (Ma et al., 2009), and more
complicated systems can be built to produce more
advanced behaviour (Slusarczyk et al., 2012). In the
detailed design phase, a mathematical model must first
be built and analysed. This model will guide the design but
also be used for predicting whether a proposed design
meets the required specifications. The same model will also
be used for steps after design such as comparison with data
from the testing phase of the engineering design cycle. Such
models usually take the form of differential equations
based on the biochemical reactions defining the designed
system (Wilkinson, 2011). These differential equations can
be deterministic or stochastic. The design proceeds by
using standard optimization and control engineering
approaches on the deterministic models to find the best
parameter choice that achieves a desired objective. A
combination of both simulations (Wilkinson, 2011) and

analytical methods (Murray, 2002; Tyson et al., 2003) can
then be used to verify the behaviour of the models. In
particular, stochastic simulations are very useful in testing
the variability of the system due to noise, and to ensure that
stochastic effects do not substantially change the system
behaviour for low biochemical species numbers (Tian &
Kevin, 2006; Wilkinson, 2011). Once design parameters are
selected, further models may be required for component
design, such as for designing a RBS to match a tuneable
parameter (Na et al., 2010). The design process may need
iteration, so that if no feasible choice of parameters for a
particular system can meet the specifications, then a
different topology can be used. Furthermore, once the
system is implemented and tested, the process may need to
be iterated. In particular, further detailed design or ‘tuning
of the dials’ may be necessary for the circuit to function and
meet specifications.

Discussion of the genetic system design leads naturally to
the question of implementation, the main focus of this
review. Which biological components should be modified
in order to implement different genetic systems?

A simple genetic system

Before we discuss this question, let us consider a simple,
illustrative genetic system and its associated model as an
example (Fig. 2). This system will be used throughout the
paper to illustrate the engineering design cycle and how
‘tuning dials’ can be performed during the design and
implementation stages. The example genetic system contains
a constitutive promoter driving the expression of a repressor
protein, which in turn represses the expression of a reporter
gene from a regulated promoter. The measured output of
the system is the concentration of the reporter protein while
the input is the concentration of an inducer, which binds to
the repressor protein thereby sequestering it away and
allowing transcription initiation. The biochemical equations
used to model this system are shown in Fig. 2.

The biochemical equations are the mathematical description
of the underlying biochemical reactions of the system. From
a biological viewpoint, the reactions that must be described
are: transcription, translation, repressor–promoter and
repressor–inducer interactions, and degradation of species
within the system. Equations (1) and (2) describe RNA
polymerase binding to a promoter followed by transcription
initiation for the repressor and reporter genes, respectively.
Initiation of transcription is a reversible reaction (as denoted
by the double arrows and forward and reverse reaction rate
constants in the equations), whereas extension is considered
to be irreversible. Equation (3) is included to reflect the
biological reality that most promoters have some basal level
of transcription in the absence of an inducer (also called
leakiness). Taken together, these equations describe the
generation of mRNA species in the system.

Equations (4) and (5) describe the binding of ribosomes to
a RBS on mRNA, before translation is initiated for the
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repressor and reporter, respectively. These steps have been
described as two reactions so that the RBS strength (which
is easy to modify experimentally – see below) can be

accounted for separately from the translation rate, which is
usually taken as a constant number of amino acids per unit
time. Equations (4) and (5) together describe the rate of
generation of protein species in the system.

The interactions of the repressor with the promoter and the
inducer control the number of free promoters available for
RNA polymerase binding. These interactions are described in
equations (6)–(9). Equation (6) describes dimerization of the
repressor protein, based in this example on TetR, to produce
its functional form, which is capable of binding the operator
region of a promoter and repressing transcription. Other
repressors form different functional multimers (e.g. LacI acts
as a tetramer) and would require additional equations to
reflect the further multimerization steps where necessary.
Equation (7) describes the binding of the functional repressor
protein to the operator, while equation (8) describes inducer
binding to the free repressor, which in turn prevents its
binding to DNA. Equation (9) describes inducer binding to a
repressor that is already bound to an operator, followed by
dissociation of the inducer–repressor complex from the
operator, allowing transcription to proceed.

Finally, equation (10) describes the degradation of the
mRNA and protein species in the system. The degradation
contributes to the steady state concentration of the species
by ensuring its removal.

From this set of biochemical reactions, mass-action
kinetics can be used to produce a deterministic model
from the biochemical equations (Cornish-Bowden, 2004)
while the chemical master equation can be used for a
stochastic model (Gillespie, 1992). For the deterministic
model, the mass-action kinetics can be used to describe the
different reaction rates, while differential equations
describe the rates of change of the concentrations due to
the reactions. For the stochastic model, the equations
describe the probability of a reaction occurring, e.g. an
increased reaction constant makes that reaction more likely
to occur at higher concentrations.

Characterizing dials

What sets Synthetic Biology apart from traditional
molecular biology is that an engineering design approach
is taken to systematically design or redesign a biological
system, for quantifiably improved or different function-
ality. This assumes that a design objective is set, against
which the performance of the synthetic component will be
quantified (Anderson et al., 2012). To achieve the design
objective, a set of biological ‘dials’ need to be tuned. In this
section, we describe the set of possible dials available to the
designer, and how they can be described mathematically.

Global parameters

Chassis. When designing, constructing and characterizing
simple single gene expression constructs through to
complex genetic networks, it is important to consider the
impact of strain-to-strain variation of the behaviour of
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these networks. It has been shown that the abundance of
RNA polymerases and ribosomes is dependent on cellular
growth rates, affecting downstream processes such as
transcription rate, translation rate, gene copy number,
mRNA degradation, protein dilution, protein degradation
and cell mass (Klumpp et al., 2009). Regulated processes
such as promoter repression or activation have also shown
growth rate dependence, affecting genetic networks as a
result (Klumpp et al., 2009; Scott et al., 2010; Tan et al.,
2009). There are a wide range of strains and organisms that
can be used to harbour synthetic genetic networks, and in
some cases, the networks work predictably across different
strains (Prindle et al., 2012) whilst in other cases the
behaviour of the network can be drastically altered by
changing the host cell (Egbert & Klavins, 2012). In this
latter reference, two strains of E. coli were used that both
contained a LacID mutation but with slightly different
genotypes, exemplifying that even similar strains can have
profound effects on network function. Some tuneable
elements may also be strain specific and whilst they
function in one strain they may be inactive in another, e.g.
the DIAL strains used to modulate plasmid copy number
(Kittleson et al., 2011).

Gene copy number. The number of gene copies can be
used to increase or decrease the amount of available
protein over a partially linear range. Gene copy number
can be controlled either by changing the origin of
replication of a plasmid-bound gene of interest or by
increasing the number of chromosomally integrated copies.
Plasmid copy number has been shown to play a key role in
the behaviour of genetic networks (Atkinson et al., 2003;
Mileyko et al., 2008). The range of accessible values is
limited to a maximum value that does not saturate the
cellular transcription and translation machinery and does
not cause undue metabolic burden on cells (‘run-away’
replication) (Nordström & Uhlin, 1992).

Gene copy number is not a continuous number.
Chromosomal integration has been shown to tolerate up
to five copies of the same gene (Choi et al., 2006), although
this could potentially be increased further, and plasmids
have a few discrete values that can be accessed (Table 1).
Engineering endeavours have produced plasmids with
inducible copy number that can be controlled either by
the binding of a ligand (Panayotatos, 1984) or through
changes in temperature (Sternberg, 1990), allowing
dynamic shifts in copy number to be used as a design
variable. Alternatively, multiple bacterial strains have been
developed (DIAL strains) that maintain the same plasmid
at different steady state copy numbers (Kittleson et al.,
2011). These techniques give another level of control and
tuneability of plasmid copy number in genetic systems.

The potential to maintain multiple plasmids, encoding
different components from genetic networks, at different
copy numbers within a cell is also possible. This is,
however, dependent on the incompatibility group of the
plasmid (Table 1) (Tolia & Joshua-Tor, 2006). In addition,

multi-copy plasmids are maintained at a mean value in each
cell, leading to population variations (Ebersbach & Gerdes,
2005) that will need to be accounted for in modelling efforts.
Although plasmid copy numbers have been described here,
they are dependent on the context within which they are
used. The copy number of plasmids has been shown to have
an inverse relationship to the plasmid size (Ebersbach &
Gerdes, 2005; Zhong et al., 2011) and cellular growth rate
(Klumpp, 2011), and their maintenance within a cell is
dependent on the toxicity of the genes encoded on the
plasmid (Mileyko et al., 2008).

Transcription level design

Promoter type. Promoters are regions of DNA contain-
ing consensus sequences for the recruitment of the tran-
scriptional machinery (sigma factors; RNA polymerase,
RNAP) to initiate transcription (Gruber & Gross, 2003).
Core promoter sequences are recognized by different sigma
factors which are active under different environmental
conditions, for example, Escherichia coli s70, sS, s32 and s54

(Table 2) (Gruber & Gross, 2003). The number of s factors
used in bacteria can vary from 1 (in Mycoplasma
genitalium) to 63 (in Streptomyces coelicolor) and provides
an intricate way for organisms to regulate gene expression
in response to specific environmental conditions.
Promoters can also be constitutively active or regulated
(Fig. 3). Constitutive promoters are active without the need
for any transcription factors, whilst regulated promoters
have operator-binding sites for repressors or activators that
block or assist RNAP binding respectively in the presence
of a small molecule (inducer) or under certain
environmental conditions (Lloyd et al., 2001) (Table 2).
Combinatorial promoter design has been implemented to
generate hybrid promoters (also sometimes called logic
gates) that are conditionally activated in the presence of
multiple inducer signals (Fig. 3) (Cox et al., 2007).

Inducer concentration. Each transcriptional repressor/
activator will respond to one or more small molecules
known as inducers. There are natural inducers (e.g. allo-
lactose for the Lac repressor (Lewis et al., 1996) or
tetracycline for the Tet repressor (Orth et al., 2000)), and in
some instances non-metabolizable chemical analogues
that cause gratuitous induction (e.g. isopropyl-b-
thiogalactoside, IPTG, for the Lac repressor (Lewis et al.,
1996) or anhydrotetracycline, aTc, for the Tet repressor
(Lederer et al., 1996)). The advantage of the chemical
analogues is that their concentration level remains roughly
constant. The level of transcription follows a sigmoidal
response to the inducer concentration, which, over a
certain range, can be approximated as linear (Table 3).
Often the slope of this linear approximation is very large,
which may make tuning difficult. Mutations in the small
molecule binding site of the repressor could shift the range
over which the response is linear (Satya Lakshmi & Rao,
2008), adding further control.
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Promoter leakiness and basal expression. The function
of promoters is often thought of encompassing two states,
either on or off. However, this is very rarely the case, with
transcription initiation still occurring even in the repressed
state (Lanzer & Bujard, 1988). Often this behaviour is not
desirable for inducible promoters. However, it can be
beneficial if a particular level of basal expression is required
in the repressed state but can be further increased with the
addition of an inducer. The leakiness of a promoter can be
tuned through the location (Lanzer & Bujard, 1988;
Murphy et al., 2007), number (Murphy et al., 2007) and
sequence (Alper et al., 2005; Lanzer & Bujard, 1988) of the
operator binding sites (Fig. 4) and core promoter elements.
A combinatorial TetR repressed promoter library has been
described previously with varying operator multiplicity
and location resulting in promoters with leaky expression

in the repressed state spanning more than two orders of
magnitude (Murphy et al., 2007). The strength of repressor
binding to its operator sites can affect promoter leakiness
and can be tuned through mutation of the operator DNA
sequence or the DNA-binding domain of the repressor
protein (Nichols & Matthews, 1997; Penumetcha et al.,
2010). Another way with which basal transcription can be
tuned is through the co-expression of the target gene from
a constitutive promoter as well as a regulated promoter,
although this will also result in an increase in gene
expression level in the induced state.

Promoter strength. Promoter strength can be tuned by
creating promoter libraries randomized in the RNAP-
binding regions affecting RNAP-binding affinity (Alper
et al., 2005; Brewster et al., 2012; Jensen & Hammer, 1998),

Table 1. Plasmid copy number and plasmid incompatibility groups

Plasmid incompatibility groups are highlighted.

Plasmid Replicon Copy number* Reference

ColE1 ColE1 15–20 Schmidt & Inselburg (1982); Shizuya et al. (1992)

pBR322 pMB1 15–20 Balbás et al. (2013); Lin-Chao et al. (1992); Sternberg (1990)

pBR3722 pMB1 30–40D Hakkaart et al. (1985); Kool & Nijkamp (1974); Lin-Chao et al. (1992)

pUC pMB1 .200D Figurski et al. (1979); Lin-Chao et al. (1992)

pACYC p15A 18–22 Chang & Cohen (1978); Hasunuma & Sekiguchi (1979)

F1 F1 1–2 Peterson & Phillips (2008); Shizuya et al. (1992)

pNS358 P1 lytic ori 1–.25 Peterson & Phillips (2008); Sternberg (1990)

pCDF CloDF13 10–90 Hakkaart et al. (1985); Kool & Nijkamp (1974); Kües & Stahl (1989)

RK2 RK2 4–7 Figurski et al. (1979); Kittleson et al. (2011)

pSC101 pSC101 ~5 Hasunuma & Sekiguchi (1979); Kittleson et al. (2011)

pJPA12 pSC101 27 Deuschle et al. (1986); Gruber & Gross (2003); Peterson & Phillips (2008)

pJPA13 pSC101 ~240 Becker & Hengge-Aronis (2001); Peterson & Phillips (2008)

pRSF RSF1030 10–60 Grossman et al. (1987); Kües & Stahl (1989); Wang & deHaseth (2003)

pBjk2992-jtk2541 ColE2 1–60 Bernardo et al. (2009); Buck et al. (2000); Kittleson et al. (2011)

pBjk2993-jtk2541 R6K 5–250 Kittleson et al. (2011); Schleif (2000)

*Plasmid copy number is dependent on plasmid size, gene toxicity and, in some instances (indicated by D), by temperature.

Table 2. Constitutive, negative, positive and hybrid regulated promoter types

Promoter s

factor

Regulatory

type*

Regulator Inducer Reference

Pbla s70 Con. NA NA Deuschle et al. (1986); Gruber & Gross (2003)

csiD sS Con. NA Starvation/hyperosmolarity Becker & Hengge-Aronis (2001)

PGroE s32 Con. NA Heat shock/nutrient starvation Grossman et al. (1987); Wang & DeHaseth (2003)

Po s54 Con. NA Nitrogen/nutrient starvation Bernardo et al. (2009); Buck et al. (2000)

PBad s70 Pos. AraC Arabinose Schleif (2000)

PLlacO-1 s70 Neg. LacR IPTG Lutz & Bujard (1997)

PLtetO-1 s70 Neg. TetR aTc Lutz & Bujard (1997)

Plac/ara-1 s70 Neg./Pos. LacR/AraC IPTG/arabinose Lutz & Bujard (1997)

*Con., constitutive; Pos., positive regulation; Neg., negative regulation.
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in the operator region, which changes the strength of the
interaction of the repressor/activator with the DNA (Alper
et al., 2005), or in the DNA sequences flanking the
promoter, reducing any upstream/downstream context
dependent effects on promoter strength (Davis et al.,
2011) (Fig. 4). Mutation of the DNA sequences between
important binding motifs has also shown that a linear
variation in promoter strength can be achieved (Ellis et al.,
2009; Jensen & Hammer, 1998). Although discrete values

will be obtained through the creation of a randomized
promoter library, the promoter strength can typically be
treated as a continuous variable for modelling purposes.
Randomized promoter libraries have elicited numerous
constitutive and regulated promoters with activities
spanning over two orders of magnitude (Alper et al.,
2005; Davis et al., 2011; Ellis et al., 2009; Jensen &
Hammer, 1998). A limitation in the use of these promoters
as predictable parts is the lack of a standardized promoter

Promoter

type

Mutation/

spacing of RNAP

recognition

elements

Mutation of

intervening

sequences

Operator

binding

site

Hybrid

repression

/activation

Promoter

insulation

Type of repressor/

activator

Promoter strength

Promoter leakiness

Multiple inducers

Promoter strength

Promoter leakiness

Context independent

Promoter strength

Promoter

–35

–35

–35

–24

–10 –

–

–

–

–

–

–

–

–

–

–

–
–

–
–

–

+

+
+

–10

s70

sS

s32

s54

–10

–12

RNAP +

Sigma Strength
Repressor/

activator
Effects Reference

Becker & Hengge-Aronis (2001);
Bernardo et al. (2009);

Buck et al. (2000);
Cox et al. (2007);

Deuschle et al. (1986);
Grossman et al. (1987);

Lloyd et al. (2001);

Alper et al. (2005);

Brewster et al. (2012);

Ellis et al. (2009);

Gruber & Gross (2003);

Wang & DeHaseth (2003)

Jensen & Hammer (1998)

Alper et al. (2005);

Murphy et al. (2007);

Penumetcha et al. (2010);
Schleif (2000)

Davis et al. (2011)

Lanzer & Bujard (1988);
Lutz & Bujard (1997);

Nichols & Matthews (1997);

Binding of

different RNAP

sigma factors

RNAP: promoter

affinity

Promoter strength

Fig. 3. The effect of promoter architecture on promoter strength, regulation and basal transcription (leakiness). A schematic
representation of different promoter architectures that can modulate the strength, regulation type and leakiness of a promoter by
changing the core sigma factor (orange and blue ovals), binding sequences (blue rectangles with ”35 and ”10 or ”24 and
”12 recognition sequences in red and yellow), intervening sequences (pink), operator recognition sequences, multiplicity and
location (green rectangles), repressor/activator types (green circles, triangles or hexagons) or flanking sequences (shades of
turquoise).

Table 3. Inducers and their working conditions

Promoter type Repressor Inducer Working condition Reference

Lac LacI IPTG 1024–1023 M Lutz & Bujard (1997)

Lac LacI* IPTG 1025–1024 M Satya Lakshmi & Rao (2008)

Lac LacI* Temperature 30–40 uC Yabuta et al. (1995)

Tet TetR aTc 5–50 ng ml21 Lutz & Bujard (1997)

PBAD AraC Arabinose 1024–1021 M Mirasoli et al. (2002)

PL/PR cI 857 Temperature 30–42 uC Menart et al. (2003); Villaverde et al. (1993)

PLux LuxR AHL 1029–1026 M Koch (2005); Urbanowski et al. (2004)

*LacI mutants developed to respond to decreased IPTG concentration or alternative stimulus.
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strength metric. Promoters can often perform differently
from how their original characterization would suggest,
due to differences in experimental conditions and
measurement equipment. Therefore predicting the
behaviour of a gene regulatory network component such
as a promoter across different laboratories can be difficult.
The need for a promoter strength metric for the accurate
comparison of promoters produced from different
libraries, experimental conditions and laboratories has
resulted in the development of a technique to standardize a
promoter strength with respect to a reference promoter,
and quantifying this relative strength in terms of relative
promoter units (Kelly et al., 2009).

Placement of genes in a multi-gene construct or
operon. The length of time it takes to transcribe a gene
depends upon the gene length (RNAP transcribes at a rate
of ~50 bp s21 (Gotta et al., 1991; Vogel & Jensen, 1994))
and its distance from the transcription initiation site.
Therefore, by placing one or more genes in front of the gene
of interest it is possible to introduce a delay in the
transcription process. It is important to note, however, that
there may be unintended effects on the translation process if
the secondary structure of the mRNA molecule produced
causes ribosomes to disengage before translation of the gene
of interest, or if secondary structure elements are
introduced which alter the stability of the mRNA
molecule (Carrier & Keasling, 1997a; Newbury et al.,

1987). In principle, this transcription delay increases
linearly with the length of the superfluous genes added in
front of the gene of interest and can be approximated as a
continuous variable – although, strictly speaking, this is a
discrete variable whose values are multiples of the time it
takes to transcribe a single base (though very long mRNA
constructs will tend to have larger translational effects). An
increase in the length of a transcript also has a positive
influence on the amount of translation from the first gene in
an operon (Lim et al., 2011). This is due to the fact that
transcription and translation take place simultaneously in
prokaryotes. Therefore, the first genes in an operon have a
longer period for translation during transcription before
RNAP dissociation and mRNA degradation (Lim et al.,
2011).

Translation level design

Ribosome-binding site (RBS) strength. The efficiency of
translation initiation depends on the recruitment of
ribosomes to the Shine–Dalgarno sequence, which can be
stronger or weaker depending on variations in this
sequence and the distance from the translation initiation
codon (Chen et al., 1994; Osterman et al., 2013). The RBS
strength is also dependent on the upstream (Komarova
et al., 2005) and downstream mRNA sequence (Salis et al.,
2009) due to the formation of local secondary structures
that can influence or inhibit ribosome binding. Prediction
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Fig. 4. Transcriptional and translational control by riboregulators. A schematic representation of transcriptional control by a
riboswitch (a), and translational control by a riboswitch (b) or a trans-activating RNA (taRNA) (c).
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of the strength of prokaryotic Shine–Dalgarno sequences
can therefore be facilitated by the use of Chris Voigt’s
simulation prediction program (RBS calculator) (Salis et al.,
2009) or Gyoo Yeol Jung’s UTR Designer (Seo et al., 2013).
Over 100 predicted RBSs have been experimentally tested
showing that the translation initiation rate can be
controlled over a 100 000-fold range (Salis et al., 2009).
The Ouyang lab used the RBS calculator to design RBSs
with predicted strengths for use in a predetermined bistable
toggle switch exemplifying the usefulness of this tool (Chen
et al., 2012). Fine-tuning of a genetic toggle switch has also
been demonstrated by altering the length of the spacer
between the Shine–Dalgarno sequence and the start codon
(Egbert & Klavins, 2012). Comparisons of experimental
data with RBS calculator predictions were in fairly good
agreement dependent on the spacer sequence makeup
(Egbert & Klavins, 2012).

Codon optimization. Because of the degeneracy of the
genetic code, it is possible to create mRNA transcripts with
differing sequence that encode the same protein, eliminating
rare codons and increasing translational efficiency. An
altered coding sequence can also contribute to different
mRNA secondary structures and, therefore, translational
efficiency. Whilst standard codon optimization techniques
aim to maximize protein production through using the most
abundant codons observed for highly expressing native host
proteins (codon adaptation index, CAI) (Angov, 2011), this
technique does not take into account several factors that
influence translational efficiency: translational pausing
(Angov, 2011), local mRNA secondary structure (Kudla
et al., 2009) and tRNA abundances (Welch et al., 2009).
Kudla et al. have shown a correlation between codon
optimization and the secondary structure of the mRNA at
the beginning of a gene (regions 24 to +37) with the
translational efficiency in E. coli, with a 250-fold variation in
GFP expression across the constructs they tested (Kudla
et al., 2009). Progress has been made in predictive
algorithms that take into account codon usage and tRNA
abundance to optimize a gene’s coding sequence to give a
desired translation efficiency (Welch et al., 2009). This
codon optimization algorithm could potentially be
combined with RNA secondary structure prediction
programs in order to facilitate a more accurate prediction
in the resulting efficiency of translation.

mRNA decay rate. The longevity of the mRNA transcript
is controlled by its secondary structure in the un-
translated regions, which protect it (Bouvet & Belasco,
1992; Carrier & Keasling, 1997b; Mackie, 2012) or make it
more vulnerable (Bouvet & Belasco, 1992) to degradation
by RNases, and through efficient binding and translation by
ribosomes blocking RNase action (Carrier & Keasling,
1997b; Komarova et al., 2005; Osterman et al., 2013). The
half-life for most mRNAs in E. coli is relatively short at ~1–
2 min (Mackie, 2012). The longer-lived an mRNA
molecule is, the more translation will occur from each
transcript. Appending 59 stem–loop structures of varying

sizes to mRNAs has been shown to increase the mRNA
half-life between 5- and 10-fold up to a half life of ~24 min
(Arnold et al., 1998; Hansen et al., 1994). Appending 39

REP sequences or insertion of REP sequences into
intercistronic regions of polycistronic operons can also
stabilize upstream mRNA transcripts by ~3-fold (Newbury
et al., 1987).

Riboregulators. Riboswitches are RNA genetic control
elements that modulate gene expression in response to an
inducer molecule (Vitreschak, 2004) or transacting RNA
(taRNA) (Isaacs et al., 2004) without the requirement of
any RNA–protein interactions. Since their discovery, a
number of synthetic riboswitches have been developed that
control gene expression by either premature transcriptional
termination (Wachsmuth et al., 2013) or by translational
inhibition by sequestering RBSs (Dixon et al., 2010; Lynch
et al., 2007; Topp et al., 2010) in a dose-responsive manner
to specific inducers (Fig. 4). Riboswitches that control
premature transcription termination have been shown to
elicit up to a 3-fold change in transcription in response to
an inducer (Wachsmuth et al., 2013), whilst riboswitches
that modulate translation initiation have been developed
that span a 2- to 150-fold range in response to an inducer.
A model-directed redesign of a translational riboswitch
has also been used to predictively adjust its efficiency
(Beisel & Smolke, 2009). The taRNA riboregulators work
by the binding of the taRNA to a cis-repressed mRNA
(crRNA) resulting in the release of the RBS, allowing
translation initiation (Isaacs et al., 2004) (Fig. 4). taRNA
riboregulators have been utilized in controlling a metabolic
pathway and showed a ~1- to 200-fold increase in
translation initiation in the presence of the trRNAs
(Callura et al., 2012; Isaacs et al., 2004). Whilst the
riboregulators described here do not require RNA–protein
interactions for their function, the CRISPRi platform for
transcriptional repression utilizes ribonucleoproteins (Qi
et al., 2013). Briefly, a small guide RNA (sgRNA) is
expressed with complementary base pairing to a target
DNA sequence and a secondary structural stem–loop that
is recognized by a catalytically inactive RNA-binding
protein, Cas9. Together the sgRNA-Cas9 ribonucleo-
protein binds the target DNA sequence and inhibits
initiation of transcription, elongation or transcription
factor binding depending on where the sgRNA is targeted
(Qi et al., 2013).

Transcriptional, translational and post-translational
design

Inteins. Inteins are the protein-splicing equivalents of
introns found in eukaryotic pre-mRNAs. An intein is a
genetically encoded element within a target gene and is
transcribed and translated together with the target protein
before it undergoes autocatalytic self-excision and splicing
of the target protein exteins (Gogarten et al., 2002) (Fig. 5).
Inteins, therefore, work at both a transcriptional and
translational level by increasing the time it takes to
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transcribe and translate a target gene. Bacterial inteins
range in size from 36 to 1986 amino acids (Perler, 2002),
theoretically increasing transcription by ~2–120 s and
translation by ~2–100 s. A comprehensive list of inteins
and their sizes can be found at http://tools.neb.com/inbase/
list_prop.php. Inteins would be beneficial for engineering
delay into genetic networks, in particular tuning oscillators
that depend on transcriptional and translational delay for
their function (Mather et al., 2009; Purcell et al., 2010;
Stricker et al., 2008). Split inteins have also been described
where the intein domain is transcribed and translated by
two separate genes and the resulting proteins can undergo
trans-splicing to produce a single functional protein
(Elleuche & Pöggeler, 2010; Lockless & Muir, 2009)
(Fig. 5). Post-translational control of inteins has been
engineered to modulate intein splicing (Skretas, 2005),
trans-splicing (Mootz & Muir, 2002) or a combination of
both (Shi & Muir, 2005) in the presence of small molecule
inducers (Fig. 5).

Protein level design

Protein degradation. The longevity of proteins within a
cell can be tuned by addition of degradation tags at the N
(Gur & Sauer, 2008) or the C terminus (Andersen et al.,
1998; Flynn et al., 2001; Gur & Sauer, 2008; McGinness
et al., 2006) as well as internally (Gur & Sauer, 2008).
Different degradation tags can be used to target proteins
for degradation to one of several cellular degradation
complexes (Kirstein et al., 2009) (Table 4). Modifying the
N-terminal residues of a protein can also target it for
proteolytic degradation by the N-End rule mechanism
(Erbse et al., 2006; Kirstein et al., 2009). Recent work has
resulted in degradation tags of varying sequences that tune
the rate of degradation by the ClpXP/AP degradation

complexes (Andersen et al., 1998; Dougan et al., 2002;
Flynn et al., 2001; Hoskins et al., 2000; McGinness et al.,
2006; Purcell et al., 2012; Wang et al., 2007). However,
Cookson et al. have shown that an abundance of protein
targeted to the ClpXP machinery can lead to a queuing
effect, which, in turn, leads to a slower rate of protein
degradation that is dependent on the overall concentration
of tagged species in the system (Cookson et al., 2011). This
can be detrimental to genetic network behaviour when a
fast turnaround of network elements is required but can
also be beneficial in coupling separate networks through
the queuing effect (Cookson et al., 2011). By utilizing
multiple degradation pathways, the queuing effect could
potentially be suppressed.

Protein activity. Manipulation of protein activity through
point mutations can be used as a means of control with a
few discrete values. If the system consists entirely of genetic
elements (repressors or activators), then modification of
the DNA-binding affinity is best achieved by manipulating
the DNA sequence, rather than attempting to mutate the
protein. However, for enzymic activities, mutants with
altered substrate specificity (Brannigan & Wilkinson, 2002;
Wilson & Agard, 1991), kinetics (Brannigan & Wilkinson,
2002) or thermostability (Lehmann & Wyss, 2001) may
already be available or can sometimes be created via
protein engineering (Brannigan & Wilkinson, 2002;
Lehmann & Wyss, 2001; Wilson & Agard, 1991).

Extension to eukaryotic dials

The majority of the dials described above can also be used
in eukaryotes. However, there are additional dials that can
be used to tune genetic networks when working in
eukaryotes, as follows.
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Post-transcriptional modification of mRNA (splicing). In
higher eukaryotic chassis, RNA splicing can be used to
introduce a delay between transcription and translation
(Swinburne et al., 2008). Transcripts of mRNA that have
no introns will not need to be spliced, whereas those that
have increasing numbers of introns will require longer
transcription and processing time before translation.
Splicing of mRNA can also be controlled by the addition
of morpholinos (synthetic molecules that base pair with
target DNA sequences) to block the pre-mRNA protein
splicing machinery (Morcos, 2007). In prokaryotes, group I
and II self-splicing introns have been identified, but these
appear to have no known specific biological function and
are thought to be remnants from an ancient RNA world
(Raghavan & Minnick, 2009). Thus, with the current state
of understanding, it seems they would not be very easy to
target as tuneable dials at the moment.

Translocation. In eukaryotes, transcription occurs in the
nucleus and the resulting transcripts must then be
translocated to the cytoplasm for translation (Oeffinger &
Zenklusen, 2012). This will introduce a delay between
transcription and translation (Grünwald & Singer, 2010).
Therefore, moving a dial from a prokaryotic chassis to a
eukaryotic chassis could be used as a means to introduce
delay into a genetic network.

Protein trafficking. In eukaryotic chassis, signal sequences
are used to localize proteins to different subcellular
compartments/organelles (Alberts et al., 2002; Martoglio
& Dobberstein, 1998). Adding a signal sequence to a
protein will introduce a delay between translation and
function due to the time required for transport of the
protein to its intended destination (Hirschberg &
Lippincott-Schwartz, 1999). This can also be used as a
means to increase the effective concentration of a protein
by accumulating it in a smaller volume. Protein trafficking
from the cytoplasm to the inner/outer membrane and to

the periplasmic space also takes place in prokaryotes,
although far fewer subcellular compartments are available
for sampling in prokaryotes (Driessen & Nouwen, 2008;
Papanikou et al., 2007).

Discussion and perspectives

Tuning parameters in mathematical models will modify the
system behaviour; in this way, design specifications can be
met. It is often the case, however, that a single design
objective can be met via different parameter changes. For
example, modifying the gene copy number, promoter
strength, RBS strength, mRNA degradation rate or protein
degradation rate can all change the steady state protein
concentration expressed from a single gene (Fig. 6). To
change the dynamics of protein accumulation, the
degradation rates of the mRNA and protein can both be
modified (Fig. 6) (Alon, 2007). It is, therefore, important
to understand how different ‘dials’ affect the variability and
noise of the system. For example, low transcription levels
and high translation levels will produce a higher variability
in protein concentration than high transcription and low
translation levels with the same mean protein concentra-
tion at steady state (Raj & van Oudenaarden, 2008)
(Fig. 6). For the case of high output variability, increasing
promoter strength and decreasing RBS strength can be
used to decrease variability in the output while keeping the
mean output the same. Changing parameters can also
modify system behaviour with regard to the output. As an
example, negative feedback, either through auto-regulation
or indirectly through intermediary genes in the system
(Cosentino & Bates, 2012), can be used to improve
robustness, reduce output variability and reduce response

times of a system. Negative feedback often has trade-offs in

the design and there are theoretical limits as to how much

negative feedback can improve performance of genetic

systems (Lestas et al., 2010), which should be taken into

account when tuning parameters. While simple design

Table 4. Protein degradation pathways

Protease Cellular localization Degradation tag/

mechanism

Tag position Approx. half-life

(min)*

Reference

ClpXP Cytoplasm SsrA C-terminus 10–110

10–110

Andersen et al. (1998); Flynn et al.

(2001); McGinness et al. (2006); Purcell

et al. (2012)

ClpAP Cytoplasm SsrA/Rep C-terminus Dougan et al (2002); Flynn et al. (2001);

Hoskins et al. (2000)

ClpAPS Cytoplasm N-End rule N-terminus 2–50 Erbse et al. (2006); Wang et al. (2007)

FtsH Inner membrane SsrA/non-polar

pentapeptide

C-terminus 2 Herman et al. (1998)

Tsp Periplasm SsrA C-terminus .15 Parsell et al. (1990); Silber et al. (1992)

Lon Cytoplasm b20 N-terminus, internal,

C-terminus

.10 Gur & Sauer (2008)

*Approximate protein half-life is dependent on protein size, stability and temperature.

J. A. J. Arpino and others

1246 Microbiology 159



objectives (e.g. increasing the concentration of protein in
the system) can often be designed rationally by an expert,
other properties are more complex. For example, to change
the system dynamics while keeping the expression level
constant involves tuning multiple parameters, such as both

the degradation rate and RBS strength (Fig. 6). In
engineering design, this is generally achieved by setting
such specifications as constraints and searching over all
parameters that satisfy those constraints (Perry & Green,
1999). If more than one parameter choice meets all
constraints and a benefit or cost is defined then the design
can optimize the cost/benefit ratio. This is just one instance
where the model can inform the choice between alternative
redesigns.

The dials we have described span a range of scales and
levels, and as such provide a series of options, which can be
combined to achieve a design objective. Nonetheless, there
are caveats: ultimately tuning any dial in a genetic network
results in modulating the concentration of mRNAs and
encoded proteins in the system. The dynamics of the
system, however, depend on the type of control dials that
are used. For example, if transcriptional level control dials
(regulated promoters, transcriptional riboswitches) are
used there will be a longer delay before a functional
protein is produced since transcription, translation and
protein folding must take place sequentially. On the other
hand, if translational or post-translational control dials are
used, the functional protein will be produced in a shorter
period of time. Therefore if a genetic network with fast
dynamics is required, it may be beneficial to factor post-
translational control into the design process rather than
transcriptional control. There will typically be a trade-off
between the cell producing high levels of protein, poised to
carry out its function, and gene expression inducing
metabolic burden on the cell. The use of degradation tags
on proteins also incurs a high metabolic burden since it
decreases the steady state concentration by increasing the
protein turnover rate. This results in resources being used
to make a protein that is then targeted for fast degradation
and is thus short-lived.

Linking multiple dials together can provide a genetic
network with several avenues for tuning, providing a high
level of control over network behaviour, e.g. coarse tuning
through different origins of replication (modulating gene
copy number), medium-level tuning through different
promoters, and fine-tuning with different RBSs. However,
linking different dials together often takes them out of the
context under which they were initially characterized,
thereby reducing the predictability of their individual
behaviour and of their impact on the designed systems. For
instance, it has been shown that increasing gene copy
number can reduce the dynamic range and increase the
leakiness of a promoter (Lutz & Bujard, 1997). Leakiness
could potentially be reduced by adding a second layer of
transcriptional or translational control by the addition of a
third tuneable element, a riboregulator, thus combating the
unwanted effects of copy number on promoter behaviour.

Addition and removal of control dials from a genetic
network can be experimentally facilitated by the use of
modular plasmid designs with large multiple cloning
sites, allowing for the sequential addition of network
components. Litcofsky et al. demonstrated this by con-
structing a simple toggle switch and a three-node or four-
node feed-forward loop (Litcofsky et al., 2012). Progress
has also been made in the use of bio-parts in a plug-and-
play methodology through the standardization of plasmid
design (Silva-Rocha et al., 2013).

Another factor to keep in mind is that, experimentally,
some dials are easier to predictably tune than others.
Altering gene copy number can be easy to achieve by
replacing the origin of replication on plasmid-borne
genetic networks or through single or multiple genomic
integrations. Whilst the gene copy number can be
controlled exactly through genomic integration, plasmid
copy numbers can be harder to tune to exact levels given
that many factors, described above, can affect plasmid copy
numbers. Cell chassis tuning is less simple, potentially
requiring genome engineering to achieve particular cell
traits that impact on genetic network behaviour. As the
effects of different cell chassis on network behaviour are
currently not predictable, two approaches are available to
aid in network redesign: (1) a genetic network can be
characterized in several cell chassis to envisage the
differential effects on the network with alternate chassis
environments or (2) by using software such as Intermine
(Smith et al., 2012) or Ondex (Köhler et al., 2006),
developed for searching, data mining and integration of
biological databases, which could help in identifying
particular characteristics of different cell chassis to help
direct and inform the design process. While the use of in
silico approaches to design RBSs with predicted strengths
can speed up the design and tuning process (Salis et al.,
2009), tuning most other dials can be time intensive due to
the lack of software to help predict the effect changes on
these dials may have. For example, whilst new promoters
can be engineered, as described previously, there is often a
trade-off between promoter strength, repressor strength,
dynamic range and leakiness (Lanzer & Bujard, 1988).
Trying to tune one of these parameters can often alter
the others. Therefore, predictively designing a promoter
with specific attributes is not straightforward. However,
these trade-offs are common in engineering design for
other fields, where they are typically handled using an
optimization framework which considers various con-
straints and objective functions in the design (Boyd &
Vandenberghe, 2004; Perry & Green, 1999; Dolan et al.,
2012). Directed evolution approaches (Lutz & Patrick,
2004; Neylon, 2004) are available to produce libraries of
promoters but they often require extensive screening for
desired characteristics and are thus often experimentally
time consuming. Likewise, adding transcriptional level
control with riboswitches can be relatively easy, whilst
using a riboswitch for translational level control is more
difficult as its function is often dependent on the RBS
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sequence, which cannot be easily tuned without affecting
the riboswitch integrity.

Two of the pioneering hallmarks for Synthetic Biology were

the realization of simple designs inspired by existing

electronic counterparts, i.e. a genetic toggle switch (Gardner

et al., 2000) and an oscillator (Stricker et al., 2008). Their

designs were inspired by a model-guided approach that

provided an in silico assessment of the qualitative behaviour of

these simple genetic networks. Further advancements in the

field led to the use of a model-guided design (Ellis et al.,
2009), which allowed for the tuning of transcriptional layer

dials (promoter characteristics) in a reliable and relatively
straightforward manner, to achieve a predictable genetic
timer that controls yeast sedimentation (Ellis et al., 2009).
Within the scope of cell-based biosensing, model-guided
design approaches have been used to inform the development
of layered AND gates, housed in separate cell populations,
which communicate through quorum sensing to detect
specific combinations of metals (Beguerisse-Dı́az et al.,
2012; Wang et al., 2013). One of the most complex genetic
designs achieved to date is exemplified by Moon et al. (2012),
who used a combination of computational tools, model-
guided design and directed evolution to construct a four-
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input AND gate that consists of three circuits integrating four
inducible systems within a single E. coli cell.

In order to realize the need for truly plug-and-play
Synthetic Biology, the designer has to appreciate the types
of dials they can use to achieve their design objectives:
some are ‘difficult to tune’, some are ‘sensitive’ and some
others are ‘uncertain’. In this review, we have described
some of the possible dials that are available to the Synthetic
Biologist at various organizational layers, thus opening the
possibility for a design cycle that will involve mathematical
modelling and optimization to produce systems with
predictable, robust behaviour.
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