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Abstract: Bacterial environmental colonization and subsequent biofilm formation on surfaces repre-
sents a significant and alarming problem in various fields, ranging from contamination of medical
devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial
colonization is a challenging and actively solved task. In this field, the current promising direction
is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial
protection. Various surface activation methods have been described recently. In this review article,
we focused on the “physical” activation of nanostructured surfaces. In the first part of the review, we
briefly describe the basic principles and common approaches of external stimulus application and
surface activation, including the temperature-, light-, electric- or magnetic-field-based surface trigger-
ing, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent
achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with
special attention on multiresponsive or multifunctional physically activated coatings. In particular,
we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface
properties control, as well as simultaneous utilization of several strategies for surface protection,
based on a principally different mechanism of antimicrobial action. We also mentioned several recent
trends, including the development of the to-detect and to-kill hybrid approach, which ensures the
surface activation in a right place at a right time.

Keywords: smart nanomaterials; antimicrobial coatings; physical stimuli; smart coatings; antifouling
surface; biomedical applications; tailored surface

1. Antimicrobial Surface Protection—Global Problem and Related Challenges

Surface bacterial contamination is a relevant problem in a wide range of applications,
including medical equipment and implants, protective apparel in hospitals, food packaging,
and storage as well as water purification systems [1–3]. Associated with bacteria surface
colonization and related biofilm formation, the risk of infection is one of the most serious
complications in hospital and community settings [4,5]. Bacterial surface colonization
commonly occurs through several mechanisms, including hydrophobic and electrostatic
interactions [6,7]. Besides, bacterial attachment to a surface often occurs through a previous
formation of surface-absorbed protein layers [5,8]. The type of bacteria–surface interaction
varies from one bacterial strain to another and can even differ within a particular type of
bacteria due to mutations. Therefore, to protect the surface from bacterial attachment, the
control of surface hydrophobicity, morphology, or changing the surface charge, as well
as surface decoration with antimicrobial agents (or gradual release of these agents from
protective coatings), can be considered as a potential way to reduce bacterial attachment or
eliminate microorganisms before their adhesion to the surface [9–11].

Nanomaterials 2021, 11, 3083. https://doi.org/10.3390/nano11113083 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-9076-8210
https://orcid.org/0000-0003-1055-4026
https://orcid.org/0000-0002-3008-1396
https://doi.org/10.3390/nano11113083
https://doi.org/10.3390/nano11113083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11113083
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11113083?type=check_update&version=1


Nanomaterials 2021, 11, 3083 2 of 35

Several strategies for surface protection were developed and experimentally tested,
including prevention of bacterial adhesion, killing of adhering bacteria or all surrounding
bacteria as well as destroying of actually formed bacterial biofilm [12–14]. One simple
solution proposed many years before consists in the incorporation of antimicrobial agents
in the protective coating structure and achievement of protection against bacterial colo-
nization through a gradual release of these agents or contact killing of bacteria [9,12,14].
However, nowadays, this solution cannot be considered effective because the doped coat-
ings lose their efficiency with time, which represents a high risk for the development of
resistant bacterial strains as well as undesired environmental contamination by the released
antimicrobials [15,16]. Besides, most of the antibacterial coatings and materials have a
similar release profile, which contains a phase with rapid release of antibiotics (sometimes
referred to as a burst release) and a second phase with a slow release [17,18]. Commonly,
the burst release is not a desired phenomenon because a high concentration of antimicrobial
agents can lead to high cytotoxicity of the coating. Finally, when microbes are attached
and concentrated on the surface and form a protein layer resulting in the development
of a highly treatment-resistant biofilm, this makes the treatment with released or grafted
antimicrobial agents ineffective [19,20].

Another alternative strategy is the preparation of antifouling coatings that resist the
formation of a bacterial protein layer (responsible for further bacterial colonization of a
surface) or bacterial adhesion (these events are usually interrelated, but there are several
exceptions) [9,21–24]. In this regard, immobilization of water-soluble (polyethylene glycol,
PEG) or ionic (in common case zwitterionic) polymers has been widely reported [25–27].
This approach prevents the formation of the protein-adhesive layer, due to the compression
of the polymer chains and the appearance of repulsion from surface elastic forces [28].
Such a method of surface protection is highly efficient, cost-effective, and scalable. On
the other hand, surface protection using grafting of water-soluble polymers has several
significant and up to now insurmountable drawbacks. First of all, the coated materials
have a strong tendency to degrade in the presence of oxygen, high temperature, or sunlight
illumination [22]. The effectivity of water-soluble polymer protection depends on the
surrounding environment, which makes this surface protection strategy less universal [29].
Finally, the extent of surface bacterial resistance does not linearly correlate with the protein
attachment resistance, commonly reported for grafted water-soluble polymers, i.e., the
bacteria can colonize the protected surface despite protein attachment resistance [8].

Another strategy of surface protection is based on surface decoration with biocidal
molecules, which remain permanently grafted and ensure so-called contact killing [30,31].
This approach does not require the release of antimicrobial agents, keeping their surface
concentration at a constant, bacteria-killing level, and does not lead to pollution of the
surroundings. Besides, the commonly used antimicrobial agents in contact-killing have
a non-antibiotic nature (antibiotics commonly lose their efficiency after changes in their
chemical structure during surface grafting)—the quaternary ammonium salts, antimicrobial
peptides, and enzyme-based approaches were reported [32,33]. Thus, the contact-killing-
based approach is not commonly associated with the risk of antibiotic-resistant bacteria
development. Unfortunately, in the case of contact-killing, the accumulation of bacterial
residues can inactivate the effect of the antimicrobial agent, also leading to the passivation
of surface functionality. Besides, a similar problem, related to the degradation of grafted
antimicrobial agents or their gradual leaching, can be expected in this case.

An alternative surface-protection approach is related to the design and grafting of
self-cleaning coatings [34]. In this case, the superhydrophobic surface properties should
be combined with water repellence to reach a specific, known from nature, “lotus leaf”
effect [35,36]. When the water droplets roll down on superhydrophobic surfaces, they pick
up bacteria or other (bio)debris, leaving behind a cleaner surface. Such a kind of surface
functionality can be achieved through a combination of low surface energy materials and
high surface roughness [37,38]. Unfortunately, the creation of a deep surface pattern with
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the required high height-to-width ratio is not a simple technical task, and additionally, a
high risk of mechanical rupture of the coatings can be expected.

Therefore, many problems remain unsolved in the field of surface protection. Most of
them are also related to gradual loss of surface functionality, due to release or degradation
of incorporated antimicrobial agents, screening of grafted antimicrobial agents, the low
specificity of surface protection, and overall worse control of antimicrobial action [12]. To
solve the aforementioned questions, the implementation of a smart approach, aimed at
temporarily or spatially separated activation of protective coatings, has been proposed.
The main concept of smart surface protection can be described as follows: protective and
antimicrobial coatings should be activated solely at the right time and place to kill or
eliminate the bacteria.

2. Smart Coatings—A General Concept

The current research in antimicrobial coating design and realization is focused on the
creation of “smart” coatings as intelligent, reliable, long-life, and safe surface protection.
Such smart coatings should ensure the delivery of antimicrobial agents only when bacteria
are present [39]. These coatings are commonly based on targeted surface decoration with
the utilization of so-called smart materials, able to rapidly and reversibly change their
physicochemical properties in response to small changes in environmental conditions
(for example, chemical conditions—pH, salt concentration, presence of biomolecules, or
physical conditions—temperature, electrical potential, light, etc.) [40,41]. Depending on
the way of their activation, the smart antibacterial protective coatings can be classified into
two groups: chemo or physically responsive ones. In the first case, the coating activation
is achieved by the changes in the chemical composition of the surrounding (in an ideal
case, associated with bacterial presence detected by a pH change or occurrence of specific
biomolecules) [42–44]. In the case of physically activated coatings, the application of
external triggering by various stimuli (light, temperature, electric, or magnetic fields as
well as mechanical stress) is required for activation of antimicrobial properties [45,46].
More detailed information about the chemically activated coating systems (in particular,
bacterial-induced) can be found in recent excellent reviews [12,47]. In this review article,
we have paid main attention to physically activated coatings.

2.1. Temperature-Induced Surface Protection
2.1.1. Surface Antifouling Approach

The class of materials which can undergo temperature-induced phase transition near
the “bio”-reasonable range is well known. However, only a part of them can be used for
surface decoration, and among them, the temperature-responsive polymers are commonly
used [48,49]. These polymers exhibit a lower critical solubility temperature (LCST). Below
LCST, they are soluble in water, while above the LCST, they undergo a phase transition to
a water-insoluble and collapsed structure [50].

Thus, by changing the temperature of the underlying material, the (bio)pollutants
attached to the thermo-responsive polymer-protected surface can be released, rendering
the surface clean (Figure 1). Therefore, thermo-responsive coatings perform a smart
antifouling function, which does not damage the bacteria but removes them from the
surface on-demand.

Because the thermo-responsive polymers are water-soluble below the LCST, they
should be grafted on the surface before sample interaction with water-based media. The
surface grafting of polymers can be realized through “surface-from” or “surface-to” ap-
proaches. In the first case, usage of the well-known reversible addition-fragmentation
chain-transfer polymerization (RAFT) or nitroxide-mediated polymerization (NMP) tech-
niques were reported [51–53]. The latter one is based on the utilization of terminated
polymer chains (amino-, carboxy- or thiol terminations are commonly used) and their
conjugation with the previous grafting of chemical moieties to the surface [54–56]. The
utilization of both approaches can provide relatively stable grafting of polymer chains, but
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it is restricted for scale-up reasons because of polymerization conditions or the complexity
of terminated polymer chain synthesis. As a solution, the creation of poly(N-isopropyl
acrylamide) interpenetrating networks with other polymers, or its preparation in partially
cross-linked form, can be mentioned [51–56]. However, in this case, the “diluted” surface
concentration of polymer chains as well as their gradual leaching can lead to worsening
antimicrobial surface functionality with time.
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The ability of temperature-responsive polymer chains to prevent bacterial adhesion
at the temperature below the LCST (and vice versa, the temperature above the LCST
supports bacterial adhesion) was demonstrated on Salmonella typhimurium, Bacillus cereus,
and S. epidermidis [57,58]. In particular, the detachment of microorganism cells was found
to have the reverse character, i.e., surface colonization occurs at a lower temperature, at
which the polymer coatings are in a hydrophilic state, while the temperature increase
results in removing of the bacteria [48] (Figure 1). In this regard, the coating switching
becomes a key point, which justifies their utilization. Unlike the common water-soluble
and nonsmart polymers, immobilization of temperature switchable polymers enables to
switch the surface properties and remove bacteria independently on the bacterial affinity
to surface hydrophilic or hydrophobic states.

2.1.2. Temperature Governed Antimicrobial Release

An alternative way of how to utilize the poly(N-isopropyl acrylamide) (PNIPAm)
phase transition is related to different diffusion of the incorporated antimicrobial agents in
the matrix of partially cross-linked (or mixed with another polymer) PNIPAm [59]. Indeed,
at the temperature above the LCST, the polymer chains are “closely packed” with minimal
free volume, while coating cooling results in material swelling and free volume increase.
As a result, the diffusion and release of incorporated antimicrobial agents are accelerated
at temperature below the LCST. A wide range of antimicrobial materials was reported
which can be immobilized in thermo-responsive polymers, including silver nanoparticles,
antibiotics, or antiseptics as well as antimicrobial peptides [60].

The great advantages of thermo-responsive polymer coatings are the ability of reverse
trapping and release of antimicrobial agents and coating functionality regeneration because
the coatings can be easily recharged by the utilization of temperature-induced phase
transition and reversible entrapping/loading of the antimicrobial agent [61]. These types
of rechargeable surfaces might find applications in short-term usage because effective
recharging requires a high diffusion property of the coating matrix, which in turn results in
a faster release of the biocide out of the matrix.

On the other hand, uncontrolled release of antimicrobial compounds, which is com-
monly observed even in the coating-insoluble state (above the LCST), can lead to two
dramatic consequences: a gradual loss of efficiency as well as a high risk of development
of resistant bacterial strains. This drawback is especially topical in the case of antibiotic
agents in coatings, where the release of sub-inhibition antibiotic concentrations leads to
the development of bacterial resistance with a medically unacceptable degree of proba-
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bility [62]. Release of other agents, such as antimicrobial nanoparticles or metal ions, can
also lead to the occurrence of resistances, as recently reported in ref. [63]. More optimistic
results can be expected in the case of antimicrobial peptides or quaternary ammonium
salts, for which the development of bacterial resistances was not observed, even though
nature knows these compounds for billions of years [64]. On the other hand, syntheses
of antimicrobial peptides are not facile; therefore, these compounds will unlikely find an
application in the coating of nonspecific, but widely used, “common” surfaces. In turn,
quaternary ammonium salts cannot be considered to be chemically stable compounds,
especially in the bio-environment and grafted antimicrobial agents thus can lose their
functionality with time.

One elegant way, how to overcome the aforementioned limitations is the strong
immobilization of grafted nanoparticles or antibiotics to thermo-responsive chains. In
this case, bacteria can be eliminated/detached, while the coating is in a swollen state, at
which the incorporated antimicrobial agents are open for operation, while the undesired
release of the antimicrobial agents can be prevented. Such an approach was reported
for silver nanoparticles in ref. [65], but up to now, it was not implemented in the field of
smart coatings. Antibiotic grafting to polymer chains can lead to a significant decrease in
their activity and careful tailoring of the antibiotic chemical structure is required to avoid
this phenomenon [66].

Several alternative approaches for the targeted drug release were also reported on
the base of porous drug carriers [67]. The drugs are incorporated inside material pores
and the thermo-responsive polymer serves as a valve [68]. At the temperature above
the LCST, the pores are plugged by swollen polymer chains and the antimicrobial drug
release is blocked. The transition of the polymer to the collapsed state can induce the valve
opening and subsequent rapid release of incorporated drugs. To our knowledge, up to
now, this approach was not implemented in the field of smart surface protection, but it may
provide an interesting alternative, which could make more precisely controlled release of
the antimicrobials and, thus, prevent their undesired passive release.

The main advantages of the utilization of thermo-responsive polymer-based antimi-
crobial coatings are their well-known chemistry and broad availability. On the other hand,
from a general point of view, the implementation of temperature as a driving force for
coating activation cannot be considered a universal one. In particular, the temperature
stimulus cannot be delivered to the desired places with high precision and accuracy. An
additional disadvantage of doped thermo-responsive polymer is related to a so-called
burst release discussed above. Another notable drawback for thermo-switchable coatings
is their low durability in an aqueous environment because they tend to dissolve in water,
leading to a gradual loss of the coating from the substrate [69–71]. Therefore, the targeted
area of application should be carefully considered for smart thermo-responsive coatings.
Nevertheless, thermo-responsive coatings may find a range of advanced applications in
both medical and food packaging industries, where the coating durability and a potential
burst release are not so critical issues.

2.2. Light-Activated Antimicrobial Coatings

Light represents a very inexpensive, common, and renewable source of energy. Thus,
utilization of light for activation of antimicrobial properties represents an interesting issue,
especially in the case of a large area of outstanding surface coatings, for which sunlight
can be used [72]. Additionally, the capability of remote activation, without the necessity
of direct contact, can be also advantageous in a range of advanced surface antimicrobial
protection applications.

2.2.1. Reactive Oxygen Species-Based Approaches

In the case of light-activated antimicrobial coatings, the main attention was focused on
the addition of photoactive compounds able to produce reactive oxygen species (ROS). The
photoexcitation of such coatings and subsequent electron relaxation results in the appear-
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ance of superoxide or hydroxyl radicals or energy transferred to oxygen (Figure 2), which
is promoted to the excited singlet state [73,74]. The produced ROS can degrade various
types of surface contaminants, including absorbed proteins or bacterial cell walls [75].
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The advantages of this approach are high efficiency and universality in bacteria-killing.
The development of bacterial resistance to ROS cannot be expected in the case of photo-
induced treatment with radical production. On the other hand, the high reactivity of
radicals can also result in undesired effects because the formed radicals react not only with
the target but attack also the surrounding material, leading to its degradation and worsen-
ing of mechanical and/or biocompatible properties of the coatings. Thus, incorporation of
radical-generated materials should be performed mainly in resistive coating support, such
as silicone polymers [76].

Another not fully resolved drawback of the light-activated coatings is the light wave-
length, which should be used for radical formation [77,78]. The commonly used TiO2 is
extremely effective, economically undemanding but has a relatively large forbidden gap,
which requires the utilization of UV light illumination. In turn, illumination with high-
energy UV photons restricts the material application, due to safety reasons and possible
damage of closed biological objects. This drawback can be partially overcome by the prepa-
ration of doped TiO2, which is active in ROS generation under illumination with visible
light [79]. On the other hand, the achieved decrease in the band gap is not sufficient and the
utilization of high-energy photons, which can damage biological tissues, is still necessary.

Porphyrins and several dyes (for example, toluidine blue, methylene blue, or Rose
bengal [74]) represent an interesting alternative to TiO2 because their photoactive antimicro-
bial effects can be activated by visible light illumination [70,80,81]. These materials exhibit
good light-switchable antimicrobial performance in combination with light- and radical-
resistant materials, such as medical silicone or polyurethanes [82]. Their light-switchable
antimicrobial properties were demonstrated against several bacterial strains such as E. coli,
S. aureus including its methicillin-resistant strain MRSA, and B. anthracis [83,84]. On the
other hand, the antimicrobial activity of porphyrins and other dyes may be lost with con-
tinued irradiation due to photobleaching and material degradation. The photobleaching of
porphyrins and other dyes can be prevented by their coupling to various supports such



Nanomaterials 2021, 11, 3083 7 of 35

as metal nanoparticles or carbon-like materials [85,86]. It should also be noted that most
of the materials known to produce radicals under light triggering also produce certain
amounts of radicals even in the dark. Therefore, their utilization should be restricted by
possible damage of mammalian cells and oxidative stress development in the surrounding.

2.2.2. Light-to Heat Conversion

Additional light activation of coatings’ antimicrobial properties can be performed
using the light-to-heat conversion phenomenon [87]. In this case, the energy of absorbed
photons is dissipated in the closed surrounding of the absorption center in the heat form,
leading to a transformation of the surrounding material(s) [88,89]. Direct utilization of
this approach for common light-absorbing materials requires high power of the light il-
lumination for the production of a sufficient amount of heat and material activation in
a reasonable time. To overcome this drawback, several strategies can be mentioned, in-
cluding the decrease in thermodynamic barriers required for heat-induced coatings phase
transformation, or light “concentration” near the absorbing surfaces with the utilization of
so-called surface plasmon excitation [90–94]. In the first case, the coating material is ini-
tially “frozen/prepared” in a thermodynamically unstable state. Thus, even low-intensity
light illumination may result in material heating, sufficient for overcoming the residual
thermodynamic barrier and coating transformation to a thermodynamically stable state.
For example, the polymer fibers doped with light-absorbing silver nanoparticles (which
also serve as an antimicrobial agent) can be mentioned [95]. During electrospinning of such
fibers, the polymer chains are rapidly conserved in thermodynamically unstable conforma-
tion, due to the rapid solvent evaporation. Under the medium power light illumination,
the silver nanoparticles heat the surrounding polymer chains, which are transformed into a
more convenient conformation. As a result of the chain movement, the silver nanoparticles
are extruded from the polymer chains (Figure 3). The proposed approach does not require
high power illumination and can be used for on-demand local activation of antimicrobial
activity. On the other hand, this method does not enable the reversibility of material
transition after light implementation; the material is changed irreversibly and cannot be
regenerated through a fiber back-transformation or silver nanoparticle loading.

An alternative way, how to decrease required illumination power or to shift the
required wavelength far from the UV region is the utilization of surface plasmon resonance.
The surface plasmon is the collective oscillation of electrons on the (nano)metal-dielectric
interface. For surface plasmon excitation, noble metal nanoparticles or nanostructures are
commonly being used, and their high photon absorption cross-section provides efficient
light energy conversion. Besides, the effective wavelength of the surface plasmon is
significantly shorter than the wavelength of incident photons, with the corresponding
ability to focus light energy into a very small space (commonly in the range of nanometers),
in which an effective light-to-heat transition occurs, leading to a local temperature increase
by up to several hundred degrees [96]. The metal nanoparticles can be also conjugated
with dyes to extend the wavelength range and to increase the overall light absorption [97].
Such an approach can be used to affect the surrounding material matrix (for example,
polymer-based nanostructure) and activate antimicrobial effects, based on antimicrobial
agent release or ROS generation (Figure 4) [98,99].

2.3. Electrical or Magneto-Responsive Coatings
2.3.1. Magnetic Field

The magneto-based control of coating behavior represents an elegant approach be-
cause magnetic fields can be easily generated and controlled with the advanced capability
of removed antimicrobial material activation and low risk of surrounding tissue or mate-
rial damage [100,101]. Mainly, the design of magneto-responsive coatings supposes their
doping with antimicrobial agents and magnetic nano- or micro-particles [102,103]. In this
case, the significant acceleration of the drug release in the presence of a magnetic field
was reported [104]. The magneto-triggered antimicrobial release is attributed to increased
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permeability of the coating under external field application [105,106]. However, the in-
crease in permeability can lead to mechanical or chemical rupture of the coating or its
heating under the application of periodical triggering [100,107]. The amount and kinetic of
magnetic field-triggered drug release can be significantly tuned using the field strength
and frequency [104]. In particular, the optimization of a coating triggering mode and the
introduction of more complex biphasic stimuli application (Figure 5) enables reaching
excellent control of the incorporated drug release [108]. Another interesting example of the
ability of magneto-controlled directed motion for enzyme-based antimicrobial regeneration
was recently reported [109].
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prepared Ag/TPP/PMMA nanofibers; (B) Ag/TPP/PMMA nanofibers after treatment with light-
emitting diode (LED); (C) Ag/TPP/PMMA nanofibers after 20-h laser treatment; (D) the magnified
image of the laser-treated Ag/TPP/PMMA nanofibers; (E) TPP/PMMA nanofibers without Ag;
(F) TPP/PMMA nanofibers without Ag after diode treatment for 20 h. Reprinted with permission
from ref. [95]. Copyright 2016 Elsevier.
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A very interesting example is the recently reported utilization of magneto-responsive
nanoparticles with the ability of sharp transition under magnetic field application (Figure 6).
Reported nanoparticles, based on gallium liquid metal, were able to induce mechanical
disintegration of microorganisms and biofilms [110,111]. In particular, the appearance of
shaped edges on nanoparticles under magnetic field application and magneto-induced
nanoparticle motion destroys the bacterial biofilm and physically ruptures the bacterial
cells with the dense biofilm matrix being finally broken down. Such an approach can work
on the entire scale of microorganisms, and the risk of resistant strain development can be
ignored [16]. The method was reported for non-immobilized nanoparticle suspensions,
but the grafting of nanoparticles on a protected surface seems to be a very interesting
alternative. Similarly, magneto-responsive coatings, able to change morphological features
under external magnetic fields, are widely used in the field of tissue engineering to control
mammalian cell detachment or govern their behavior [112–114].

According to the recent works, the application of magnetic stimuli can find more wide
and interesting applications in the area of surface protection because it can provide an
opportunity to reversibly change the surface morphology and wettability, with related
ability to tune the surface free energy and proteins or bacterial adhesion. Reversible changes
from “flat” to “sharped” surface may on demand introduce the sharped surface feature able
to damage and kill the attached bacteria. Such magneto-responsive coatings can be easily
realized through matrix coating doped with magnetic nanoparticles. Simpler and scalable
techniques, such as in situ crystallization and freeze-drying, co-precipitation, molding, and
solvent-casting techniques [115–119] provide an elegant strategy for the creation of smart,
magneto-activated coatings. Subsequent utilization of the external magnetic field results in
significant surface morphology changing, providing an opportunity to create and switch
proteins adhesivity or recreate dynamically cell-repellent surfaces.
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The reversible tuning of surface morphology from rough to flat one under the appli-
cation of the magnetic field was described in ref. [120,121] and is demonstrated in related
Figures 7 and 8. Such an approach was used for reversible switching of surface water and
oil wettability, but a similar approach can be also used for active removal or disruption
of adhered surface protein layers or bacteria. A similar approach was also described in
ref. [122], in which the authors used the magnetic field to control surface morphology and
dynamic wettability of the samples prepared by deposition of magnetic Fe3O4 nanoparti-
cles and subsequent coverage with a silicone polymer. The main attention in this field was
focused on achieving the switching between ultimately opposite surface states (superhy-
drophobic/superhydrophilic or water adhesive/water repellent) [123–125]. Such surfaces
can be utilized in the flow regime in an initially flat state, without the risk of damage of the
morphology features. For the protection against bacterial colonization, the surface can be
easily converted into a highly roughed state with related repellence of an absorbing layer,
protein layer, or bacteria. Besides, due to the simplicity of magnetic field introduction,
the surface activation can be easily performed in several subsequent cycles, without any
chance of bacteria remaining attached to the protected surface. Therefore, the emergence
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of new works in which magneto-responsive surface coatings will be used for on-demand
activated surface protection can be expected shortly.
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Figure 7. (A) A scheme of the reversible shape transformation between the upright state and the
nearly flattened state. (B,C) Scanning electron microscopy images of the mushroom-like pillars in the
upright and curved states, respectively. (D,E) Switchable wettability of the surfaces for hexadecane
corresponding to (B,C), respectively. (F,G) Reversible variations in the apparent contact angle
and sliding angle of hexadecane through repeated bending and recovery processes, respectively.
Reprinted with permission from ref. [120]. Copyright 2019 American Chemical Society.
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Figure 8. (A) A scheme for reversible switching of wettability and adhesion properties of the magnet-
ically responsive superhydrophobic surface by on/off switching of the magnetic field. (B) Optical
microscope images show the stiffness tunability of the magnetorheological elastomer micropillars un-
der an external magnetic field, which can transform the micropillars from the collapsed morphology
(water-adhesive state) to the fully upright position (water-repellent state). Reprinted with permission
from ref. [121]. Copyright 2018 American Chemical Society.

2.3.2. Electro-Responsive Coatings

The common approach in the field of electro-controlled smart antimicrobial surfaces
is based on the formation of porous or high-surface-area materials able to reversibly en-
trap/release the antimicrobial agents through electro-static interactions [126,127]. An
additional requirement for such material is the presence of redox-active atoms, on which
the charged antimicrobial agents can be bound. In this regard, conductive polymer coat-
ings or polymer composites with redox-active nanomaterials are widely used [128–131].
Charging/discharging of conductive polymers (for example, polypyrrole; Figure 9) makes
possible the reversible entrapping/release of a drug or release of antimicrobial agents even
in a stepwise matter or pulsatile manner [132].
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Figure 9. (A) Drug release profiles for polypyrrole inverse-opal dexamethasone phosphate films and
conventional nonporous polypyrrole dexamethasone phosphate films. Following 24 h of a passive
release, 1 h periods of electrical stimulation were applied (arrowed time points) at 24 and 48 h (n = 3,
mean ± standard error) and (B) control drug release profiles, without electrical stimulation, for PPy
IO–DexP and conventional PPy–DexP films (n = 3, mean ± standard error). Using electro-responsive
macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Reprinted with permission
from ref. [128]. Copyright 2015 Elsevier.

The proposed approach is especially interesting because it does not require the
chemical grafting of antimicrobial agents, maintaining the material in a “pristine” state,
i.e., with the previously optimized chemical structure for maximal antimicrobial effectivity.
This strategy of surface protection is well compatible with metallic-based conductive im-
plants [133], for which the possibility to control the released drug kinetic by the applied
voltage is highly desired [134]. On the other hand, the method is limited by requirements
for substrate conductivity and the number of charged antimicrobial agents, which imple-
ments the utilization of antibiotics as immobilized antimicrobials [135]. Besides, the passive
release of immobilized drugs is a common problem due to the weakness of electrostatic
interaction [136]. As an alternative approach, the formation of more stable covalent bonds,
degradable by electrolysis (Figure 10) was recently proposed [137]. In this case, suppression
of undesired spontaneous release can be expected.

Finally, it should be mentioned that most of the organic polymers, commonly used
for electric field-driven drug entrapping/release, are not stable against repeated cycles
or oxidation/reduction, and, thus, the real coating regeneration should be attributed to
conductive polymer stability (100× cycles).

Another interesting application of electric field-based coating triggering is likely with
magnetic field application related to the reversible changing of surface-liquid interaction.
In this regard, the well-known electrowetting phenomenon is commonly used [138], where
the electric field-induced water precipitation/removal in surface pores or valleys enables
the liquid contact angle tuning [139]. As a result, the precise control of the surface wetting is
achieved, with related on-demand introduction of superhydrophobicity or water repellence.
With such surface designs, smart activation of surface self-cleaning and bacterial repulsion
functionality can be achieved [140–142]. In ref. [142] a switchable material based on highly
stretchable silicone polymer doped with polypyrrole was proposed. The electro-controlled
surface self-cleaning performance enables on-demand removal of adhered bacteria or other
biocontaminants (Figure 11).
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Figure 10. A scheme of the preparation of (A) a graphene-based platform f-G(1) loaded with drug models (f-G(2–3))
followed by their electrochemically triggered release (f-G(4)); (B) graphene-free organic models employed to characterize
the release mechanism; (C) graphene-based materials for control experiments. Reprinted from ref. [137] with permission
from the Royal Society of Chemistry.

The changes of surface wettability under an external electric field can be also real-
ized using a reversible modification of the surface topography [143,144]. In particular,
the tuning of flexible film morphology can be achieved by the application of a perpen-
dicular electric field, which induces the surface hydrodynamic instability and wrinkled
pattern appearance [145–147]. In the common case, this phenomenon was known to be
irreversible, but recently the reversible and spatially selective surface morphology tuning
was demonstrated, see Figure 12 [148].
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Figure 11. Advanced functionalities and electric field (EF) switchable behavior of polypyrrole
functionalized silicon surface: (A) Time-dependent behavior of water droplets (deionized water or
ions containing water) on the sample surface with and without application of EF; (B) repeated cycles
(EF on/off) of electro-induced surface transition from a superhydrophobic state to a hydrophilic one
(surface activation/regeneration); (C,D) photography of the samples immersed in water before and
after application of EF triggering; (E) time-dependent water droplets slipping along the slightly tilted
(5◦) sample surface; (F) example of self-cleaning test on the pristine (or regenerated) sample surface.
Reprinted with permission from ref. [142]. Copyright 2019 Wiley.
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Copyright 2020 Elsevier.
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As an alternative approach, the utilization of electric field can be used for surface
geometry switching using the piezo effect [55,149–152]. In particular, the grafting of piezo-
responsive PVDF/PMMA polymer fibers with fluorinated chemical moieties was reported
to produce the intrinsically hydrophobic surface. Subsequent utilization of electric field
triggering enables us to switch the surface between water repellent/water adhesive states
and reach the smart, externally controlled self-cleaning phenomena (Figure 13).
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Figure 13. Superoleophobicity and reversible water and ethylene glycol adhesion switching on
−C6H4−C8F17 grafted polyvinylidene fluoride/poly(methyl methacrylate) (PVDF/PMMA) fibers:
(A) a time-resolved image of a 5-µL water droplet at a roll-off angle of 4◦ without the electric field,
(B) a resolved image of a 5-µL water droplet at 180◦ with an EF application; (C) optical images
of reversible EG adhesion under EF switching on/off; (D) a schematic illustration of EF-induced
liquid adhesion switching; (EI) coating of fibers with graphite powder, (EII) application of water a
droplet and adsorption of graphite on the droplet after its movement, (EIII) cleaning of the surface
after sliding off the surface, (EIV) a proposed mechanism of the self-cleaning process (From [151]).
Copyright © 2018 American Chemical Society.

In the area of the electric field-driven surface protection, attention also deserves
changing of the conformation of polymer brushes, grafted to the conductive surface,
through its reversible positive or negative charging [123]. In ref. [123], the authors used
the proposed approach for electro-switchable friction control, but the detachment of a
protein layer or bacteria seems to be an interesting alternative in this case (Figure 14).
The switching was reached with the utilization of poly-sodium allyloxy hydroxypropyl
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sulfonate; however, a wide range of zwitterion polymers can potentially produce similar
effects under electric field triggering [153].
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2.4. Mechanically Responsive Coatings

The mechanically driven antimicrobial protection of the surface can be considered as
a perspective avenue in the field of coatings that are exposed to periodical strain due to
human action. For example, daily human motion provides a constant source of mechanical
stimuli for promoting drug release in a spatiotemporal manner. Additional examples of
mechanically responsive coating applications can be related to handrails in public places.
Thus, the design and creation of mechanically activated antimicrobial coatings seem to be
interesting in both external and in vitro applications.

In the case of mechanical-based antimicrobial surface protection, the specially de-
signed surface morphology with sharp features, like TiO2 nanopillars or black silicon
surface, is often considered [154–156]. The sharp surface features induce the damage of
the bacterial cell wall and related bacterial lysis. Recently, it was demonstrated that the
nanopillar array can mediate oxidative stress, also ensuring the protection of an antimicro-
bial surface [155]. Such a strategy cannot be intrinsically considered a smart one because
the surface morphology in common sense cannot be switched. On the other hand, the
effect of mechanical damage of bacteria can be combined with other treatments, for exam-
ple, photoactivation of TiO2-producing reactive oxygen [157]. An additional interesting
example is a combination of superhydrophobic surface and mechanical bactericidal surface
properties, not only killing the bacteria but also removing the bacterial residues [158].

The widely used way of coating or material mechanical activation is related to drug
incorporation in the structure of elastic coatings with a subsequent release under me-
chanical stress [159,160]. The drug release can be induced by different mechanical trig-
gering, including the application of compression forces, material stretching, or bending
(Figure 15) [161,162]. In all cases, the drug release kinetic depends on its binding to the
elastic support [163,164]

Indeed, a mechanically responsive coating design and the kind of incorporated antimi-
crobial agent should be created concerning its further application. For example, the release
under mild coating compression can be considered as a protective coating for handrails
in public places [165,166]. Oppositely, the high mechanical tolerance should be rather
compatible with utilization involving large deformations, like wearable coatings.
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The mechanically responsive approach, however, has a significant drawback—most of
the incorporated drugs cannot be bound to the coating structure, and, thus, burst or passive
release is inevitable. Thus, for the improvement of release performance and achievement
of better control, the special coating matrix design is often required [167,168]. An alterna-
tive approach was proposed based on piezoelectric materials, where the application of
mechanical triggering led to bacterial degradation due to surface potential generation on
the material surface [169,170]. The harvesting of mechanical energy and its conversion
to electro-chemical potential led to the production of ROS, ensuring bacterial cell disrup-
tion [171]. Such kind of material protection was demonstrated using the BaTiO3 material,
which is known for its high piezoelectric coefficient, but recently was also reported for
polymer films with lower piezo-coefficient [172].

2.5. Mixed Approaches

In this part of the review, we describe the recent progress in the extremely inter-
esting and attractive field of multifunctional coatings, including double or multirespon-
sive coating activation, a combination of bacteria detection and release, killing and re-
moval, as well as simultaneous bacteria deactivation using the mixed mechanism of
antimicrobial action [173,174].

2.5.1. Physico-Chemical Stimulation

The introduction of coating multiresponsivity towards two or more external stimuli
makes possible better control of coating response in terms of activation of antimicrobial
properties. The applied stimuli can combine the physico-physical or physico-chemical
options of coating material activation.

In the case of physico-chemical activation of coatings, the most widely used chemical
stimulus is pH [175]. The combination of pH and temperature responsivity was reported
many times for the on-demand release of traditional antibiotics, metal ions, or nanoparticles
as well as antimicrobial peptides [176,177]. Alternatively, the release from chitosan-based
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thin films was demonstrated as a function of pH and applied electric potential [178–180].
Reported electro- and pH-coating activation are especially interesting in the case of implant
protection, taking into account that in patient body implants will be subjected to constant
pH (different from “initial”) and activated by electro-triggering. Since not all implants
are conductive, the alternative utilization of magnetic field and pH activation proposed
in ref. [181] can be also considered as the very perspective way. Finally, the combination
of other stimuli, like light and supramolecular host-guest chemical interaction, was also
reported [182], and further progress in this field can be expected.

It should be also noted that the combination of physical and chemical sensitivity can
potentially open a very interesting capability of local activation of a coating at the right
bacteria-colonized place. In this case, an ideal physically chemical-sensitive coating will
activate external triggering solely in the place of bacteria colonization. Realization of this
ambitious task will enable us to reach two main goals: prevent the incorporated drug
unnecessary losses due to triggering of uncolonized places and simultaneously protect the
coating from false activation during its storage.

2.5.2. Physico-Physical Stimuli Combination

In the case of two physical stimulus-based coating activations, the most common
way of material design is the combination of electro-switchable incorporated drug re-
lease with thermo-switchable drug penetration into the surrounding. Such an approach
can be realized with composite materials or with copolymers, where the kinetic of drug
release is controlled remotely by the application of one or both stimuli [183]. As a typ-
ical example, the thermo- and electro-responsive material were designed on the base
of chitosan/pluronic/polyaniline loaded with antimicrobial agents [184]. Utilization of
thermo-switchable coating matrix and electro-driven drug release additionally enables
a double surface protection—controlled drug release and bacteria residue detachment,
ensured by thermo-responsive material parts [185].

Another attractive way of physico-physical coating activation is the implementation
of non-invasive stimuli, such as light and magnetic fields. As an example, magneto- and
photo-responsive materials based on material, which contained light-responsive, magneto-
responsive, and drug chelating units were reported [186]. An alternative combination
of magnetic and mechanical stress for surface morphology tuning was reported in [120].
The authors used a very simple and scalable approach for surface pattering, based on the
mix of magnetic particles with silicone resin precursor and film curing under a constant
magnetic field. Taking into account the shape and width/height ratio of the created pillar
array, the proposed approach represents an interesting way how to create the coatings,
which can on-demand prevent bacterial attachment or remove their residues. Other various
combinations were also reported in the literature, including temperature, and more rarely
used ultra-sound or mechanical triggering [187,188].

2.5.3. Multiresponsive Coatings

The utilization of more than two ways of coating activations was also commonly
considered for smart surface preparation, with potential antimicrobial functionality. For
example, in ref. [150], the surface wettability and morphology were found to be affected
by the simultaneous triggering by pH, temperature, and electric field. To reach such
multi-responsivity, the combination of PNIPAm/PAA polymers was used (Figure 16).
PNIPAm and PAA provide the responsivity towards temperature and pH, respectively,
while PVDR/PMMA supports the sensitivity towards the external electric field. In this case,
the main question, however, is to find some gold standard between the coating complexity,
related technological demands, and the degree of surface properties control.
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2.5.4. Multidrug Approach

The coating’s multifunctionality can be also reached through the introduction of
several mechanisms of agents release or antimicrobial action. In the simplest case, the mul-
tidrug loading with different release rates can be mentioned [189–191], ensuring temporally
stable surface protection. Another interesting and very promising idea is the incorporation
of two antimicrobial agents, desirable with different mechanisms of action [192,193]. The
combination of silver nanoparticles and antibiotics can be considered for such coating
design because of their synergic action (silver nanoparticles damage bacterial cell walls
and facilitate penetration of antibiotics) [194]. In another work, Li et al. [195] fabricated
antimicrobial materials with dual-function based on silver ions or nanoparticles and im-
mobilized quaternary ammonium salts (QAS). An interesting combination is a quaternary
ammonium salt with a photosensitizer chlorin e6 so that the chemical and photodynamic
therapy are merged in one moiety for a more efficient antibacterial activity [196]. ROS
generation in combination with silver nanoparticle-based bacteria-killing is another simple
but effective alternative [97,197]. Indeed, the incorporation of several bacteria-killing ap-
proaches in the framework of single coatings can significantly decrease the risk of resistant
strain development or kill the previously developed resistant strains [198]. Moreover,
the synergy in antimicrobial action is often observed [199], ensuring a high degree of an-
timicrobial activity, highly desired in specific medical applications (for example, implants
surface protection) [200].

2.5.5. Killing and Release

An extremely effective approach for the development of smart and very efficient antimi-
crobial coatings is the creation of self-cleaning and bacteria-killing surfaces [29,141,201,202].
When a released antimicrobial agent kills bacteria, there is a high chance that bacterial
residues will contaminate the surface, thus leading to the passivation of its antimicrobial
properties. To prevent this undesired scenario, the coating should combine antimicrobial
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and antifouling properties [203–205], like in the case presented in Figure 17. Surfaces
and materials with bactericidal and fouling release functions can be tailored in a switch-
able manner, enabling us to reach strong biocidal effects and on-demand release of dead
cells [206,207]. In this regard, several combinations were proposed [208,209], including the
release of silver nanoparticles for bacteria-killing and surface grafting with zwitterionic
polymers for the introduction of the antifouling performance. An alternative example
was demonstrated using the hybrid poly(N-hydroxyethyl acrylamide)/salicylate hydrogel
doped with silver ions [210].
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Figure 17. A smart polymer coating repeatedly switches between the attacking function (cationic ring (CB-ring), to kill
bacteria under dry conditions) and defending function (zwitterionic carboxy betaine (CB-OH), to release and resist bacteria
under wet conditions). CB-Ring can be hydrolyzed to CB-OH in neutral or basic aqueous solutions and can be regenerated
by dipping CB-OH in acidic media. Reprinted with permission from ref. [203]. Copyright 2012 Wiley.

Especially interesting is surface immobilization of both antimicrobial and antifouling
materials on the protected surface to reach the contact killing and removing of killed
bacteria. Such an approach was reported in ref. [203], in which the polymer surface
switching between a cationic and zwitterionic state enables bacteria-killing and residue
removal. Similar switching from a cationic surface to a zwitterionic surface was reported in
ref. [29], leading to the elimination of the bacteria and preventing bacterial contamination
by the remnant residues. Similarly, in ref. [211], the external switching of the surface
enables on-demand activation of the antimicrobial or antifouling surface functionalities
(Figure 18). In the reported cases, the antimicrobial surface can be also engineered using
immobilization which undergoes reversible chemical transformation for bacteria-killing or
removal [29,203]. Such a kill-and-remove approach may overcome the principal mismatch
in a coating design and action: antimicrobial materials have to interact with microbes while
antifouling materials tend to repel them. The special design of grafted molecules may
achieve a potential compromise by adjusting the temporal presence of the two materials
through external stimuli, enabling only one type of material to appear and function at a
proper moment.
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Figure 18. Chemical structure of tannic acid (TA)-scaffolded polymer and a schematic illustration of
“one-step” deposition for “smart” and self-defensive TA-scaffolded binary polymer brushes coating.
Reprinted with permission from [211]. Copyright 2020 American Chemical Society.

Additional interesting examples including the light-switchable hydrogel-based coating
were reported [212]. In the proposed design, the photolabile groups can be cleaved from
the hydrogel shortly upon UV irradiation and the polymer surface switching from an
antimicrobial cationic to a repellent zwitterionic form can be achieved (Figure 19). The
cationic hydrogel as a precursor was shown to effectively kill the attached bacteria, and
then it can be quickly switched via photolysis to zwitterionic antifouling form, releasing
the attached bacteria from the surface and preventing further bacterial attachment.

Finally, an alternative approach was proposed in ref. [142], in which the material, based
on the flexible silicone polymer doped with conductive polypyrrole, was electrochemi-
cally loaded with the antimicrobial agent. In its pristine state, the proposed polypyrrole
layer demonstrates the superhydrophobic and self-cleaning behavior. The application
of electric field triggering can convert the material into a hydrophilic state and induce
the simultaneous release of the incorporated antimicrobial agents (Figure 20). As can be
expected, the bacteria at the protected surface are killed and their residues contaminate
the surface. However, the electric field switches off the return of the surface to the initial
superhydrophobic and water adhesive state, making the bacteria residues removal possible
by simple washing.
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2.5.6. Detect and Kill

In all cases of physical stimulus application, one dubious question remains: At what
time should be the stimuli applied to activate the antimicrobial properties? From this point
of view, the creation of multifunctional surface coatings, which combines bacteria-sensitive
and on-demand activated antimicrobial properties, seems to be a prospective avenue for
further research. In this case, the first external “back” stimulus means that an infection was
detected (for example, through monitoring of physiological parameters), and only then the
external trigger is activated. The time delay in the response can be important and can lead
to infections that can no longer be cured. Taking into account diverse coating applications,
the detection methods should be portable, express, and have low equipment demand. In
this regard, monitoring surface bacteria colonization through color changes seems to be an
excellent possibility [213–215]. Most of the proposed works utilize the external changes in
pH as a marker of bacterial strain development [216,217]. Such an approach is cheap and
scalable, but it lacks reliability (because of the absence of bacteria-associated pH changes)
and cannot indicate the initial stages of surface colonization (sufficient pH changes may
occur only at a high degree of bacteria colonization). Thus, alternative approaches, based
on the specific biomolecules’ appearance should be developed [218,219].

The combination of detection and bacteria-killing was recently reported in [220–222],
in which pH served as an indicator of bacterial development, signalizing the necessity of
an external trigger—NIR irradiation. Similarly, in ref. [222], the authors used pH-sensitive
dye thermosensitive hydrogels for pH-based diagnostic and photothermal treatment of the
material surfaces (Figure 21).
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Several works have also reported the combination of antimicrobial action (drug release)
and simultaneous observation of bacteria-killing/survival [223,224]. Proposed approaches,
based on optical changes and bacteria combating by nitric oxide or release of incorporated
antimicrobial agents, which were not activated by an external stimulus, potentially provide
back-response in the observation of bacteria-killing efficiency, which is an interesting
opportunity for time-balanced application of coating triggering. Finally, the range of bio-
inspired smart coatings should be mentioned. Such structures combine the morphology,
copy the same objects from nature (which ensure the bio-repellency functionality), and
additionally introduce externally activated antimicrobial agents [225–227].

It should be also noted that at present, the number of works reporting bacteria de-
tection and on-demand antimicrobial activity activation is not so high and the above-
mentioned problems should be addressed in the future. In particular, key questions, which
should be solved are the introduction of faster and specific enzyme-based bacterial de-
tection or expansion of the range of external stimuli, which can be applied for coating
activation. Attention should be paid to the reliability of the received signal and the simplic-
ity of observation because the well-known “signal” coatings, based on the pH-sensitive dye
can provide a signal due to nonbacterial induced pH changes, in addition to continuous
dye degradation and functionality loss. Signal receiving, based on enzyme-specific coating
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response could be more accurate, but it opens the questions of universality (detection
of all dangerous strains) and cost. Therefore, the creation of sensitive and on-demand
activated coatings should be performed by taking into account the targeted area of ap-
plication, namely requirements for mass production, number, and a type of potentially
represented bacterial strain(s), condition of coating utilization, including secondary factors
as, for example, X-ray irradiation at customs control.
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3. Outlook and Further Perspectives

We have reviewed the key approaches for the design of smart surfaces with a phys-
ically activated antimicrobial response (Table 1 gives a summary of the described ap-
proaches, including the common and well-known, as well as recently described advanced
strategies). Such surfaces are extremely desired in the field of food packaging, wound
dressing, implant protection, as well as the creation of safe surfaces on various hand-
touched surfaces in public transport, or other social places. Of the main physical stimuli,
temperature, light, electric, and magnetic fields as well as mechanical stress were discussed
in detail. Such stimuli may induce antimicrobial surface protection through various mech-
anisms, among which the main attention was paid to the activation of drug release and
changing of surface morphology with the related (bio)contaminant-removing performance.
Most of the reviewed approaches can be used for combating the problem of bacterial
surface contamination, but many issues related to the undesired release of drugs, coating
passivation by bacteria residues, degradation of grafted antimicrobial agents, worsening of
shaped surface features, as well as overall coating stability remain unsolved in the field of
single-stimulus activated coating.
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Table 1. Common methods of antimicrobial surface external activation by a physical stimulus and
several recent more advanced approaches.

Simple Methods of Surface Antimicrobial Response Activation

Stimuli Mechanism of Actions

Temperature
Temperature-governed antimicrobial releasePhase

transformation of grafted polymers and repellence of attached
bacteria or biomolecules

Light ROS productionLight-to heat conversion and bacteria-killing

Electric field
Reversible antimicrobial entrapping/releaseExternal control
of surface morphology and wettability (including slippery

and bio-repellency)

Magnetic field Remote triggering of drug releaseSurface shape
control—mechanical killing

Mechanical forces Mechano-induced antimicrobial agent(s) local extrusion

More Sophisticated Approaches and Recent Trends

Approach Advantages

Double and
multi-stimuli control

Better control of antimicrobial agents release and activation;
simultaneous utilization of several surface

protection mechanisms

Killing and release Prevention of surface deactivation due to killed bacteria
residue or their metabolic products

Detect and kill Ability to apply external physical triggering in the right place
at the right time

Besides the well-known physically activated coatings, we paid special attention to the
design of attractive surface protection systems and materials, which can be activated by the
simultaneous application of two stimuli, which can induce antimicrobial and antifouling
actions, simultaneously induce bacteria-killing by several mechanisms or by combining the
functions of surface colonization detection and on-demand activation of a coating. In this
field, additional and significant progress can be expected soon because such approaches
can enable better control of coating behavior, activation of antimicrobial properties at the
right place at the right time, and prevent the bio-related passivation or development of
resistant bacterial strains. It should also be noted that the majority of multifunctional
coatings are based on relatively sophisticated materials and their industrial scaling can
be questionable. Moreover, the simplification of multifunctionality realization without
deterioration of overall bactericidal properties should be solved.

Additional questions, which should be mentioned for both single or multifunctional
smart coatings are related to the development of methods for their stable deposition,
potential environmental toxicity, safe and disposal utilization. Thus, many remaining and
essential issues, attributed to the further development of economically feasible and scalable
multifunctional coatings should be solved in near future.
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Abbreviations

AFM Atomic force microscopy
EF Electric field
FITC Fluorescein isothiocyanate
GLM Gallium-based liquid metal
MRSA Methicilin-resistant Staphylococcus aureus
NMP Nitroxide-mediated polymerization
LCST Lower critical solubility temperature
LED Light-emitting diode
PEG Polyethylene glycol
PMMA Poly(methyl methacrylate)
PNIPAm Poly(N-isopropylacrylamide)
PVDF Polyvinylidene fluoride
QAS Quaternary ammonium salts
RAFT Reversible addition−fragmentation chain-transfer polymerization
ROS Reactive oxygen species
TA Tannic acid
TPP Tetraphenylporphine
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