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Abstract: CD63, a member of the tetraspanin superfamily, is used as a marker of late endosomes and
lysosome-related organelles, as well as a marker of exosomes. Here, we selected rare isotype variants
of TS63 by sorting hybridoma cells on the basis of their high expression of surface immunoglobulins
of the IgG2a and IgG2b subclass. Pure populations of cells secreting IgG2a and IgG2b variants of
TS63 (referred to as TS63a and TS63b) were obtained using two rounds of cell sorting and one limited
dilution cloning step. We validate that these new TS63 variants are suitable for co-labeling with mAb
of the IgG1 subclass directed to other molecules, using anti mouse subclass antibodies, and for the
labeling of exosomes through direct binding to protein A-coated gold particles. These mAbs will be
useful to study the intracellular localization of various proteins and facilitate electron microscopy
analysis of CD63 localization.
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1. Introduction

CD63 is a member of the tetraspanin superfamily, proteins characterized by four transmembrane
domains and a specific fold in the largest of the two extracellular domains [1,2]. CD63 plays a role
in protein and membrane trafficking. On the one hand, it regulates the trafficking of other proteins
such as the β-chain of the gastric H+/K+-ATPase, CXCR4, to intracellular compartments [3,4]. On the
other hand, it regulates membrane trafficking, for example, the production of intra luminal vesicles in
MVB, or IgE-mediated mast cell degranulation [5,6]. CD63 also regulates HIV and papilloma virus
infection [7,8]. Mice lacking CD63 have normal lysosomal functions but show a pigmentation defect
due to alteration of melanosome biogenesis and a reduction of acute allergic reactions [6,9,10].

CD63 is a ubiquitously expressed protein that was discovered as a protein present on the cell
surface of activated blood platelets, known as platelet glycoprotein 40 (Pltgp40). Its expression at
the cell surface was later shown to be induced or strongly increased after activation of neutrophils,
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eosinophils and basophils, following mobilization of the intracellular pool. Its expression is therefore
routinely used as an activation and/or degranulation marker of these cells (reviewed in [2,11]).

CD63 is particularly enriched in late compartments of the endosomal pathway, such as
multivesicular bodies and lysosomes, and also in other lysosome-related organelles such as azurophil
granules of neutrophil granulocytes, dense and α-granules in platelets, melanosomes in melanocytes,
cytotoxic granules in T-cells, Weibel–Palade bodies in endothelial cells and major histocompatibility
complex II (MHCII) compartments in dendritic cells (reviewed in [2,11]). In multivesicular bodies,
CD63 is sorted to intraluminal vesicles that can be released as exosomes after fusion of the multivesicular
bodies with the plasma membrane [12,13]. These exosomes represent a new way of intercellular
communication that is increasingly involved in most of the patho-physiological pathways and which
raise great hope for their use as biomarkers and drug delivery systems [12,13]. Hence, given the wide
use of CD63 as a marker of late endosomal compartments and exosomes, new anti-CD63 antibodies
with distinct isotypes would provide new opportunities for a variety of technical approaches.

One particular approach that would benefit from the availability of CD63 mAbs of different
subclasses is the simultaneous detection of CD63 and other molecules in a single sample. Indeed,
multiple labeling can be achieved by using mouse mAbs of different isotypes and secondary polyclonal
antibodies directed to these different isotypes, an approach combining both versatility and high
sensitivity [14]. However, a major limitation of this approach is the availability of mAbs of different
subclasses, notably because the majority of commercially available mouse mAbs are of the IgG1
subclass, reflecting at least in part the representation of this subclass in the circulating serum IgGs
in immunized Balb/c mice, the strain most commonly used for generating mouse hybridomas [14].
In this regard, most commercially available CD63 mAbs are of the IgG1 subclass, and to our knowledge
none of the few commercially available CD63 mAb of a different isotype has been validated for the
specific labeling of late endosomes. There is therefore a need for CD63 mAbs of other subclasses.
More generally, the availability of mouse mAbs of different subclasses to markers of various organelles
would facilitate the analysis of the distribution of different proteins.

An alternative strategy to the generation of new antibodies is to switch the subclass of existing
hybridomas to a different subclass. This can be achieved through recombinant methodologies.
Alternatively, one can take advantage of spontaneous isotype class switching of hybridomas.
Class switch recombination refers to the change of immunoglobulin subclass that occurs during
B cell activation, from IgM to IgG (including IgG1, IgG2a and IgG2b in the mouse), IgE or IgA, allowing
antibodies to retain the same antigen specificity but to carry out different effector functions. In this
process, intrachromosomal recombination allows the juxtaposition of the rearranged heavy chain V(D)J
region that was expressed with the µ constant region to one or another of the downstream constant
regions [15]. Myelomas and hybridomas have conserved an ability to switch from one isotype to
another in culture making it possible to select for variants that produce a mAb with the same specificity
but of different isotypes. However, isotype switching occurs at low frequencies of 10−5–10−7 [16–18],
making time-consuming the selection of cells having undergone isotype switching by limited dilution.

We hypothesized that an alternate approach could be to take advantage of the fact that the cell
surface immunoglobulin expression correlates with the immunoglobulin secretion rate [19]. Thus it
should be possible to select the cells having undergone isotype switching by selecting the cells having
the highest surface expression levels of the desired Ig subclass. The feasibility of this approach has
been demonstrated for myeloma cells and hybridomas [17,20] but has not been used to our knowledge
to change the subclass of antibodies to markers of intracellular compartments. Here, we use this
approach to obtain IgG2a and IgG2b variants (respectively TS63a and TS63b) of TS63, an anti CD63
mAb of the IgG1 subclass that was previously generated in our laboratory [21]. We demonstrate the
usefulness of these variants for analyzing the colocalization with other molecules recognized by IgG1
mAb, and for the direct labeling of extracellular vesicles using gold beads coated with protein A.
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2. Materials and Methods

2.1. Antibodies

The mAb TS63 directed to CD63 has been previously described [9,21]. It was produced
after immunizing BALB/c mice with a mixture of HEL and Jurkat cells. Spleen cells were fused
with P3 × 63AG8 mouse myeloma cells according to standard techniques, distributed into 96-well
tissue culture plates, and screened by indirect immunofluorescence and immunoprecipitation.
Other antibodies were an anti-GM130 (clone 35, BD transduction, IgG1), an anti-EEA1 (clone 14,
BD transduction, IgG1), an anti-PDI (RL90, IgG2a, Abcam), an anti-LAMP2 (H4B4, Santa Cruz, IgG1)
and an anti-CD9 (TS9, IgG1, produced in our laboratory). The goat anti mouse IgG1, IgG2a and IgG2b
antibodies, coupled to Alexa Fluor 488, Alexa Fluor 568 or Alexa Fluor 647 dyes, the goat anti-rabbit Ig
coupled to Dylight 650 and the goat anti-mouse Ig coupled to Alexa Fluor 680 were obtained from
Thermo Fisher Scientific.

2.2. RNA Interference, Western-Blot and Immunoprecipitation.

HeLa cells were plated at the concentration of 25,000/cm2 and lysed two days later in RIPA
buffer supplemented with protease inhibitors. After 30 min incubation at 4 ◦C, the insoluble material
was removed by centrifugation at 10,000× g. A 3× concentrated Laemmli buffer was added to a
fraction of the lysate for Western-blot, whereas the remaining was incubating with the different
antibodies and protein G sepharose beads (GE Healthcare) for 2 h to immunoprecipitate the target
antigen. The proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to
a PVDF membrane (GE Healthcare). Western-blotting on lysates was performed using appropriate
combinations of primary and Alexa Fluor 680-labeled secondary antibodies. Western-blotting on
immunoprecipitations was performed using biotin-labelled antibodies and Alexa Fluor 680-labeled
streptavidin. All acquisitions were performed using the Odyssey infrared imaging system (LI-COR
Biosciences). RNA interference was performed at the time of plating, using INTERFERin (Polyplus
transfection), according to the manufacturer’s protocol. The sequence targeted by the CD63 siRNA is
AAGUUCUUGCUCTACGUCCUC. Control siRNA is UUUGUAAUCGUCGAUACCC.

2.3. Flow-Cytometry Analysis and Fluorescence-Activated Cell Sorting

HeLa cells were detached, washed twice in complete DMEM and incubated for 30 min at 4 ◦C
with the hybridoma supernatants. After 3 washings, the cells were incubated for 30 min at 4 ◦C with
an Alexa 647 conjugated goat anti mouse antibody. After washing the cells were analyzed using an
Accuri C6 flow-cytometer (Becton-Dickinson). For fluorescence activated cell sorting of hybridomas,
the cells were incubated with Alexa Fluor 647-coupled goat anti-mouse IgG2a or IgG2b antibodies,
or as a control a goat anti-rabbit Ig coupled to Dylight 650 which has spectral properties similar to that
of Alexa Fluor 647. Selected cells were sorted using a FacsAria Cell sorter (Beckton Dickinson).

2.4. Immunofluorescence and Confocal Microscopy

The cells grown in complete medium were fixed for 15 min with 4% paraformaldehyde at room
temperature, washed in PBS and then incubated for 15 min in 50 mM NH4Cl in PBS. In most cases,
the cells were permeabilized with 0.1% Triton X-100 in PBS for 2 min at 4 ◦C, and incubated with
primary antibodies in PBS supplemented with 0.1% BSA. The binding of primary antibodies was
revealed using Alexa Fluor 488 or 568-labelled goat anti mouse Ig subclasses. To preserve the surface
labelling of CD9, the Triton X-100 permeabilization step was omitted and the primary and secondary
antibody solutions were supplemented with 0.1% saponin. The cells were mounted in Prolong Gold
(Thermofisher Scientific) supplemented with DAPI and examined with a Leica SP5 confocal microscope
(63× objective, 1.4 numerical aperture, zoom 3 or 8).
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2.5. Exosome Isolation

Culture media were pre-cleared for extracellular vesicles present in the serum by ultracentrifugation
of the culture media at 100,000× g ON using a 45Ti rotor and filtered on 0.22 µm filters. Subconfluent
MNT-1 cells were grown in pre-cleared media, and culture supernatant was recovered after 48 h.
The culture supernatants were sequentially centrifuged at 4 ◦C at 300× g (10 min), 2000× g (20 min)
and 10,000× g for (30 min). Exosomes were collected from the last supernatant by centrifugation at
100,000× g for 60 min at 4 ◦C (rotor 45Ti, 30,000 rpm). The pellet was resuspended and washed in PBS,
pH 7.5, as previously described [22].

The pellet was resuspended in PBS (pH 7.5) and mixed with a 40% iodixanol solution, made by
mixing a homogenization buffer (0.25 M sucrose, 1 mM EDTA, 10 mM Tris-HCL, (pH 7.4)) and an
iodixanol working solution, prepared by combining a working solution buffer (0.25 M sucrose, 6 mM
EDTA, 60 mM Tris-HCl, (pH 7.4)) and a stock solution of OptiPrep™ (60% (w/v) aqueous iodixanol
solution, Sigma-Aldrich). The gradient was formed by layering 40% (containing exosomes), 20%, 10%
and 5% solutions on top of each other in an open top polypropylene tube and centrifuged at 100,000× g
for 14 h at 4 ◦C (rotor SW41, Beckman Coulter). Exosome containing fractions (corresponding to
a density of 1.08–1.11 g/mL) were collected from the gradient, diluted in PBS and centrifuged at
100,000× g for 60 min at 4 ◦C. The pellet was resuspended in PBS and used for immunogold labeling.

2.6. Immunogold Labeling

For immunogold labeling, MNT-1 derived extracellular vesicles were deposited on carbonated
EM-grids for 20 min. Then grids were fixed with 2% PFA and processed for single immunogold
labelling as reported [23] using TS63a or TS63b and 10 nm protein A gold particles (PAG). The same
samples were double labelled using TS63a or TS63b recognized by PAG 10 nm and followed by a
labelling using an IgG1 CD9 antibody recognized by 5 nm PAG through a rabbit anti mouse secondary
antibody. All samples were analyzed with a Tecnai Spirit electron microscope (FEI Company, Eindhoven
Netherlands), and digital acquisitions were made with a numeric camera (Quemesa, EMSIS GmbH,
Münster, Germany).

3. Results and Discussion

To select cells expressing IgG2a or IgG2b at their cell surface, the hybridoma cells producing
the TS63 mAb were incubated with Alexa 647-labelled goat anti-mouse IgG2a or IgG2b, or a Dylight
650-labelled goat anti-rabbit antibody as a control, and the intensity of labelling was analyzed by
flow-cytometry. As exemplified for the staining of IgG2a in Figure 1A, there was no major difference
between the labelling with the anti-subclass antibodies and the control antibody, indicating that most
of the “positive” signal observed was non-specific. The cells displaying the highest level of staining
(~0.3%) with the anti-IgG2a or anti-IgG2b mAbs were sorted and grown until sufficiently concentrated
for further analysis.

The enrichment of TS63 variants of the IgG2a and IgG2b subclasses was tested by comparing by
flow-cytometry the staining intensity of HeLa cells with the conditioned medium of sorted TS63 cells
with that of parental TS63 cells, using anti IgG2a, IgG2b or IgG1 secondary antibodies. As shown
in Figure 1B, there was a slight increase in the labelling of HeLa cells by the supernatant of anti
IgG2a-sorted TS63 cells, using the anti-IgG2a antibodies. This was not due to a lower mAb concentration
in the parental TS63 medium, because this medium gave a higher staining when the secondary reagent
was an anti-IgG1 antibody. Thus, this first sorting slightly enriched the culture in IgG2a-secreting cells.
Similar results were obtained for the selection of IgG2b-secreting cells (not shown).
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channel (FL1). Note that there is no difference between the two labelings indicating that most of the 
“positive” signal is non-specific. The gate used to sort the cells with the highest level of staining is 
drawn in the bottom dot-blot. (B) After being grown for a few days, the supernatant of the sorted cells 
was used to stain HeLa cells by indirect immunofluorescence, using either anti (α)-IgG1 or anti-IgG2a 
polyclonal antibodies coupled to Alexa 647 as secondary reagents. A staining with the conditioned 
medium of parental TS63 cells was performed in parallel. The fluorescence staining of the cells was 
analyzed by flow-cytometry. Note that the supernatant of sorted cells stains HeLa cells slightly better 
than that of parental cells when the binding of the mAb is revealed by an anti-IgG2a antibody. (C) 
After amplification, the cells sorted in A were subjected to a second sorting. Note that there is a 
specific cell population uniquely detected by the anti-mouse IgG2a labeling. The gate used to sort the 
cells is drawn in the bottom dot-blot. (D) Labelling of HeLa cells as in B after growing the cells sorted 
the second time for a few days. Note that the staining of HeLa cells by the supernatant of the sorted 
cells is similar whether the binding of the mAb is revealed by an anti-IgG2a antibody or an anti-IgG1 
antibody. 
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Figure 1. Selection of IgG2a variants of TS63. (A) Hybridoma cells were labelled with either a control
secondary antibody (a goat anti-rabbit coupled to Dylight 650 (DL 650)) or a goat anti-mouse IgG2a
coupled to Alexa Fluor 647 (AF 647). The dot plots show for each cell the value of the Dylight 650
or Alexa 647 fluorescence in the far red Channel (FL4) and that of the autofluorescence in the green
channel (FL1). Note that there is no difference between the two labelings indicating that most of the
“positive” signal is non-specific. The gate used to sort the cells with the highest level of staining is
drawn in the bottom dot-blot. (B) After being grown for a few days, the supernatant of the sorted cells
was used to stain HeLa cells by indirect immunofluorescence, using either anti (α)-IgG1 or anti-IgG2a
polyclonal antibodies coupled to Alexa 647 as secondary reagents. A staining with the conditioned
medium of parental TS63 cells was performed in parallel. The fluorescence staining of the cells was
analyzed by flow-cytometry. Note that the supernatant of sorted cells stains HeLa cells slightly better
than that of parental cells when the binding of the mAb is revealed by an anti-IgG2a antibody. (C) After
amplification, the cells sorted in A were subjected to a second sorting. Note that there is a specific cell
population uniquely detected by the anti-mouse IgG2a labeling. The gate used to sort the cells is drawn
in the bottom dot-blot. (D) Labelling of HeLa cells as in B after growing the cells sorted the second time
for a few days. Note that the staining of HeLa cells by the supernatant of the sorted cells is similar
whether the binding of the mAb is revealed by an anti-IgG2a antibody or an anti-IgG1 antibody.

To further enrich the culture in cells secreting the desired subclass, a second cell sorting was
performed after labelling the hybridoma cells under the same condition. As shown in Figure 1C, a new
population of TS63 cells was present after labelling with the anti-IgG2a Ab but not after labelling with
the control Ab. This population strongly labelled with the anti-IgG2a antibody had a lower green
auto-fluorescence intensity (FL1) than the other strongly labelled cells (which were also present in the
control sample), suggesting that these other cells may correspond to damaged cells. We isolated this
new cell population (~0.5%) and after a few days of culture tested their supernatant for the labelling
of HeLa cells. As shown in Figure 1D, the conditioned medium of these cells clearly stained HeLa
cells even when an anti IgG2a Ab was used as a secondary reagent, indicating a strong enrichment of
cells producing an IgG2a variant of TS63. Similarly, a second sorting using anti-IgG2b Ab enriched
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the culture in IgG2b-producing cells (data not shown). In order to obtain a pure population of cells
secreting the IgG2a or IgG2b variants, the cells obtained after the second sorting were cloned by limited
dilution and selected based on the binding to HeLa cells and recognition by either anti-IgG2a or IgG2b
antibodies. Ten out of 22 clones tested were IgG2a, and 15 out of 24 were IgG2b. Considering the
fraction of cells selected in the two sortings, the percent of switch variants in the original cell culture
was determined to be between 10−5 and 10−6, consistent with previous reports [16–18].

One clone of each subclass was selected for further analysis. We verified that the new variants,
TS63a (IgG2a) and TS63b (IgG2b), kept the properties of the parental TS63 mAb. As shown in Figure 2,
both antibodies strongly recognized CD63 by Western-blot in control cells, but not in cells depleted of
CD63 by RNA interference and were able to immunoprecipitate CD63 with a similar efficiency to that
of TS63.
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Figure 2. Validation that the TS63 variants recognize CD63. (A) Western-blot analysis, using the
different TS63 variant or a CD9 mAb as a control, of HeLa cell lysates after treatment or not with a
siRNA targeting CD63 or a control siRNA. (B) Immunoprecipitations using the different TS63 variants
or CD9 and CD55 mAb as a control. The presence of CD63 and CD9 in the immunoprecipitates was
analyzed by Western-blot using biotin-labeled TS63 and TS9 mAbs.

We then tested whether these antibodies can be used as organelle markers in combination with
IgG1 antibodies to other target molecules, and using anti IgG2a, IgG2b and IgG1 secondary antibodies.
For this purpose, we labeled permeabilized HeLa cells with TS63a or TS63b mAbs and selected mAbs
to various compartments. As shown in Figure 3, the labelling of CD63 with either TS63a or TS63b gave
a different staining pattern from that obtained with IgG1 mAbs to markers of the cis-Golgi (GM130),
early-endosome (EEA1) or the plasma membrane (CD9). The staining of TS63b was also different
from the staining of a marker of the endoplasmic reticulum (PDI) recognized by a mAb of the IgG2a
subclass. In contrast, and as expected, the staining with TS63a strongly overlapped with that of another
late endosome marker (LAMP2, labelled with an IgG1 mAb). Thus, TS63a and TS63b can be used
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to compare the distribution of proteins recognized by mouse IgG1 mAbs with the localization of
CD63-positive late endosomes.
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Figure 3. Confocal microscopy analysis of CD63 distribution and comparison with other organelle
markers. HeLa cells were grown for two days on coverslips, fixed, permeabilized and stained with
a combination of either TS63a or TS63b, and mAbs of different subclasses to markers of different
compartments. The binding of the antibodies was revealed using goat polyclonal antibodies to mouse
Ig subclasses coupled to AlexaFluor 488 or AlexaFluor 568. GM130: cis-Golgi; EEA1, early endosome;
LAMP2: late endosome; PDI: endoplasmic reticulum; CD9: plasma membrane. Bar: 10 µm.

We finally tested whether TS63a and TS63b can be used for single and double immunogold
labeling of extracellular vesicles for electron microscopy observation. IgG2a and IgG2b isotypes
have the benefit to efficiently bind to protein A coupled to gold particles in contrary to IgG1 primary
antibodies that need to be linked to protein A via a “bridge” antibody such as a rabbit anti-mouse
antibody, hence reducing both the risk of background staining and the time required to perform the
staining. We first labeled extracellular vesicles isolated from the culture supernatant of the human
melanocytic cell line MNT-1, which are enriched in CD63 [24]. As shown in Figure 4, both isotype
revealed a specific labeling of a subpopulation of vesicles with a high efficiency. Pellets of isolated
extracellular vesicles often consist of subpopulations of vesicles that can display subtle differences in
terms of composition [25,26]. It is therefore of interest to co-label extracellular vesicles to distinguish
sub-populations. We then tested whether TS63a and TS63b can be used in combination with IgG1
antibodies targeting CD9, a tetraspanin also enriched in extracellular vesicles. Double immunogold
labeling of MNT-1 derived extracellular vesicles showed a specific labeling of each isotype and revealed
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subpopulations only labeled for CD63 or CD9 and subpopulations co-labeled by antibodies against
CD63 and CD9. Thus, TS63a and TS63b can be used to label extracellular vesicles and to compare the
distribution CD63 on these vesicles with that of proteins recognized by mouse IgG1 mAbs.
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CD63 or CD9 (indicated by white star) or co-labelled for both. Inset shows a zoom-in of each panel. 
Scale bar: 200 nm. 

  

Figure 4. Immunogold labelling of extracellular vesicles with TS63a and TS63b.Top panels: TS63a or
TS63b were used to label extracellular vesicles derived from MNT-1 cells. Both antibodies revealed
specific and efficient labelling of a proportion of extracellular vesicles. Bottom panels: TS63a or
TS63b were used to co-label extracellular vesicles derived from MNT-1 cells with anti-CD9 antibody.
Both antibodies displayed distinct and specific labelling for each tetraspanin (10 nm gold particles for
CD63 and 5 nm particles for CD9) and revealed subpopulations of extracellular singly labelled for
either CD63 or CD9 (indicated by white star) or co-labelled for both. Inset shows a zoom-in of each
panel. Scale bar: 200 nm.

4. Conclusions

We were able to generate in a few weeks and with limited manipulations IgG2a and IgG2b variant
of TS63, a mAb directed to CD63, a marker of late endosomes, lysosome-related organelles as well
as exosomes. We have also demonstrated the interest of these new mAbs for the analysis of the
distribution of proteins recognized by mAbs of the IgG1 subclass, whether by confocal microscopy
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or electron microscopy. These mAbs may be useful for a variety of additional technical approaches
such as ELISA or flow cytometry analysis. They may be used for example to analyze by multi-color
flow cytometry the activation state of mast cells or other pertinent cells together with the level of
expression of other proteins when only unlabeled IgG1 mAbs to these proteins are available. Applying
the approach used in this study to generate antibodies of different subclass to other mAbs directed to
various organelle markers may considerably increase the possibility of performing multi-color labelling
using anti mouse IgG isotypes as secondary reagents.
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