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Abstract: Muscular dystrophies are a group of more than 160 different human neuromuscular
disorders characterized by a progressive deterioration of muscle mass and strength. The causes,
symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis
and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from
genetic defects. There are no known cures for congenital myopathies; however, recent advances in
gene therapy are promising tools in providing treatment. This review gives an overview of the mouse
models used to investigate the most common muscular dystrophies and congenital myopathies with
emphasis on their potentials and limitations in respect to human applications.

Keywords: mouse models; muscle disorders; dystrophy; dystrophinopathies; myopathy;
malignant hyperthermia

1. Introduction

Muscle dystrophy is a muscle disease that leads to a progressive loss of muscle mass and a weakened
musculoskeletal system in accordance with age of onset, severity, and the group of muscles affected.
Dystrophy is an umbrella name that encompasses more than 30 genetic disorders that progress over
time, leading to degeneration and weakness of the muscles. The phenotype of muscular dystrophy is
an endpoint that arises from a disparate set of genetic and biochemically heterogeneous pathways.
Genes associated with muscular dystrophies encode proteins of the plasma membrane (sarcolemma),
terminal cisternae, extracellular matrix, and the sarcomere, as well as nuclear membrane components
(Figure 1).

Myopathies are a diversified family of disorders characterized by pathological structure and/or
the functioning of skeletal muscles. Inherited myopathies include a clinically, histopathologically,
and genetically heterogeneous group of rare genetic muscle diseases that are characterized by
architectural anomalies in the muscle fibers.
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Figure 1. Mutations in skeletal muscle causing muscle disorders. ➀. Altered lipid phosphatase activity 
of MTM1; ➁. defects in microtubule dynamics or vesicular traffic (DNM2); ➂. defective calcium 
release from the SR via RyRs; ➃. mutated or missing dystrophin; ➄. defects in alternative splicing due 
to MBLN1, CELF1 and DUX4 malfunction. (MTM1: myotubularin 1; DNM2: dynamin 2; SR: 
sarcoplasmic reticulum; RyR: ryanodine receptor; MBLN1: muscle blind-like; CELF: CUGBP/Elav-
like factors; DUX4: homebox protein 4; DHPR: dihydropyridine receptor; NMJ: neuromuscular 
junction; SERCA: sarco(endo)plasmic reticulum calcium pump). 

In the present review, our aim was to focus primarily on the mouse models used in preclinical 
studies of the amplest muscle disorders with emphasis on their potentials and limitations in respect 
to human applications. Here, we chose to elaborate exclusively on mouse models as they are easy to 
breed, maintain in large numbers, and genetically modify; however, one must note that there are 
various mammalian model systems available that are not addressed here due to length constraints. 
The importance of establishing similarities and differences between the human disease condition and 
murine animal models and the potential obstacles and limitations that arise from these differences 
when attempting to elucidate a prospective therapeutic strategy for muscle disorders is now 
generally accepted. Even though scientists have accesses to robust methods for the diagnosis and 
extensive characterization of disease progression along with a vast array of animal models that 
recapitulate well (but not entirely) muscle disorders, the available therapies are still palliative, 
minimizing symptoms rather than addressing the true cause of the disease.  

2. Muscular Dystrophies  

Muscular dystrophies (MDs) are a group of inherited disorders in which the voluntary muscles 
that control movement, in some instances the heart muscles and eventually the diaphragm, 
progressively weaken and lose their ability to maintain proper function. There are more than 30 types 
of MDs that vary in severity, symptoms, and causes. In recent years, the classification of MDs has 
been adjusted in order to correspond to the newly available information related to the primary 
protein dysfunctions and their localizations. As a consequence, by convention, the MDs had been 
classified according to the main clinical and biopsy findings, age of onset, and rate of progression 
into nine major forms: (1) Becker, (2) congenital, (3) Duchenne, (4) distal, (5) Emery–Dreifuss, (6) 
facioscapulohumeral, (7) limb–girdle, (8) myotonic, and (9) oculopharyngeal muscular dystrophy. In 
the present review, we tackle the most common forms of MDs in humans.  

2.1. Dystrophinopathies 

Figure 1. Mutations in skeletal muscle causing muscle disorders. 1O. Altered lipid phosphatase activity
of MTM1; 2O. defects in microtubule dynamics or vesicular traffic (DNM2); 3O. defective calcium
release from the SR via RyRs; 4O. mutated or missing dystrophin; 5O. defects in alternative splicing
due to MBLN1, CELF1 and DUX4 malfunction. (MTM1: myotubularin 1; DNM2: dynamin 2; SR:
sarcoplasmic reticulum; RyR: ryanodine receptor; MBLN1: muscle blind-like; CELF: CUGBP/Elav-like
factors; DUX4: homebox protein 4; DHPR: dihydropyridine receptor; NMJ: neuromuscular junction;
SERCA: sarco(endo)plasmic reticulum calcium pump).

In the present review, our aim was to focus primarily on the mouse models used in preclinical
studies of the amplest muscle disorders with emphasis on their potentials and limitations in respect
to human applications. Here, we chose to elaborate exclusively on mouse models as they are easy
to breed, maintain in large numbers, and genetically modify; however, one must note that there are
various mammalian model systems available that are not addressed here due to length constraints.
The importance of establishing similarities and differences between the human disease condition
and murine animal models and the potential obstacles and limitations that arise from these differences
when attempting to elucidate a prospective therapeutic strategy for muscle disorders is now generally
accepted. Even though scientists have accesses to robust methods for the diagnosis and extensive
characterization of disease progression along with a vast array of animal models that recapitulate well
(but not entirely) muscle disorders, the available therapies are still palliative, minimizing symptoms
rather than addressing the true cause of the disease.

2. Muscular Dystrophies

Muscular dystrophies (MDs) are a group of inherited disorders in which the voluntary muscles that
control movement, in some instances the heart muscles and eventually the diaphragm, progressively
weaken and lose their ability to maintain proper function. There are more than 30 types of MDs
that vary in severity, symptoms, and causes. In recent years, the classification of MDs has been
adjusted in order to correspond to the newly available information related to the primary protein
dysfunctions and their localizations. As a consequence, by convention, the MDs had been classified
according to the main clinical and biopsy findings, age of onset, and rate of progression into nine major
forms: (1) Becker, (2) congenital, (3) Duchenne, (4) distal, (5) Emery–Dreifuss, (6) facioscapulohumeral,
(7) limb–girdle, (8) myotonic, and (9) oculopharyngeal muscular dystrophy. In the present review, we
tackle the most common forms of MDs in humans.
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2.1. Dystrophinopathies

Dystrophinopathies cover a spectrum of X-linked muscle diseases ranging from mild to severe
forms that include Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD),
and DMD-associated dilated cardiomyopathy (DCM). DMD/BMD are neuromuscular genetic disorders
characterized by progressive muscle degeneration, weakness, and wasting due to the alterations of
a critical muscle protein called dystrophin, which is a relatively long (110 nm), rod-shaped intracellular
protein localized at the cytoplasmic face of the sarcolemma in cardiac and skeletal muscles [1,2].
Dystrophin connects γ-actin of the subsarcolemmal cytoskeleton system to a complex of proteins
in the surface membrane (dystrophin protein complex, DPC) and helps keep the muscle cell intact
and orchestrates the transmission of force laterally across the muscle during contraction (see Figure 1).
Growing evidence suggests that dystrophin also has a major role in regulating signaling pathways
that activate nitric oxide (NO) production, Ca2+ entry, and the production of reactive oxygen species
(ROS). The absence or reduced expression of dystrophin beside other members of the DPC complex
causes dystrophinophathies.

DMD is the most common muscular dystrophy in children affecting primarily boys due to classical
X-linked recessive genetics according to which males who carry the mutation express the disease while
females are carriers. The incidence of DMD is approximately 1 in 3500 [3–6]. DMD symptom onset is
in early childhood, usually between ages 2 and 6. The symptoms of DMD include decreased muscle
size accompanied by progressive weakness and atrophy of skeletal and heart muscles. Early signs of
DMD are muscle weakness of weight-bearing muscles and may include delayed ability to sit, stand, or
walk, difficulties learning to speak, and general cognitive impairment. Most children with DMD use
a wheelchair by their early teens. Heart and breathing problems also begin in the teen years, leading to
serious life-threatening complications, and patients usually die in the third or fourth decade due to
respiration or cardiac failure.

Frame-shift mutations or other genetic rearrangement in the dystrophin gene abolish protein
expression that disturbs the connection between the cytoskeleton and the extracellular matrix, making
muscle fibers more susceptible to contraction-induced membrane damage. As a result, the uncontrolled
influx of calcium ions occurs inevitably, leading to progressive myofiber degeneration [7,8].
These pathologic processes are accompanied by chronic inflammation and fibrosis [9], as evidenced
by macrophage infiltration [10]. In DMD, skeletal muscles active myofiber necrosis, and cellular
infiltration can be histologically identified, furthermore regenerating myofibers containing centrally
located nuclei, and a large variety of myofiber sizes are often detected. This phenotype is particularly
pronounced in the diaphragm, which undergoes progressive degeneration and myofiber loss, causing
an approximately 5-fold reduction in muscle isometric strength [11].

In-frame deletions often generate truncated dystrophin and result in BMD characterized by
skeletal muscle weakness with milder symptoms and later onset that appear between the ages of 2
and 16 but in some cases as late as the twenties. Its incidence has been estimated to be between 1 in
30,000 male births [12,13].

Plentiful mouse models have been developed to better understand the basic molecular biology of
DMD. Currently, there are nearly 60 different animal models for DMD, and the list keeps growing. For
a comprehensive lineup, see Table 1 and the review by McGreevey and colleagues [14]. The TREAT-NMD
Alliance (https://treat-nmd.org/research-overview/preclinical-research/) is an initiative to improve
preclinical trial design and execution for the most common mouse models of DMD, spinal muscular
atrophy (SMA), and congenital muscular dystrophy.

https://treat-nmd.org/research-overview/preclinical-research/
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Table 1. Mouse models of Duchenne muscular dystrophy.

Model System Genetic Changes
in the Mouse Model/Mutation(s)

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

Dystrophin-deficient mice

mdx
Albino mdx
mdx/BALB/c
mdx/BL6
mdx/C3H
mdx/DBA2
mdx/FVB

Exon 23 point mutation.

On the C57BL/10 background.
mdx on the Albino background.
mdx on the BALB/c
background.
mdx on the C57BL/6
background.
mdx on the C3H background.
mdx on the DBA2 background.
mdx on the FVB background.

The diaphragm
shows progressive
deterioration as in
humans.
More severe
dystrophic signs.

Minimal clinical
symptoms,
lifespan reduced
by only 25%
compared to
human DMD.

[15–19]

mdx2cv

mdx3cv

mdx4cv

mdx5cv

Intron 42 point mutation.
Intron 65 point mutation.
Exon 53 point mutation.
Exon 10 point mutation.

On the C57BL/6 background.

Chemically induced
mutation.
all dystrophin
isoforms eliminated.

Fewer revertant fibers.
Severe disease signs. [20]

CRKHR1
Unsequenced, dystrophin
deficiency confirmed by
immunofluorescence staining.

On the C3H background. ENU chemically
induced mutation.

Elevated CK, centrally
nucleated myofibers,
and dystrophin
deficiency.

[21]

mdx52 Exon 52 deletion. On the C57BL/6 background
hot spot mutation. Targeted inactivation. [22]

mdxβgeo Insertion of the β-geo gene trap
cassette in intron 63.

LacZ replaced the CR and CT
domain.

All dystrophin
isoforms are mutated. [23]

DMD-null Entire DMD gene deletion. Cre-loxP system.
All dystrophin
isoforms are
eliminated.

[24]

Dp71-null Insertion of the β-geo cassette
in intron 62.

Selective elimination
of Dp71.

Dp71 deficiency is
associated with early
cataract formation in
mice.

[25,26]

Dup2 Exon 52 duplication. On the C57BL/6 background. [27]
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Table 1. Cont.

Model System Genetic Changes
in the Mouse Model/Mutation(s)

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

Immun-deficient mdx mice

NSG-mdx4cv Prkdc and IL2rb double
deficient. On the mdx4cv background. Innate immunity

deficient.
B, T, and NK cell
deficient. [28]

Rag2 IL2rb Dmd Rag2 and IL2rb double
deficient. On the mdx βgeo background.

B, T, and NK cell
deficient.
No revertant fibers.

[29,30]

Scid mdx Prkdc deficient. On the mdx background. B and T cell deficient. [31]

W41 mdx C-kit receptor deficient On the mdx background Haematopoietic
deficient.

Optimal for bone
marrow cell therapy
studies.

[32]

Phenotypic dko mice

α7/dystrophin dko or
mdx/α7–/–

α7/dystrophin double
deficient.

Severe dystrophic
phenotype. [33,34]

Adbn–/– mdx
αdystrobrevin/dystrophin
double deficient.

Severe dystrophic
phenotype. [35]

Cmah-mdx Cmah/dystrophin double
deficient.

Severe dystrophic
phenotype.
“humanized”

[36]

d-dko δ-sarcoglycan/dystrophin
double deficient.

Severe dystrophic
phenotype. [37]

Desmin-/- mdx4cv
desmin/dystrophin double
deficient.

Severe dystrophic
phenotype. [38]

Dmdmdx/Largemyd like-glycosyltransferase/dystrophin
deficient.

Severe dystrophic
phenotype. [39]

DMD null; Adam8-/- ADAM8 deficient and entire
DMD gene deletion. On the DMD-null background.

The injured myofibers
are not efficiently
removed in DMD
null.

[40]

dysferlin/dystrophin dko dysferlin/dystrophin double
deficient.

Severe dystrophic
phenotype. [41,42]



Int. J. Mol. Sci. 2020, 21, 8935 6 of 41

Table 1. Cont.

Model System Genetic Changes
in the Mouse Model/Mutation(s)

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

Phenotypic dko mice

Il-10-/-/mdx
interleukin-10/dystrophin
double deficient. On the mdx background.

Severe dystrophic
phenotype
and marked
cardiomyopathy.

[43]

mdx/mTR telomerase RNA/dystrophin
double deficient.

Premature depletion
of myofiber repair.

Severe dystrophic
phenotype. [44]

mdx:MyoD-/- MyoD/dystrophin double
deficient.

MyoD is only
expressed in skeletal
muscle.

Severe dystrophic
phenotype
and prominent
dilated
cardiomyopathy.

MyoD mutations
do not occur in
human DMD.

[45]

mdx:utrophin-/- utrophin/dystrophin double
deficient.

Targeted mutation at
the utrophin CR
domain/exon 7.

Severe dystrophic
phenotype with
cardiomyopathy,
cardiac fibrosis, LV
dilation.

[35,46]

PAI-1-/--mdx
plasminogen activator
inhibitor-1/dystrophin double
deficient.

Early onset fibrosis
and higher CK. [47]

Transgenic mdx mice

full-length dystrophin TG
mdx

transgenic over-expression of
full-length dystrophin. On the mdx background.

Over-expression does
not harm muscle
rather it shows
protection.

[48–50]

Dp71 TG mdx transgenic over-expression of
Dp71. On the mdx background. Severe disease signs. [51,52]

Dp116 TG mdx4cv
Dp116:mdx:utrophin-/-

transgenic over-expression of
Dp116.

On the mdx4cv background
on the utrophin/dystrophin
dko background.

Severe disease signs.
Improved lifespan.

No change in
histopathology,
CK, and specific
force
development.

[53,54]
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Table 1. Cont.

Model System Genetic Changes
in the Mouse Model/Mutation(s)

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

Transgenic mdx mice

Dp260 TG mdx
Dp260 mdx/utrn-/-

transgenic over-expression of
Dp260.

On the mdx background
on the utrophin/dystrophin
dko background.

Slightly improved
histopathology.
Severe lethal
phenotype was
converted to a mild
myopathy.

No improvement
of specific force. [55,56]

micro-dystrophin TG
transgenic over-expression of
synthetic micro-dystrophin
gene.

On the mdx background. Improved protection
against disease signs.

No restoration of
nNOS. [57–60]

Fiona transgenic over-expression of
full-length dystrophin gene. On the mdx background. Improved protection

against disease signs.
No restoration of
nNOS. [61,62]

laminin α1 TG mdx transgenic over-expression of
laminin α1. On the mdx background. Similar phenotype as

mdx.
No improvement
but no harm. [63]
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With all its caveats, the most widely used animal model for DMD research is
the C57BL/10ScSn-Dmdmdx/J (BL10-mdx; available from the Jackson laboratory, JL#001801) mouse in
which the dystrophic phenotype arises because of a point mutation (C to T transition) in exon 23, which
results in a stop codon and truncated dystrophin protein. This spontaneous mutation was discovered
in the early 1980s in a colony of C57BL/10ScSn mice due to elevated serum creatine kinase (CK)
and histological evidence of myopathy [15]. The mdx muscles seem more susceptible to contraction-
and stretch-induced damage revealed as sarcolemmal tears [64]. Normal physiological control of
calcium homeostasis is lost in mdx mice [65,66], and similar to the human condition, calcium levels are
increased in myofibers isolated from mdx mice [67].

DMD is a multi-systemic condition affecting many parts of the body and resulting in atrophy
of the skeletal, cardiac, and respiratory muscles. DMD disease progression in mdx mice has several
distinctive phases. In the first 2 weeks, the mdx muscle is indistinguishable from that of normal
mice. Between 3 and 6 weeks, it undergoes astonishing necrosis. Subsequently, the majority of
skeletal muscle enters a relatively robust regeneration phase. As a hallmark of the disease, mdx limb
muscles often become hypertrophic during this phase. The diaphragm is an exception, as it shows
progressive deterioration, as seen in affected humans [11]. Severe dystrophic phenotypes, such as
muscle wasting, scoliosis, and heart failure do not occur until mdx mice are 15 months or older [68–73].
Despite being deficient for dystrophin, mdx mice display overall minimal clinical symptoms; their
lifespan is only reduced by ≈25% (vs. 75% decrease in humans) without obvious signs of dilated
cardiomyopathy [14,37]. The robust skeletal muscle regeneration might explain somewhat the slowly
progressive phenotype observed in mdx mice.

The mdx mouse has been crossed to several different genetic backgrounds, including the Albino,
BALB/c, C3H, C57BL/6, DBA2, and FVB strains; several immune-deficient mdx strains were also
engineered (see Table 1). Phenotypic variation has been observed in different backgrounds. Several
other dystrophin-deficient lines (Dup2, DMD-null, Dp71-null, mdx52, and mdxβgeo) were also created
using various genetic engineering techniques. The DMD-null mouse was created by deleting the entire
DMD genomic region using the Cre-loxP technology [24] resulting in the ablation dystrophin isoforms
expression in all tissues. Further models (mdxcv) were created by chemical mutagenesis programs by
treating mice with N-ethyl-N-nitrosourea, a chemical mutagen, so that each strain carries a different
point mutation [20,74]. By eliminating myogenic differentiation 1 (MyoD), a master myogenic regulator,
from mdx mice, Megeney et al. obtained a MyoD/dystrophin double-mutant mouse that shows marked
myopathy, dilated cardiomyopathy, and premature death [45,46,75]. Another similar approach was
the generation of telomerase/mdx double-mutant mice (mTR/mdx) that show more severe muscle
wasting and cardiac defects [44,76].

Two other proteins, utrophin and α7-integrin, fulfill the same function as dystrophin, and their
relative expression is upregulated in mdx mice. The genetic elimination of utrophin, which is
expressed along the sarcolemma in developing muscle, exhibits 80% homology and shares structural
and functional motifs with dystrophin and α7-integrin; their deletion in mdx mice lead to the creation of
utrophin/dystrophin and integrin/dystrophin double-knockout (dko) mice, respectively [33–35,46,77].
The dko mice show much more severe muscle disease symptoms (similar to or even worse than that
of humans with DMD); however, they are difficult to generate and care for. Utrophin heterozygous
mdx mice might represent an intermediate model between the extreme dko mice and mildly affected
mdx mice [78,79].

Second mutations have been introduced to “humanize” mice (e.g., inactivation of cytidine
monophosphate sialic acid hydrolase (Cmah)) and to mutate genes involved in cytoskeleton-ECM
interactions (e.g. desmin and laminin); however, the introduction of a second mutation not present
in human DMD turned out to produce a much more severe phenotype and complicated data
interpretation [14,36,46,80].

To test if the “humanization” of telomere lengths could recapitulate the DMD disease phenotype,
the mdx4cv/mTRG2 dko mice were generated, which seem to recapitulate the best of both the skeletal
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muscle and cardiovascular features of human DMD [44]. Nevertheless, there are still a few tenable
therapies for DMD, so the need for appropriate mouse models more similar to the mdx model is
emphasized. Even with an improved delivery of promising strategies such as gene editing or exon
skipping, testing must be done in mice with the full spectrum of DMD pathology.

Dysferlinopathies are caused by the lack of functional dysferlin, which is a key protein involved
in membrane repair processes causing Myoshi myopathy or dysferlin-related limb girdle muscular
dystrophy (LGMD R2) [81]. The dysferlin-deficient mice (dysf-/-) replicate well human dysferlinopathies,
showing similarities with the human condition although with milder histopathological aspects. Due to
space restrictions, we did not further elaborate on these mouse models (for a comprehensive review,
see [82] and more recently [83].

2.2. Myotonic Dystrophy

Myotonic dystrophy (DM) is an autosomal dominantly inherited disorder and the most prevalent
form of muscular dystrophy in adulthood. Clinical characterization of the disease was done first by
Steiner in 1909. DM is a complex genetic disease with diverse symptoms affecting multiple organs,
such as skeletal muscle, cardiac muscle, the endocrine and gastrointestinal system, reproductive
system, and central nervous system (CNS). Symptoms range from muscle weakness and wasting
both in skeletal muscle and in heart, arrhythmias, or conduction abnormalities, disorders in
the function of the neuromuscular junction, neurologic impairment such as excessive daytime sleepiness
and motivation deficit, insulin resistance, cataracts, and male infertility. There are two major forms of
the disease: myotonic dystrophy type I (DM1 or Steiner’s disease) and myotonic dystrophy type II
(DM2 or proximal myotonic myopathy), which are associated to partially similar clinical appearances
but distinct genetic defects [57].

Several hypotheses have been suggested to explain the complex symptoms of DM. The genetic
background responsible for classic myotonic dystrophy documented by Steiner was discovered in 1992.
An expansion of a CTG trinucleotide repeat in the 3′ untranslated region of the dystrophia myotonica
protein kinase gene (DMPK) has been identified, which is a mutation that has been transcribed into RNA
but not translated into protein [57]. Based on DMPK haploinsufficiency theory, the expanded repeats
inhibit DMPK mRNA or protein production, which is in agreement with observation in DM1 patient
muscle and cell cultures demonstrating a decreased expression of DMPK mRNA and protein [84].
On the other hand, DMPK-knockout mice did not display myotonia but rather mild myopathy [85].
Although DMPK haploinsufficiency alone is not sufficient to explain the features of DM1, the CTG
repeats might influence the expression of neighboring genes as well. The haploinsufficiency of SIX5
and of other adjacent genes such as myotonic dystrophy gene with tryptophan and aspartic acid
(WD) repeats, DMWD [86], and the FCGRT gene, encoding the Immunoglobulin G Fc Fragment
Receptor and Transporter, has also been suggested to contribute to DM1 pathogenesis [87]. Indeed, Six5
knockout mice develop cataracts [88,89] but without any muscular deficiency. The next concept was
the RNA gain-of-function hypothesis assuming that the mutant RNA transcribed from the expanded
allele is capable of inducing symptoms of the disease. The HSALR transgenic mouse model (among
others) confirms this theory [90]. In HSALR mice 250 CTG repeats were expressed in the 3′ end of
the human skeletal α-actin gene that implied myotonia and muscle degeneration characteristic in DM1
without a multisystem phenotype.

DM2 was identified in 1998 with a different genetic mutation from that of DM1 [91]. In 2001, DM2
was reported as a result of CCTG repeats within intron 1 of the nucleic acid-binding protein (CNBP)
gene (known also as zinc finger 9 gene, ZNF9) [92]. In both types of DM, there is a nucleotide repeat
expansion; however, completely different genes are affected. Nevertheless, DM1 and DM2 have similar
symptoms bringing up the idea of a common pathogenic mechanism. One candidate is a process
through interaction with RNA-binding proteins. The transcripts with nucleotide repeat expansions
can accumulate in the nucleus (see Figure 1) and form RNA aggregates/foci interfering with protein
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families such as the muscleblind-like (MBNL), CUGBP/Elav-like factors (CELF), and the RNA binding
Fox (RBFOX) being the most important splicing regulators in skeletal muscle [93–95].

MBNL1 is sequestered on the expanded CUG repeats producing a loss of function, while CELF1
is upregulated due to the activation of protein kinase C, leading to its stabilization. These processes
result in irregular splicing profiles of MBNL1- and CELF1-regulated transcripts in adult skeletal
muscle and heart, or even during embryonic to adult switch in the splicing pattern. MBNL1
(Mbnl1∆E3/∆E3) knockout mice with targeted deletion of MBNL1 exon 3—where an RNA-binding
motif is located—underpin this model, since these animals reproduce several features of DM including
muscle, eye, and RNA splicing disorders (alternative splicing regulation in the brain is slightly affected,
it depends mainly on the loss of MBNL2) [96]. Moreover, the adeno-associated virus-mediated
overexpression of MBNL1 in HSALR mice is able to lessen the myotonia [24]. Verification also arises
from the tissue-specific induction of CELF1 overexpression in adult mouse skeletal muscle, where
muscle impairment detected in DM1 has been reproduced [97], while CELF1 overexpression in the heart
leads to cardiac abnormalities similar to DM1 [98] (the role of CELF1 in DM2 is not clarified). These
phenotypes were related to miss-splicing. These animal models imply that the overexpression of toxic
CTG or CCTG repeats, depletion of MBNL1, or overexpression of CELF1 would all eventuate in similar
splicing alterations, which initiate downstream signaling pathways resulting in the phenotype and/or
molecular background of myotonic dystrophies.

The modified splicing apparatus can affect other genes in diverse signal transduction pathways
leading to disrupted protein synthesis or the presence of different protein isoforms and the modified
localization of proteins. Focusing on muscle, an aberrant regulation of RNA-binding proteins causes
splicing alterations in the voltage-gated chloride channel 1 (CLCN1) transcript resulting in myotonia
with delayed muscle relaxation in skeletal muscle cells [57,99]. Alternative splicing defects of BIN1
(bridging integrator 1), a lipid-binding protein responsible for the biogenesis of the transverse (T)
tubules, has also been associated with muscle weakness. The inactive form of BIN1 causes damages of
the excitation–contraction coupling (ECC) [100]. Another protein concerned is the calcium channel
CaV1.1. Mis-splicing of the CACNA1S gene contributes to muscle weakness. Alternative splicing of
the genes encoding ryanodine receptor 1 (RyR1) and SERCA1 expression are also altered modifying
contractility of the muscles [101]. Altered splicing of several other genes encoding structural proteins
has also been described in DM, as a few examples: DTNA (encoding dystrobrevin-α), MYOM1
(encoding myomesin1), NEB (encoding nebulin), TNNT3 (encoding fast troponin T3), DMD (encoding
dystrophin), MTMR1 (encoding myotubularin-related protein 1), and CAPN3 (encoding intracellular
protease Calpain 3). Atypical splicing of the insulin receptor (IR) may take part in the formation of
insulin resistance. The genes mentioned above represent just a few examples of the more than 30 miss
regulated splicing identified in DM patient’s tissue samples or of the more than 60 aberrant splicing
described in mice tissues [102].

According to the previously listed conditions, molecular, and genetic variations, an “overall DM”
model system should meet several requirements. At this moment, none of the available mouse models
recapitulates all aspects of DM (for a comprehensive list of these mouse models, see Table 2). At the same
time, the mouse models generated so far provided us with a significant tool in understanding the disease
mechanism. There are different approaches in the various models. The inactivation of DM genes,
the overexpression of toxic CTG/CTGG repeats, the induced alterations in splicing through MBNL1
inactivation, or CELF1 overexpression have resulted in a transgenic mouse model that was suitable for
the examination of different aspects of the disease. Despite the growing number of already identified
transcripts and the increased amount of data on altered pathways, the precise mechanism of the DMs
is poorly understood. The available and the new mouse models to be established in the future can help
scientists to discover a disease-modifying therapy.
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Table 2. Mouse models of myotonic dystrophies.

Model System Genetic Changes in
the Mouse Model/Mutation(s)

Genetic Similarities/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

DMPK KO
Reduced DMPK transcripts
levels by inactivation of
the DMPK gene.

Can be used to study relief
pathways in DM pathogenesis.
Lacks RNA toxicity
and transcripts interactions.

Increased
possibility of
cataracts, male
infertility,
and cardiac
dysfunction.
No characteristic
symptoms on
different organs.

[84,85,88,89,103–105]

Tg26
Overexpression of normal
DMPK gene with short,
non-pathogenic CTG repeats.

Can be used to study the effect
of normal DMPK in high
expression levels.

The pathogenesis is
vastly different from
conventional DM.

Severe
cardiomyopathy
symptoms, skeletal
muscle wasting,
and smooth muscle
weakening.

Lack of
non-muscle-like
symptoms.

[85,106]

HSALR

High levels of skeletal muscle
expression of untranslated
CUG repeats (≈250) in
an unrelated mRNA.

The effect of CUG repeats in
RNA and nuclear foci can be
studied.

Interaction with
transcription factors
may be different from
conventional DM.

High lethality in early
developmental stages,
myotonic discharges
in young animals,
myopaty in later
stages.

Lack of muscle
wasting and other
neurological
effects; the NMJ
cannot be studied
in depth.

[90,107]

DMSXL

Expanded DMPK transcript
expression with different
repeat sizes in various mouse
tissues driven by cis-regulated
human DM1 locus fragment.

Accumulation of ribonuclear
foci and abnormal splicing
patterns in multiple tissues in
homozygous DM300.

Possible
dose-dependent RNA
toxicity.
Time-consuming
and costly mouse
breeding.
The correlation of
copy number
and phenotype is
hard to quantify.

Skeletal muscle,
cardiac and CNS
symptoms such as
myotonia, progressive
muscle weakness,
age-dependent
glucose intolerance.

Relatively lower
expression levels
of
the CUG-containing
transcripts
compared to other
mouse model
systems that lead
to milder
symptoms.

[108–111]
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Table 2. Cont.

Model System Genetic Changes in
the Mouse Model/Mutation(s)

Genetic Similarities/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

EpA960

Cre-loxP system induced
tissue-specific expression of
DMPK exon 15 with large
iterrupted CTG repeats.

Transcripts foci accumulation,
MBNL1 sequestration, CELF1
upregulation, and the return of
embryonic splicing patterns.

Due to tissue
specificity,
the complex
multisystem
symptoms of DM are
hard to model but
with leaky EpA960
transgene expression
is manageable.

In cardiac tissue
severe
histopathological,
functional
and electrophysiological
changes.
In skeletal muscle,
the Cre-loxP system
induced myotonia
and muscle weakness
with progressive
status.

Due to tissue
specificity,
the complex
multisystem
symptoms of DM
are hard to model.

[112,113]

GFP-DMPK-(CTG)X

Expression of the DMPK
3′UTR with different repeat
sizes.

The extent of RNA toxicity
shows CUG-triplet repeat dose
effect on myogenesis in
overexpressing model of
DMPK 3′UTR, which can be
compared in distinct repeat
expansions.

The expression rate
and the length of
CUG repeat can affect
the pathomechanism
of DM differently.

In higher repeat
numbers, the DM
phenotype was
present,
and increased CUG
expansion amplified
the symptoms.

With small repeat
numbers,
the model failed
to produce
skeletal muscle
atrophy, due to
premature death
caused by severe
cardiac damage.

[111,114]

Mouse line to model
abnormal splicing
regulators connecting DM

Modeling MBNL sequestration
by KO or propagating alternate
splicing patterns by
overexpressing CELF.

Simulation of downstream
changes of DM by knocking
out MBNL or overexpressing
CELF.

The interactions of
the protein family
MBNL show
a combinatorial
loss-of-function
nature and with
the different
expression levels of
CELF, the system may
show high variability.

Typical DM
symptoms in various
tissues: cataracts,
motivation deficits
and apathy, cardiac
conduction defects.

Muscle weakness
or muscle
waisting was not
detected.
Histological,
functional,
and molecular
changes were
based on the rate
of CELF
upregulation.

[115–118]
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Table 2. Cont.

Model System Genetic Changes in
the Mouse Model/Mutation(s)

Genetic Similarities/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

DSMD-Q KO

Loss of function variants
(frameshift, insertion, or
deletion) induced by
CRISPR-Cas9 to Dmpk, Six5,
Mbnl1 and Dmwd genes.

Combines the three approaches
of DM1: the haploinsufficiency
model, the RNA toxicity model,
and the chromatin structure
malformation model.

Off-target problems of
the CRISPR-Cas9
method dismissed by
whole genom
sequencing.

Conventional DM1
symptom: skeletal
muscle wasting
and weakness with
correlating
histopathology; heart
problems; endocrine
disorders;
pathological changes
in the digestive tract
and neurological
impairment caused by
satellite cell
malfunction.

Can simulate
the characteristics
of DM1 but not
suitable for DM2.

[119]

Mouse lines to model
downstream components
of DM:
Cav1.1e
CLCN1
BIN1
Insulin receptor

Alternative splicing variants of
ion channels and/or receptors
lead to the expression of
embryonic form of channels
and/or mutated receptors
through development.

The effect of ion channels
and/or metabolic pathway
receptor misplicing can be
studied separately from other
genetical changes.

The genetic
background vastly
different from
the conventional DM
model lines such as
RNA toxicity or
haploinsufficieny
approaches.

Can be used to
distinguish the role of
downstream
components of DM
pathomechanism.

CaV1.1 mainly
affects
intracellular
calcium
homeostatis such
as mitochondria
but not linked
closely to other
aspects of DM.
CLCN1 mainly
affects
the conductive
properties of
excitable cells.

[57,120–122]
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2.3. Facioscapulohumeral Dystrophy

Facioscapulohumeral dystrophy (FSHD) also known as Landouzy–Dejerine syndrome is the 3rd
most common autosomal dominant form of muscular dystrophy after DMD and DM. Its prevalence is
1:8500 to 15,000, and males are more often symptomatic compared to females [123]. The disease tends to
progress slowly with periods of rapid deterioration, and it affects the face, shoulder blades, and upper
arms muscles, leading to difficulty chewing or swallowing and slanted shoulders. Currently, there
is no cure for FSHD, as no pharmaceuticals have proven effective for alleviating the disease course.
Prognosis is variable, but most people with the disease have a normal lifespan.

The FSHD is a very complex disease with primate-specific genetic and epigenetic components.
It is caused by the epigenetic de-repression of the double homebox protein 4 (DUX4) retrogene on
chromosome 4, in the 4q35 region that leads to a gain-of-function disease [124]. DUX4 is expressed in
early human development, while in mature tissues, it is suppressed. In FSHD, DUX4 is inadequately
turned off, which can be due to several different mutations. The mutation termed “D4Z4 contraction”
defines the FSHD type 1 (FSHD1), making up 95% of all FSHD cases, whereas the disease caused by
other mutations is classified as FSHD2 or contraction independent.

There are a few FSHD1 mouse models available for preclinical efficiency testing prior to human
clinical trials, but due to the unusual nature of the disease locus, these models will not recapitulate
accurately the genetic and pathophysiological spectrum of the human condition, and overall, these
models remain sub-optimal in assessing therapeutic efficacy (Table 3). The most significant hurdle
that is impossible to overcome is that the D4Z4 macrosatellite encoding the toxic DUX4 retrogene is
specific to primates, which impedes the possibility of working with a natural model of the disease [125].
Several xenograft models were developed in which skeletal muscle tissue from FSHD patients or
muscle precursor cells were transplanted into the mouse muscle (see Table 3). There are currently no
mouse models for FSHD2.
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Table 3. Mouse models of facioscapulohumeral muscular dystrophy.

Model System Genetic Changes in
the Mouse Model/Mutation(s)

Genetic Similarities/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

AAV6-DUX4 TA injection of AAV6-DUX4 in
6–8-week-old mice. On the C57BL/6 background.

Degenerating
myofibers
and infiltrating
mononuclear cells.
DUX4-induced cell
death via
p53-dependent
pathway.

Minor
degeneration,
increased central
nuclei.
Signs of
apoptosis.

[126]

D4Z4-2.5
D4Z4-12.5

Transgenic insertion of two
and a half copies of D4Z4 from
the permissive haplotype of
a pathogenic allele.
Transgenic insertion of twelve
and a half copies of D4Z4 from
the permissive haplotype of
a pathogenic allele.

On the C57BL/6NJ background.
Body-wide expression of
the DUX-4 transcript in all
tissues.

Keratitis leading to
blindness.
DUX4 transcript
detected in myoblasts
and myotubes.
DUX4 transcript was
NOT detected in
tibialis anterior
and pectoralis
muscles.

No muscle weakness
or abnormal
morphology.

Satellite-cell
derived myoblasts
with DUX4
positive nuclei fail
to fuse and form
myotubes.
Minor
regeneration
defect upon
cardiotoxin injury.

[127]

iDUX-2.7
iDUX4pA

Doxycycline-inducible DUX4
transgene on
the X-chromosome.

On C57BL/6J background.

Abnormal
embryogenesis,
mostly lethal.
Surviving males lived
‹ 2 months.

Weaker grip strength.
Smaller muscles,
impaired function,
reduced specific force.

Impaired
myogenic
regeneration.
The activation of
the downstream
targets of DUX4 in
mice differs from
that in humans.
Smaller and fewer
myofibers, but not
dystrophic.
TA was least
affected.

[128,129]

Xenograft Human muscle engraftment
into immunodeficient mice. “Humanized” mouse model.

FSHD biomarker
profile maintained in
xenograft.

[130–132]
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Table 3. Cont.

Model System Genetic Changes in
the Mouse Model/Mutation(s)

Genetic Similarities/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

FRG1
Transgenic insertion of FRG1
driven by a human skeletal
α-actin promoter.

Spinal curvature correlated
with the level of FRG1
expression.
Dystrophic features.

Fiber size variability,
necrosis, centralized
nuclei. Excess
collagen, selective
muscle atrophy,
reduced exercise
tolerance.

Abberant
alternative
splicing of specific
pre-mRNAs.

[133]

Fat1 Knockout of Fat1. Regionalized muscle
and non-muscle abnormalities.

Retinal vasculopathy,
abnormal inner ear
patterning.
Abnormal
embryogenesis.

Muscle weakness of
the face
and scapulohumeral
region.

Altered myoblast
migration
polarity.

[134]

Pitx1
Transgenic overexpression of
Pitx1 induced in the absence of
doxycycline.

Myofiber atrophy, necrotic
and centrally nucleated fibers,
inflamatory infiltration.

Polyadenylated
DUX4 mRNA
expressed at higher
level in FSHD muscle.

Asymmetric muscle
weakness in the face
and shoulders that
gradually progresses
into the trunk and leg
muscles.
Evidence of
endomysial
inflamation.

Retinal
vasculopathy
hearing loss.

[135–137]

TIC-DUX4
FLExDUX4 Tamoxifen inducible Cre-DUX4 Reproductively viable.

No functional deficit
of diaphragm
muscles. Progressive
pathology.
Mild alopecia.
Females more
affected.

AAV-mediated
follistatin gene
therapy improved
muscle mass
and strength. No
extramuscular
deficits.

Tamoxifen
dose-dependent
skeletal muscle
pathology.
Limited skeletal
muscle pathology.

[138,139]
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3. Myopathies

Myopathies contain a wide range of skeletal muscle disorders characterized by the irregular
structure or muscle function. Myopathic patients show decreased physical activity without any
disruption of sensory or autonomic function. Almost in all myopathies, symptoms affect proximal
muscles bilaterally. Considering that a lot of myopathies cause progressive deterioration in the daily
activity of patients, supportive therapy is often needed to overcome the physical and psychological
effects of these diseases. Congenital myopathies are in a clinically, histopathologically, and genetically
diverse group of rare hereditary skeletal muscle diseases that are characterized by structural
abnormalities in the muscle fibers. They are subdivided into five subgroups: (1) congenital fiber-type
disproportion myopathy; (2) centronuclear myopathies; (3) nemaline myopathies; (4) core myopathies;
and (5) myosin storage (hyaline body) myopathy. The unusually broad genetic and clinical heterogeneity
of these diseases stimulates for more expanded research on animal models. Furthermore, because
of the lack of useful therapies, further studies are required to find candidates to cure patients with
different types of myopathies.

3.1. Core Myophaties

Core myopathies are classified into congenital myopathies with variable clinical appearance, but
they are usually associated with decreased muscle tone, pronounced muscle weakness and skeletal
malformation; interestingly, symptoms do not or slowly progress with age.

3.1.1. Multi Minicore Disease

The neuromuscular illness multi-minicore disease (MmD) is characterized by multiple, amorphous
cores seen on muscle biopsy and clinical features of a congenital myopathy. “Minicore” means that as
a result of reduced or depleted oxidative activity, multiple core structures are visible in the muscle
fiber [140,141]. MmD cores have a few or no mitochondria along with multiple internally placed nuclei,
and type 1 fiber dominance is characteristic in the affected muscles (see Figure 1).

Several forms of MmD have been identified. Among others, there are (1) the classic (responsible
for ≈75% of all cases), (2) the progressive, (3) the antenatal, and (4) the ophthalmoplegic as the most
common forms. The classic MmD has typical orthopedic disorders such as kyphoscoliosis [142] with
respiratory abnormalities [143,144]. Genetic heterogeneity is responsible for the clinical variability.
Recessive mutation of the ryanodine receptor gene can give a wide range of clinical features consisting
of external ophthalmoplegia and distal weakness [145]. Recessive mutations in SELENON gene
encoding selenoprotein N (SEPN1) [146,147] result in the classic phenotype, with spinal rigidity,
respiratory impairment, and early scoliosis as typical characteristics. A severe form of MmD with
bad prognosis can develop as a result of mutations in MYH7 gene encoding myosin heavy chain
beta (MHC-β) isoform with cardiac involvement [148]. Mutations in MEGF10 encoding multiple
epidermal growth factor-like domains protein 10 causes MmD with serious weakness, respiratory
impairment, and scoliosis [149]. Mutations in CACNA1S (Voltage-Gated Calcium Channel Subunit
Alpha1 S) or in SCN4A (Voltage-Gated Sodium Channel Alpha Subunit 4) have also been associated
with MmD [150]. Mutations in TTN gene encoding the titin sarcomere component affect the Ig
domain of the proximal I-band and can cause a congenital titinopathy, which manifests as an early
onset of MmD without affecting the heart [151]. Rare MmD diseases with atypical cores caused by
the autosomal-dominant CCDC78 (coiled-coil domain containing 78) mutations are diagnosed also
as a centronuclear myopathy [152]. Last but not least, MmD can also be caused by mutations in
ACTA1 [153], ACTN2 [154], and FXR1 [155], encouraging the creation of different non-ryanodine
core myopathy mouse models to better understand these rare muscle disorders. As a result, various
transgenic animal models have been developed to identify the disease progression mechanisms for
some mutations in order to explain genotype–phenotype correlations. Without claiming completeness,
the most studied core myopathy mutations in mouse models causing MmD are summarized in Table 4.
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Table 4. Mouse models for multi-minicore disease and central core disease.

Model System Genetic Changes in
the Mouse Model/Mutation

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

Homozygous RyR1-/- mice

From RyR1skrrm1

(RyR1-knockout)
and RyR1tmAlle (foot domain is
missing) strains.

RyR1-associated core
disease is caused by
autosomal-dominant
mutations or biallelic
recessive RyR1 loss.

The mice die
perinatal as
a result of
respiratory failure
due to a lack of
ECC, severely
reduced muscle
mass, skeletal
abnormalities.

[156,157]

Heterozygous recessive
RyR1 mice

Frameshift RyR1 p.Q1970fsX16
mutation in exon 36 plus
the missense mutation RyR1
p.A4329D in exon 91.

Isogenic with those identified
in severely affected MmD
patients.

The bi-allelic RyR1
p.A4329D mutation
causes a milder
phenotype than its
monoallelic
expression.

[156–158]

Selenon1-/- Sepn1 <tm1.2Mred>/Orl. SEPN1 KO mice are protected
from the effects of SEPN1 loss.

Unclear why they do
not show muscle
phenotype.

Dysfunctional
ER-stress response
and inhibited
SERCA2 activity;
depleted
mitochondria,
minicores.

[159]

Central Core Disease

RyR1-related congenital
myopathy.

Missense substitution
I4895T.
Isoleucine–threonine.

Genetically and phenotypically
valid model of a RyR1-related
congenital myopathy.

Similar pathogenic
phenotypes can arise
from functionally
different RyR1
mutations.

Progressive
congenital myopathy
related to muscle
weakness with age.
Mice also develop
cores, minicores,
and rods.

Phenotypic
variability in RyR1
functionality.

[160]
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The most severe disorders of core myopathy are due to decreased RyR1 expression. In 1994,
Takekura and colleagues developed a homozygous RyR1-/- mice from the RyR1-knockout RyR1skrrm1
and RyR1tmAlle strain, in which the anchoring cytoplasmic ‘foot’ domain is missing. Homozygous
RyR1-/- mice die already perinatal due to respiratory failure and skeletal abnormalities. Interestingly,
heterozygous RyR1skrrm1/+ and RyRtmAlle/+ mice do not have any apparent pathological
irregularities [156,157]. This seems to correlate with human pathology; namely RyR1-associated
core disorders caused by autosomal-dominant mutations or bi-allelic recessive RyR1 loss, rather than
heterozygous loss [161].

In a recent study by Elbaz et al. (2019) a new mouse model was developed carrying heterozygous
recessive RyR1 mutations isogenic with those identified in severely affected MmD patients (see Table 4).
The authors came to the conclusion that the bi-allelic RyR1 p.A4329D mutation is responsible for a milder
phenotype than its mono-allelic variant, causing changes in the biochemical properties and physiological
functions, namely by focusing on the slowly twitch while sparing the fast twitch muscles [162].

As mentioned above, recessive mutations in SELENON gene encoding selenoprotein N (SEPN)
result in an important part of the classical MmD. Since SEPN regulates Ca2+ levels in the ER/SR
(sarcoplasmic reticulum) via SERCA2 activation [159], in Selenon1-/- mice, myofibers have excessive
oxidative/nitrosative stress and abnormal Ca2+ handling because of the dysfunctional ER-stress
response and inhibited SERCA2 activity. Moreover, according to the experiments of Castets et al. (2011),
in Selenon1-/- mice, ER stress and high cytosolic Ca2+ levels caused impaired muscle regeneration
deficiencies because of the reduced satellite cell numbers [163].

To the best of our knowledge, at the time of writing this review, there are no models for
the extremely rare MYH7, for TTN and for ACTA1 mutations, which cause a subset of MmD with
cardiac involvement [148,153,164].

3.1.2. Central Core Disease

Central core disease (CCD) is a subgroup of core myopathies, an autosomal inherited muscle
disorder, characterized by core-like lesions in myofibers [165,166]. RyR1 mutations are found in
the background of the majority of cases (Figure 1); these missense substitutions mostly are identified in
three hotspots: (1) in the N-terminal between C35 and R614, (2) central between D2129 and R2458,
and (3) C-terminal regions between I3916 and G4942 in the amino acid sequence of RyR1 [167]. Several
studies proved that CCD mutations enhance the sensitivity of RyR1, resulting in a gain of function. This
alteration influences the ECC and Ca2+ homeostasis via leaky RyR1 channels and altered EC uncoupling
mechanisms. In the case of CCD, either mechanism could explain why muscle weakness was observed
in patients with the disease [68,168]. A decreased threshold for channel activation and impaired
coupling between DHPR and RyR1 may be responsible for the observed pathological symptoms.

Transgenic animals for CCD have been developed in order to study the altered protein function
and pathological consequence. Malignant hyperthermia (MH) mutations in RyR1 might also cause
CCD. The development of cores was formerly studied in two MH/CCD mouse lines: RyR1Y522S/+

and RyR1R163C/+. The Y522S and R163C mutations result in CCD in humans. Based on comprehensive
studies, cores could not be detected in the RyR1R163C/+ mice [169,170]. However, RyR1Y522S/+ mouse
showed progressive core development, and the localized regions containing damaged mitochondria
were associated with disrupted sarcomeres and T-tubules, which could explain why cores were
identified in patients with RyR1 mutations [171].

The RyR1T4826I/T4826I knock-in mouse showed elevated resting Ca2+ levels; the mutant aged
male mice had core myopathy-like features in the soleus muscle, including Z-line disorientation
and impaired sarcomere organization [172]. Zvaritch and colleagues (2007) employed a knock-in
mouse line expressing the EC-uncoupling RyR1 mutation, I4895T, which corresponds to one of
the most common I4898T CCD mutations in humans, resulting in an EC-uncoupled phenotype due to
the impaired function of RyR1. The heterozygous mutation causes severe clinical appearance in human
patients. Ile-4898 is located in a highly conserved GGIG4899 motif, forming the selectivity filter of
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the Ca2+ release channel. Based on in vitro functional studies, all amino acid substitutions at position
4898 negatively influences Ca2+ release channel conductance. RyR1I4895T/I4895T mice die perinatally
because of paralyzed respiratory muscles [173]. Intact RyR1 Ca2+ release units and maintained SR Ca2+

content was detected in these mice; however, myofiber cultures showed disrupted RyR1-mediated Ca2+

release. Heterozygous RyR1I4898T/+ mice are born and despite exhibiting hypotonia and respiratory
distress, they survive and do not show apparent skeletal deformities. On the other hand, mice have
progressive congenital myopathy related to muscle weakness with age. These mice have been described
to also develop cores, minicores, and rods [160,161]. The disease is slowly progressive, insufficient
contractility was observed at the age of 2 months in fast and slow twitch muscles. Many mice show
different degrees of impaired motor function at the age of 8 months. A combination of WT and mutant
subunits randomly influences RyR1 functionality in a RyR1 tetramer that is proposed to contribute to
phenotypic variability in RyR1-related disorders [161].

RyR1I4898T/+ mice (Table 4) are offered as the most appropriate genetically and phenotypically
valid model of a RyR1-related congenital myopathy [160].

3.2. Centronuclear Myopathies

Centronuclear myopathy (CNM) is a general term for the family of rare genetic skeletal muscle
diseases caused by a mutation in a definite gene. These disorders show muscle weakness ranging
from mild to serious. Symptoms often start at birth in the serious forms of the myopathy, but they can
also appear at any point during life, even though the onset in adulthood is rare. The name of CNM
originates from the centrally located nucleus of the muscle fiber (normally located at the periphery).
There are multiple genetic forms of CNM along with an X-linked form known as myotubular myopathy
(XLMTM) caused by mutations in the myotubularin (MTM1) gene. There are a few autosomal forms
as well, usually linked to three different genes: dynamin 2 (DNM2), bridging integrator 1 (BIN1),
and RyR1 that have been identified to cause autosomal forms of CNM (Table 5).

3.2.1. MTM1

X-linked myotubular myopathy (XLMTM) is a rare (1:50,000) congenital disease of skeletal
muscle affecting only males [182]. XLMTM shares a general pathological trait in skeletal muscle,
which is hypotrophic myofibers having centrally located nuclei [183–185]. The cause of the disease is
mutations in the MTM1 gene encoding the universal phosphatase myotubularin, which plays a role in
the phosphatidylinositol 3-kinase pathway to regulate intracellular vesicular transport and membrane
trafficking [186–190]. MTM1 has effects on both types of phosphatidylinositol–phosphate [PtdIns(3,5)P2
or PtdIns(3)P] [186,191–193]. To date, more than 200 loss-of-function mutations of the MTM1 gene
have been found in myotubular myopathy patients [194–196].

XLMTM patients are classified into three groups (mild, intermediate, or severe phenotype) based
on remaining ventilator capacity [197]. Most of the patients have the severe phenotype showing
serious hypotonia and a lack of spontaneous breathing at birth [198,199]. These newborns usually
die within the first months of life. Long-term survivors in this group need continuous ventilation
support [198,200]. Patients with mild and intermediate phenotypes can breathe independently at least
a few hours daily [197,200].

Studies performed on mouse models lacking myotubularin have shown that skeletal muscle is
the prime tissue affected in the pathogenesis of myotubular myopathy, and the protein is necessary for
proper muscle development and the normal distribution of myofibrillar organelles. MTM1 knockout
(KO) mice evolve centronuclear myopathy, starting at around one month after birth, showing dynamic
muscle weakness that critically decreases lifespan to a maximum of 2–3 months [174].
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Table 5. Mouse models for centronuclear myopathies.

Model System Genetic Changes in
the Mouse Model/Mutation

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

MTM1δ4 (MTM1−/y)
MTM1-deficient

Absence of exon 4 in MTM1. Total loss of myotubularin. Female mice are also
affected.

Very short lifespan,
accumulation of
central nuclei in
skeletal muscle fibers,
progressive
and generalized
myopathy starting at
around 1 month of
age.

Humans have
different clinical
evolution of
the disease.
XLMTM patients
show severe
myopathy at birth,
which appears to
be
non-progressive.

[174]

MTM1 p.R69C c.205C>T base change in
MTM1 exon 4.

Exon 4 skipping in the mouse
similar to human MTM, as in
quadriceps from a patient with
the c.205C>T mutation.

There are some other
human mutations:
c.C208T (p.L70F),
c.C205A (p.R69S),
c.T202G (p.Y68D).

Longer lifespan than
MTM1 KO mice
and milder MTM
phenotype with
significant muscle
weakness
and atrophy.

Some residual
myotubularin
activity remains in
MTM1 p.R69C
mice.

[175]

MTM1–/y DNM2+/– MTM1–/y mouse that is
heterozygous for DNM2.

50% reduction of DNM2.
Longer lifespan than
MTM1–/y mice.
Similar to WT.

[176]

MTM1∆5/y, MTM1∆7/y

5-bp (MTM1∆5/y) and 7-bp
(MTM1∆7/y) deletion within
the MTM1 gene with
CRISPR-Cas9 technology.

Similar genotype as
MTM1−/y with
upregulation of
miR-199a-1.

[177]

KI-DNM2R465W
(DNM2RW/+) Point mutation A>T in exon 11.

Failed to reproduce
the autosomal-dominant
form of human CNM.

Neurotransmission is
maintained
and the mutation
shows spatial
and temporal muscle
involvement as in
the similar human
mutations.

Homozygous
mice show
neonatal lethality.
The level of
central nuclei in
muscle fibers is
much lower (10%)
in homozygous
mice than seen in
patients (up to
90%).

[178]
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Table 5. Cont.

Model System Genetic Changes in
the Mouse Model/Mutation

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

miR-133a dKO
Double mutation,
missing miR-133a-1
and miR-133a-2.

Upregulation of
dynamin 2. Slowly
developing CNM.

CNM only in type
II fibers of mice, in
contrast to
the type I fiber
predominance in
human DNM2
patients.

[179]

DNM2+/– Target exon 8, heterozygous. DNM2–/– mice are
embryonically lethal.

Homozygous mice
are embryonically
lethal.

DNM2+/– mouse is
physiologically
and clinically similar
to WT mouse.
Differences in muscle
function were not
detectable.

[176]

BIN1–/– DNM2+/–
BIN1 KO mouse that is
heterozygous for DNM2.
Floxed exon 20.

Similar mutations were found
in CNM patients. Similar to WT. [180]

DNM2SL/+ Mouse harboring the S619L
DNM2 mutation.

Mimics the S619L missense
human mutation.

An early and severe
motor defect linked to
force reduction
and mitochondria
structural anomalies

Centralization of
nuclei is less
prominent in
adult mice.

[181]
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Al Qusairi and colleagues reported that ECC of skeletal muscle is the major target of myotubular
myopathy [201]. Using MTM1 KO mice, they showed that myopathic muscle fibers have abnormal
longitudinally oriented T-tubules and a decreased number of triads (the structure formed by a T tubule
with a sarcoplasmic reticulum (SR) on both sides; Figure 1). As a consequence, depolarizations evoked
a calcium release from the SR that is strongly decreased while the SR calcium content and the removal
of Ca2+ from the myoplasm were unaffected. These changes were accompanied with the 3-fold
reduction in the level of RyR1. The authors hypothesized that the abnormal SR Ca2+ release causes
the failure of muscle function in MTM1 KO mice.

Further investigation of MTM1 KO mice revealed the fact that the blockade of phosphatidylinositol
3-kinase (PtdIns 3-kinase) activity restores the defected Ca2+ release from the SR in isolated muscle
fibers and increases the mobility and extends the lifespan of these mice [202]. The same group showed
that the muscle fibers of MTM1 KO mice exhibit spontaneous elementary Ca2+ release events (sparks)
with 30 times higher frequency than control fibers at resting conditions. These sparks occur at locations
in the fibers where RyR1s lack the control of the voltage sensor DHPR because of the disrupted T-tubule
membrane [203].

In the meantime, another murine model of XLMTM was developed by introducing a c.205C > T
base change in MTM1 exon 4 [175]. These mice have a longer lifespan than MTM1 KO mice and show
a milder MTM phenotype; however, they still present significant muscle weakness and atrophy.
The genetic defect of these mice has a human counterpart.

To date, no effective treatment exists for XLMTM patients; however, other potentially usable
therapeutic targets were suggested according to animal studies. The same authors who developed
the MTM1 KO mouse proved that one intramuscular inoculation of myotubularin expressing
adeno-associated virus (AAV) in MTM1 KO mice reverted the pathological phenotype in the injected
muscle. The myotubularin replacement substantially corrected mitochondria and nuclei positioning
in myofibers. These positive changes greatly increased muscle volume and force [204]. Later, they
suggested enzyme replacement therapy, since myotubularin is a cytoplasmic enzyme, it does not have
mannosylation, and it circulates in the blood. By delivering myotubularin in a fusion protein form,
researchers were able to improve the structure and function of MTM1 KO muscle [205].

Dowling and colleagues showed that abnormal neuromuscular junction (NMJ) signal transmission
is a crucial and likely manageable aspect of the MTM1 disease pathogenesis. An acetylcholinesterase
inhibitor treatment significantly improved the fatigability and treadmill performance in MTM1 KO
mice [206]. However, this type of treatment has not been tried in human therapy yet.

Inhibition of the phosphoinositide 3-kinase PIK3C2B improved the motor function and prolonged
lifespan of the MTM1-deficient mice [207]. Another study on double KO mice demonstrated that
the reduction of dynamin 2 (DNM2) expression in MTM1–/y mice was enough to decrease the early
XLMTM lethality as well as most hallmarks of the disease; it also increased the lifespan of mice [176].
A systemic application of DNM2 antisense oligonucleotides in MTM1-KO mice was shown to prevent
the development of muscle myopathy by reducing the DNM2 protein level [208]. In addition, this type
of treatment in severely affected mice reversed the muscle pathology within 2 weeks.

Recently, two studies presented beneficial effects of long-term tamoxifen treatment, which increased
the lifespan of MTM1 KO mice by improving the overall motor function [209,210]. Tamoxifen, a selective
estrogen receptor modulator used in breast cancer therapy, eliminated successfully the molecular,
histological, and functional hallmarks of XLMTM. Tamoxifen is the first long-term used and safe drug
with a promising therapeutic potential for XLMTM patients.

A fresh study introduced a miR-199a-1-MTM1 dko mice model [177]. This research group
demonstrated an upregulation in the expression of the intragenic microRNA miR-199a-1 and DNM2 as
a host gene in XLCNM skeletal muscle. The dko mice displayed longer lifespans and improved muscle
histology and strength. Their results suggest that this microRNA is a potential target in therapies to
manage XLCNM.
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3.2.2. Dynamin2

DNM2-related myopathies are the consequence of a missense mutation in the dynamin 2 (DNM2)
gene, leading to an autosomal congenital dominant disease. Some cases of DNM2-related CNM
may occur spontaneously (sporadically) with no previous family history of the disorder (i.e., new
mutations) [211]. The encoded protein is universally expressed and associated to membrane trafficking
and endocytosis, and it plays a role in centrosome cohesion and actin assembly. This large GTPase
protein has five functionally distinguishable domains: the N-terminal domain is the GTPase; the middle
domain (MD); the domain homologues to pleckstrin (PH); the GTPase effector domain; and it ends
in an arginine and proline-rich domain at the C-terminal (PRD) [212]. The foremost found patients
suffering in DNM2-related autosomal dominant CNM showed a slowly progressing muscle weakness,
and the disease affected mainly distal muscles with onset in early adulthood. Shortly afterwards, four
new mutations in the DNM2 gene were found in children presenting neonatal hypotonia manifested
in weak suckling as well as lower limb and facial muscle weakness [213]. The number of DNM2
mutations increased when new missense mutations in the PH domain in the C-terminal region were
found [36]. These genetic failures were associated with a very severe clinical phenotype present
from infancy but also in adults. To date, a little over more than 100 human mutations have already
been reported in DNM2 gene with different onset and phenotypes [214], and from these, 35 human
mutations of the DNM2 gene have been identified associated to CNM. The only common characteristic
is the morphological hallmarks: hypotrophic fibers with centralized nuclei. In the past few years,
several new human mutations of dynamin2 were identified (i.e., p.G359D in the middle domain by
Chen et al., 2018). It should be noted that patients with mutations of DNM2 often present a disorder of
the peripheral nerve (Charcot–Marie–Tooth disease).

The first murine model of DNM2 mutation was generated by Durieux and colleagues (2010,
KI-DNM2R465W). This knock-in (KI) heterozygous mouse model mimicked the most common mutation
in the DNM2 human gene known at that time. KI mice showed progressively developing muscle
weakness from 3 weeks of age, and atrophy developed at around 2 months of age. The membrane
trafficking was severely altered, and a high level structural disorganization of muscle fibers
(Figure 1) was accounted as the main mechanism of the disease [214]. A modified intracellular Ca2+

homeostasis was also reported: the resting intracellular [Ca2+], the sarcolemmal calcium permeability,
and the releasable SR Ca2+ content was increased in muscle fibers from KI-DNM2R465W mice [215,216].
This mouse model was further investigated in detail, and the density of the calcium current through
DHPRs and the rate of voltage-activated SR calcium release were found to be reduced. Fibers from
the mutant KI mice produced elusive spontaneous Ca2+ release events under resting condition, which
were not present in control animals [217].

Another research group developed a double KO mouse model lacking miR-133a-1 and miR-133a-2
showing progressive CNM [179]. The myopathy was accompanied with mitochondrial dysfunction,
which can be attributed partly due to the upregulation of DNM2 [179]. These mice showed T-tubule
disorganization, leading to impaired EC coupling functions.

As previously mentioned, the reduction of DNM2 expression improved the lifespan of XLMTM
animals (see the subsection on MTM1) [176]. The same research group proved also that the DNM2
modulation can be used as a therapeutic application for patients with BIN1 defects. BIN1-related
CNM is caused by mutations to the amphiphysin 2 (BIN1) genes and is inherited as an autosomal
recessive condition. BIN1 and DNM2 are ubiquitous proteins involved in membrane remodeling.
Cowling and colleagues generated BIN1 and DNM2 double KO mice that survived at least one
and half years and had maintained muscle force and a normally organized structure of muscle fibers.
The authors have hypothesized that DNM2 and BIN1 regulate muscle maturation and work through
a common pathway, and they depicted BIN1 as negatively regulating DNM2. It was shown that
lowering the level of DNM2 after birth could be sufficient to turn back the decline of muscle functions
and progression of XLMTM [180].
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If we take into account the fact that the total elimination of DNM2 is lethal at embryonic stages in
mice, but the heterozygous KO mice are viable with unaffected muscle function, a potential therapeutic
approach can be the reduction of the expression of the mutant allele without affecting the wild-type
allele [176]. This concept was established by developing allele-specific siRNA sequences to specifically
reduce the human and murine DNM2–mRNA containing the p.R465W mutation [218]. The technique
resulted in a promising functional restoration of muscle function in mice.

Following the same train of thought, another research group used a single intramuscular injection
of adeno-associated virus-shRNA against DNM2 in a knock-in mouse harboring the p.R465W mutation.
Five weeks post injection, the fiber size distribution and muscle mass were improved [219]. The authors
established also a systemic treatment by using intraperitoneal injections of antisense oligonucleotides
against DNM2 weekly for 5 weeks. This treatment was similarly successful in minimizing pathological
symptoms in DNM2R465W/+ mice.

CRISPR/Cas9 technology for genome editing is a recently emerging elegant technique. This was
used in a study investigating an allele-specific correction or inactivation of a heterozygous mutation
in the DNM2 gene. DNM2R465W/+ murine myoblasts showed less hallmarks of the disease after
CRISPR/Cas9 correction of the dominant point mutation [220].

A fresh study targeting the S619L missense mutation successfully used DNM2 reduction with
antisense oligonucleotides. Histological, force, and locomotor defects were partially or fully rescued
just after 3 weeks of treatment in mice [181].

4. Malignant Hyperthermia

One of the most severe emergency situations that may occur in the operating room is
caused by malignant hyperthermia (MH) susceptibility (MHS) of the patient. MH syndrome is
an idiosyncratic reaction to volatile anesthetics such as halothane, isoflurane, desflurane, sevoflurane,
and the depolarizing muscle relaxant succinylcholine. Symptoms include general muscle contracture,
which leads to a rapid increase of the body temperature (1 ◦C/5 min), lactic acidosis, and hyperkalemia.
These symptoms are likely to be fatal unless the patient is immediately treated with the muscle relaxant
dantrolene and the body is cooled down [221,222].

The prevalence of MH crisis ranges from 1:5000 to 1:50,000 anesthesia. In the past 40 years—since
dantrolene sodium must be available in all operating rooms—the mortality of MH dropped from
over 80% to less than 5% [223,224]. Fortunately, animal models since the 1970s made great progress
in understanding the pathophysiology and clinical manifestation of MH. The most widely used
experimental animals were pigs from certain pig breeds, such as Pietrain, Landrace, Yorkshire,
and Poland China, which were affected by MHS. The genetical cause that accounts for the syndrome
was discovered by MacLennon’s group, who identified a common mutation (R615C) in the gene
encoding the skeletal muscle type RyR (Figure 1), which was responsible for the porcine MHS
phenotype, suggesting that a RyR1 mutation is linked to human MHS, too [225,226]. Since then, more
than 200 MHS mutations have been identified in the human gene [227]. They are clustered in three
mutation hotspots (N-terminal, aa 35–614; central, aa 2163–2458; C-terminal, aa 4550–4940) [228].
Mutations are believed to destabilize the closed-state conformation of the Ca2+ release channel
(i.e., RyR1); therefore, all these MH-susceptible RyRs share a common, overactive, gain-of-function
phenotype [229]. Hypersensitive gating has been demonstrated in response to major RyR agonists
(such as caffeine and ATP), and most importantly for Ca2+ [230,231]. This feature creates a low,
unsafe stimulation threshold for halothane, resulting in uncontrolled Ca2+ release and a consequent
contracture of resting muscles when exposed to therapeutic concentrations of volatile anesthetics.
In addition, diminished inhibition by Mg2+ has also been demonstrated, which may contribute to
the pathogenesis, too [232,233]. Although the porcine model was extremely useful in preclinical
studies of the RyR inhibitor dantrolene [233,234], this model has many disadvantages [235–241]. For
example, R615C is a recessive mutation in pigs. Moreover, R615C represents only 2% of all human
mutations. Apparently, the detailed understanding of the pathomechanism of MH required genetically
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modified mouse models covering all three hotspots. To date, four MHS RyR1 knock-in muse genotypes
are available: Y524S, R163C, G2435R, and T4826I [169,172,230,242–245]. All these mice reproduce
a typical MHS phenotype, displaying whole body contractions and elevated core temperatures in
response to therapeutic concentrations of halothane or isoflurane. Similar to pigs, MHS mice exhibit
heat-stress-induced MH episodes. Common features of muscle fibers or myotubes include elevated
resting intracellular Ca2+ concentration and increased susceptibility to caffeine- and heat-induced
contractures in vitro.

Y524S was the first murine model of human MHS (Y522S). Homozygous mice show severe skeletal
and muscular abnormalities and die at the early stage of intrauterine life (17th day) or soon after
birth. Heterozygous mice are viable and reproductive [169,242,243]. R163C (also R163C in human) is
a dominant heterozygous mutation with no phenotype until exposed to a trigger agent. Homozygous
are not viable at birth [230,244]. The mouse carrying the mutation G2435R is the model for the most
common human MHS mutation G2434R. G2434R mutation has been found in 16% of families tested.
Both homozygous and heterozygous mice are viable and fertile, although some homozygous males
died spontaneously [245].

KI mice heterozygous or homozygous for T4826I RyR both survive, although homozygous
animals were more sensitive to halothane and heat stress. In addition, males were reported to be more
susceptible to MH trigger agents than females [172].

In summary, all four MHS RyR KI mouse strains summarized in Table 6 accurately mimic
the patient’s phenotype and provide invaluable tools to investigate the detailed pathomechanism of
MH and will be useful in the future to discover new, potential trigger agents [246,247].
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Table 6. Mouse models for malignant hyperthermia.

Model System Genetic Changes in
the Mouse Model/Mutation

Genetic Similarity/Genetic Background Likeliness of Phenotype and Symptoms
References

Advantage Disadvantage Advantage Disadvantage

Y524S RyR1 knock-in mice Missense mutation in the RyR1
gene.

Exact genetical similarity to
a human mutation.

Homozygous mice
die at the early stage
of intrauterine life
(17th day) or soon
after birth.

100% similar to
the human
phenotype.

none [230,243,244]

R163C RyR1 knock-in mice Missense mutation in the RyR1
gene.

Exact genetical similarity to
a human mutation.

Homozygous mice
are not viable at birth.

100% similar to
the human
phenotype.

none [230,244]

G2435R RyR1 knock-in
mice

Missense mutation in the RyR1
gene.

Exact genetical similarity to
a human mutation.
Both homozygous
and heterozygous mice are
viable and fertile.

Some homozygous
males died
spontaneously.

100% similar to
the human
phenotype.

none [245]

T4826I RyR1 knock-in mice Missense mutation in the RyR1
gene.

Exact genetical similarity to
a human mutation.
Heterozygous or homozygous
mice both survive.

None.
100% similar to
the human
phenotype.

none [172]
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5. Conclusions

Although skeletal muscle disorders represent rare diseases and affect only a smaller portion
of the population, the disability imposed on the affected person as well as the necessity to care for
these individuals carries a significant economic burden for the society and the healthcare system.
This justifies the need for appropriate animal models in developing new therapies and testing
the proposed interventions to understand the nature of the given disorders.

The present review summarizes the most commonly used mouse models for a subset of muscle
disorders with the highest prevalence in the human population; these mouse models provide important
insights into causal gene relationships, have forged our understanding of molecular mechanisms
and disease pathogenesis, and have driven progress toward a cure for muscle disorders. Most of
the skeletal human diseases have the afferent mouse models, whose human relevance is still pending as
these models are limited in their presentation of the human pathologies; however, there are promising
results based on the recent advances achieved via elegant approaches such as gene editing or alternative
splicing. Unfortunately, only a fraction of muscle disorders possess effective therapy at this moment, so
finding and/or establishing an appropriate animal model is an important step toward the direction of
understanding the complex pathomechanism of the disease and ultimately develop effective therapies.

For the existing mouse models summarized in Tables 1–6, in most cases, therapies have been tested,
although some of these have been not implemented in human treatment; nevertheless. They represent
promising approaches that should eventually reach clinical trials. Yet, one has to acknowledge
the obvious differences between the two species as well as the difficulties in targeting genetic therapies
in human patients.

Taken altogether, we hope that this summary will help and encourage the scientific community to
continue the search for proper animal models and therapies for muscle disorders.
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