
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Daisuke Yabe,
Gifu University, Japan

REVIEWED BY

Valentina Marı́a Parra,
University of Chile, Chile
Xiaoqiang Tang,
Sichuan University, China

*CORRESPONDENCE

Panai Song
spa863@csu.edu.cn

SPECIALTY SECTION

This article was submitted to
Renal Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 04 March 2022
ACCEPTED 11 July 2022

PUBLISHED 05 August 2022

CITATION

Tang H, Yang M, Liu Y, Zhu X, Liu S,
Liu H, Sun L and Song P (2022)
Melatonin alleviates renal injury
by activating mitophagy in
diabetic nephropathy.
Front. Endocrinol. 13:889729.
doi: 10.3389/fendo.2022.889729

COPYRIGHT

© 2022 Tang, Yang, Liu, Zhu, Liu, Liu,
Sun and Song. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 05 August 2022

DOI 10.3389/fendo.2022.889729
Melatonin alleviates renal injury
by activating mitophagy in
diabetic nephropathy

Hanfen Tang1,2, Ming Yang1,3, Yinghong Liu1,3, Xuejing Zhu1,3,
Shiping Liu2, Hong Liu1,3, Lin Sun1,3 and Panai Song1,3*

1Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China,
2Department of Nutrition, Second Xiangya Hospital, Central South University, Changsha, China,
3Key Laboratory of Kidney Disease & Blood Purification in Hunan Province, Institute of Nephrology,
Central South University, Changsha, China
Diabetic nephropathy (DN) causes serious renal tubule and interstitial damage,

but effective prevention and treatment measures are lacking. Abnormal

mitophagy may be involved in the progression of DN, but its upstream and

downstream regulatory mechanisms remain unclear. Melatonin, a pineal

hormone associated with circadian rhythms, is involved in regulating

mitochondrial homeostasis. Here, we demonstrated abnormal mitophagy in

the kidneys of DN mice or high glucose (HG)-treated HK-2 cells, which was

accompanied by increased oxidative stress and inflammation. At the same time,

the melatonin treatment alleviated kidney damage. After mitochondrial

isolation, we found that melatonin promoted AMPK phosphorylation and

accelerated the translocation of PINK1 and Parkin to the mitochondria,

thereby activating mitophagy, reducing oxidative stress, and inhibiting

inflammation. Interestingly, the renal protective effect of melatonin can be

partially blocked by downregulation of PINK1 and inhibition of AMPK. Our

studies demonstrated for the first time that melatonin plays a protective role in

DN through the AMPK-PINK1-mitophagy pathway.
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Introduction

With the development of the social economy and the improvement of living

standards, the incidence of diabetes is increasing. Long-term hyperglycemia can lead

to a series of microvascular complications in diabetic patients, such as diabetic

nephropathy (DN) (1) and diabetic retinopathy (DR) (2). Approximately 30 to 40%

of diabetes mellitus (DM) will develop into DN (3). At present, DN has become an

important cause of end-stage renal disease (ESRD). However, the prevention and

treatment of DN in clinical practice is very limited, and there is a lack of specific drugs
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to treat it. Therefore, a thorough understanding of its

pathogenesis is conducive to developing new medicines for

DN. Recently, multiple factors have been reported to be

involved in the progression of renal injury in DN, such as

hypoxia (4, 5) and oxidative stress (6). However, these factors

cannot fully reveal the occurrence and progression of DN.

Therefore, it is necessary to further explore the molecular

mechanism of DN.

As one of the organs with high metabolism, the kidney

contains a large number of mitochondria to maintain its

physiological function (7). In the state of DN, the kidney

needs a large amount of ATP to resist the influence of high

glucose (7), and the mitochondria are in a long-term overloaded

state. Damaged mitochondria can release many mitochondrial

contents, leading to inflammation and apoptosis (7–10).

Therefore, timely clearance of damaged mitochondria can help

prevent further damage, a process called mitophagy (11). Some

studies have revealed the existence of abnormal mitophagy in the

kidneys of DN (12) and activation of mitophagy can alleviate

tubular injury in DN (13, 14). However, the upstream and

downstream regulatory mechanisms of DN have not been

clearly described. Melatonin, a pineal hormone associated with

circadian rhythms, is involved in mitochondrial homeostasis

regulation (15), energy metabolism (16), lipid regulation (17),

and reproduction (18). Interestingly, mitochondrial dysfunction

(12), abnormalities of energy homeostasis (19) and disorders of

lipid metabolism (20) are closely related to the occurrence of

DN. Unfortunately, the role of melatonin in DN has been

poorly studied.

This study noted abnormal mitophagy in the kidneys of DN

mice or high glucose (HG)-treated HK-2 cells, accompanied by

increased oxidative stress and inflammation. Melatonin can

phosphorylate AMPK, increase mitophagy and alleviate renal

injury, while downregulation of PINK1 or inhibition of AMPK

can partially block these effects. Our results suggest that

melatonin plays a renoprotective role in DN through the

AMPK-PINK1-mitophagy pathway.
Materials and methods

Animal models

Eight-week-old C57BL/6 male mice were obtained from

Slyke Jingda Biotechnology Company (Hunan, China). All

animal models were divided into three groups: the wild type

group (WT); DN group; and DN + melatonin group (n = 6).

Eight-week-old C57BL/6 male mice were fed a high-fat diet for 1

month and then were subjected to an intraperitoneal injection of

STZ (Sigma-Aldrich, 50 mg/kg body weight/day) for 5

consecutive days to induce the diabetic mouse model. Three

days after the last injection, the blood glucose level was ≥16.6
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mmol/L, and the diabetes mouse model was considered

successful. The diabetic mice continued feeding for 12 weeks

to induce diabetic kidney damage. For the DN + melatonin

group, diabetic mice were treated with melatonin (0.2mg/kg/

day) for 12 weeks. The mice were euthanized at 24 weeks, and

blood, urine, and kidney samples were collected for subsequent

analysis. All animal experiments were approved by the

Institutional Committee for Care and Use of Laboratory

Animals at Central South University, China.
Renal histology

Hematoxylin and eosin (HE) and Masson staining of paraffin

sections of kidney tissue were performed to observe pathological

injury of the kidney. Renal tubulointerstitial injury was evaluated

by a semiquantitative scoring system as previously described (21).

Briefly, a score of 0 means no interstitial fibrosis and tubular

atrophy, while scores of 1, 2 and 3 represent interstitial fibrosis

and tubular atrophy areas less than 25 percent, less than 50

percent, and more than 50 percent, respectively.
Immunohistofluorescence (IHF) staining

Four-micron-thick renal paraffin sections were used for IHF

staining. Briefly, after paraffin section dewaxing, rehydration,

antigen repair, permeability, and blocking, the renal tissues were

incubated with anti-F4/80 rabbit polyclonal antibody

(Servicebio, GB11027, 1:500, Wuhan, China), anti-fibronectin

(FN) rabbit polyclonal antibody (Servicebio, GB114057, 1:200,

Wuhan, China), anti-a-SMA rabbit polyclonal antibody

(Servicebio, GB111364, 1:400, Wuhan, China) and anti-NLRP3

rabbit polyclonal antibody (Servicebio, GB11300, 1:600, Wuhan,

China) at 4°C overnight. After rewarming, the kidney tissue was

incubated with a secondary antibody at room temperature for 1

hour. After staining the nucleus, the renal paraffin sections were

observed and photographed under a fluorescence microscope.

For costaining, after dewaxing, rehydration, antigen repair,

permeability and blocking, anti-LC3B (Proteintech, 14600-1-

AP, 1:200) antibody and anti-COXIV antibody (Abcam,

ab33985, 1:500) were incubated in renal tissue simultaneously

at 4°C overnight. After rewarming, the kidney tissue was

incubated with anti-mouse and anti-rabbit secondary

antibodies at room temperature for 1 hour simultaneously.

Then the nuclei were stained and photographed.
Dihydroethidium (DHE) staining

6-mm-thick unfixed cryostat sections of renal tissues were

stained with the cell-permeable agent dihydroethidium (1 mM,
frontiersin.or
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DHE, Sigma-Aldrich) in the dark for 20 min, followed by

fluorescence microscopy to assess ROS production in

renal tissue.
Western blotting

The protein concentrations extracted from renal tissue or

HK-2 cells were quantified by a BCA Protein Assay Kit

(Beyotime Biotechnology, China). Then the samples were

mixed with 5× SDS loading buffer and heated it at 95°C for 5

minutes. Equal amounts of proteins were used for western

blot analysis.
Cell culture

The renal human proximal tubular epithelial cell line HK-2

was obtained from ATCC, and DMEM/F12 (Gibco, USA)

containing 10% fetal bovine serum (Gibco, USA) was used to

culture HK-2 cells (the human proximal tubular epithelial cell

line) in an incubator with 5% CO2 at 37°C. After overnight

culture in serum-free medium, the HK-2 cells were pretreated

with 100 mmol/L melatonin (Selleck, USA) for 1 h, followed by

high glucose (30 mmol/L) intervention for 24 h. The cells were

collected for subsequent experiments.
DCFDA staining

The cells with different interventions were washed with PBS

and then incubated with DCFDA (1:1000, Invitrogen) in the

dark for 30 min, followed by fluorescence microscopy to assess

ROS production in cells.
Confocal

Cells in different groups were stained with MitoTracker

(Invitrogen, M22426, 1:1000) for 8 min and then fixed and

blocked, followed by LC3B (Proteintech, 14600-1-AP, 1:200)

incubation overnight at 4°C. A fluorescence-conjugated

secondary antibody was used to incubate cells for 1 h at

room temperature . Then, the nucleus was stained

and photographed.
Statistical analyses

The experimental data were analyzed by SPSS 13.0

software. The results are presented as the means ± SD. The

differences among the groups were compared using one-way
Frontiers in Endocrinology 03
ANOVA. Statistical significance was indicated at a P value

less than 0.05.
Results

Melatonin ameliorated biochemical
indices and pathological damage in
diabetic nephropathy mice

Significantly increased blood glucose levels (Figure 1A), and

reduced body weight (Figure 1B) were observed in the STZ-

induced DN mouse model. In addition, the levels of proteinuria

(Figure 1C), serum creatinine (Figure 1D), BUN (Figure 1E), and

urinary NAG (Figure 1F) were notably increased in DN mice

compared with in the control group, while the intervention of

melatonin could mitigate these adverse changes in addition to

the blood glucose level and body weight. Furthermore, HE

staining showed that an increase in glomerular matrix, dilation

of tubules, and exfoliation of nuclei were observed in the kidneys

of DN mice compared to the control (Figure 1G), and this

pathological renal injury was obviously relieved by melatonin

treatment, as indicated by tubular interstitial damage

scores (Figure 1H).
Melatonin ameliorated oxidative stress
and fibrosis in the kidney of DN mice

DHE staining showed that ROS levels were increased

significantly in the kidneys of DN mice compared to the control,

while melatonin significantly downregulated oxidative stress levels

(Figures 2A, B). The level of renal fibrosis was determined by the

expression level of fibrotic proteins (FN and a-SMA) and Masson

staining. IHF staining showed increased expression of FN

(Figures 2C, D) and a-SMA (Figures 2C, E) in DN mice. Masson

staining also revealed increased levels of tubulointerstitial fibrosis in

the kidneys of DN mice. Interestingly, these adverse changes were

ameliorated by melatonin treatment (Figures 2C–E). To further

confirm the above results, the expression levels of FN and a-SMA

were detected by WB analysis. Similar results were obtained: the

expression levels of FN and a-SMA were upregulated in DN mice,

and melatonin downregulated their expression levels

(Figures 2F, G).
Melatonin promoted phosphorylation of
AMPK and inhibits inflammation in the
kidney of DN mice

IHF staining showed that the downregulated p-AMPK

expression was observed in the kidneys of DN mice
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(Figures 3A, B), which was accompanied by upregulated NLRP3

expression (Figures 3A, C) and increased F4/80 positive cells

(infiltration of macrophages) (Figures 3A, D). These changes

were reversed by melatonin treatment. Moreover, WB analysis

also showed decreased p-AMPK expression in DN mice, and

melatonin reversed the downregulation of p-AMPK induced by

diabetes (Figures 3E, F). There were no significant changes in

total AMPK expression. Similarly, the mRNA levels of

the inflammatory cytokines TNF-a (Figure 3G), IL-1b
(Figure 3H), and IL-18 (Figure 3I) were increased in

the kidneys of DN mice, while melatonin treatment

relieved inflammation.
Melatonin restored mitophagy
dysfunction in the kidney induced
by diabetes

As shown in Figure 4A, mitophagy was observed by

costaining mitochondrial protein (COX IV, red) and LC3B

(green) in the paraffin section of kidney tissue and the
Frontiers in Endocrinology 04
overlapping regions (yellow) represented mitophagy.

Compared with the control group, mitophagy activity (yellow

area) was significantly reduced in the kidney of the DN group,

while it was reactivated after melatonin administration

(Figure 4A). Furthermore, to evaluate mitophagy more

accurately, we separated the mitochondria and cytoplasm to

observe the expression changes of crucial proteins in mitophagy.

WB analysis showed that HFD+STZ treatment significantly

downregulated PINK1 and Parkin expression levels in both

the mitochondria and cytoplasm. Interestingly, melatonin

significantly increased the expression of PINK1 and Parkin in

mitochondria but did not affect their expression in the cytoplasm

(Figures 4B–D). These results indicated that PINK1 and Parkin

located in mitochondria are increased in response to melatonin.

Moreover, downregulated LC3II expression and upregulated

P62 expression (This represents the fluency of autophagy flux)

were observed in both the mitochondria and cytoplasm of DN

mice, while melatonin reversed these changes (Figures 4B, E, F).

This finding indicates that mitophagy is inhibited in DN kidneys

and that melatonin can reactivate mitophagy in renal

tubular cells.
B C

D E F

G H

A

FIGURE 1

The effects of melatonin on biochemical indices and renal pathological changes in the kidneys of DN mice. The blood glucose (A), body weight (B),
proteinuria (C), serum creatinine (D), BUN (E), and urinary NAG levels (F) in different groups of mice. HE staining of renal paraffin tissue in different
groups (G). Tubular injury as assessed by tubular interstitial damage scores (H). The values are the mean ± SD. n = 6/group. *p < 0.05 compared
with the control group; #p < 0.05 compared with the DN group.
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Melatonin restored mitophagy by
promoting phosphorylation of AMPK in
HK-2 cells

To verify the protective mechanism of melatonin on diabetic

kidney injury, we observed changes in mitophagy in HK-2 cells

by inhibiting the expression of PINK1 and using the AMPK

inhibitor Compound C. Mitophagy was detected by co-staining

mitochondria (MitoTracker, red) and LC3B (green) as

previously described (22), and the overlapping regions (yellow)

represent mitophagy. Compared to the control, mitophagy was
Frontiers in Endocrinology 05
obviously inhibited in HK-2 cells treated with HG, while the

effect of HG was negated by melatonin. Furthermore, the

melatonin-restored mitophagy under HG was abolished by

downregulat ion of PINK1 or inhibit ion of AMPK

phosphorylation (Figure 5A). Moreover, we separated the

mitochondria and cytoplasm of HK-2 cells to confirm whether

the translocation of PINK1 and Parkin to mitochondria could be

inhibited by AMPK inhibition. We observed that the expression

levels of PINK1 and Parkin were notably decreased.

In contrast, P62 expression was increased in both the

mitochondria and cytoplasm of HK-2 cells under HG conditions,
B

C D

E

F G

A

FIGURE 2

The effects of melatonin on oxidative stress and fibrosis in the kidneys of DN mice. DHE staining in the kidneys of different groups (A, B). IHF
analysis of FN (upper panel) (C, D) and a-SMA (middle panel) (C. E) in the kidneys of different groups. Masson staining of renal paraffin tissue in
different groups (C, lower panel). Western blot analysis revealed the expression of FN and a-SMA (F, G). The values are the mean ± SD. n = 6/
group. *p < 0.05 compared with the control group; #p < 0.05 compared with the DN group.
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and melatonin promoted the translocation of PINK1 and Parkin

from the cytoplasm to mitochondria and did not significantly affect

their expression levels in the cytoplasm (Figures 5B–D). The

protective effects of melatonin on the kidney and the expression

changes in LC3II and P62 were partially abolished by treatment

with Pink1 siRNA or Compound C (Figures 5B, E, F).
Frontiers in Endocrinology 06
Melatonin relieved inflammation and
fibrosis in HK-2 cells treated with HG

Then, we explored the effects of melatonin on inflammation

and fibrosis. WB analysis showed decreased p-AMPK expression

in HK-2 cells treated with HG treatment, and melatonin restored
B

C

D

E

F

G H I

A

FIGURE 3

The effects of melatonin on the expression of p-AMPK and inflammation in the kidneys of DN mice. IHF analysis of p-AMPK (A, upper panel, B),
NLRP3 (A, middle panel, C), and F4/80 (A, lower panel, D) in the kidneys of different groups. Western blot analysis revealed the expression of p-
AMPK and AMPK (E, F). The mRNA levels of TNF-a (G), IL-1b (H), and IL-18 (I) in the different groups. The values are the mean ± SD. n = 6/
group. *p < 0.05 compared with the control group; #p < 0.05 compared with the DN group.
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FIGURE 4

The effects of melatonin on mitophagy in the kidneys of DN mice. Costaining for COX IV (A, upper panel) and LC3B (A, second panel) observed
the mitophagy changes. Western blot analysis of PINK1, Parkin, Parkin, LC3II, and P62 protein expression in mitochondria (left panels) and
cytoplasm (right panels) (B). Quantitative analysis of PINK1 (C), Parkin (D), LC3II (E), and P62 (F). The values are the mean ± SD. n = 6/group.
*p < 0.05 compared with the control group; #p < 0.05 compared with the DN group.
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B

C D E F

A

FIGURE 5

Metformin activated mitophagy in HK-2 cells treated with HG through the p-AMPK-PINK1 pathway. Mitophagy was detected by co-staining of
MitoTracker and LC3B (A). Western blot analysis of PINK1, Parkin, Parkin, LC3II, and P62 protein expression in mitochondria (left panels) and
cytoplasm (right panels) (B). Quantitative analysis of PINK1 (C), Parkin (D), LC3II (E), and P62 (F). The values are the mean ± SD. n = 4/group.
*p < 0.05 compared with the control group; #p < 0.05 compared with the HG group. @p < 0.05 compared with the HG+MEL group.
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p-AMPK expression (Figures 6A, B). There were no apparent

changes in total AMPK expression (Figures 6A, C). In addition,

the expression levels of NLRP3 and a-SMA were significantly

increased in HK-2 cells under HG conditions, and melatonin led

to the restoration of HG-induced NLRP3 and a-SMA

expression. At the same time, the effect was partially inhibited

by PINK1 siRNA or Compound C (Figures 6A, D, E). Similarly,

intracellular oxidative stress levels and the mRNA levels of IL-1b
and IL-18 were increased under HG conditions, while melatonin

reduced the increased expression induced by HG, and PINK1

siRNA or Compound C partially blocked the effects of melatonin

(Figures 6F–H).
Discussion

Previous studies have considered that the renal damage

caused by diabetes is mainly in the glomerulus, but the latest

study shows that renal tubular injury is independent of the

glomerulus and even earlier than the glomerulus (7). Multiple

factors have been revealed to cause diabetes-induced renal
Frontiers in Endocrinology 08
damage, such as reactive oxygen species (23) and advanced

glycosylation end products (24), which can lead to

tubulointerstitial inflammation and fibrosis, promoting the

progression of DN. However, these hypotheses cannot fully

explain the pathogenesis of renal injury in DN. This study

revealed that melatonin upregulated mitophagy by activating

AMPK, alleviating renal inflammation and interstitial fibrosis.

As a highly metabolized organ, tubule cells need a large

number of mitochondria to ensure their reabsorption function.

Oxidative phosphorylation (OXPHOS) in mitochondria is the

primary source of ATP production, and this process involves

producing a large number of reactive oxygen species. Damaged

mitochondria need to be removed in time; otherwise, the

substances in the damaged mitochondria will leak into the

cytoplasm, further aggravating cell damage. Zhan et al.

demonstrated that there was a large amount of mitochondrial

fragmentation accompanied by increased production of ROS

and increased apoptosis in the kidneys of DNmice, while the use

of drugs to restore mitochondrial function can alleviate kidney

damage (25). A similar result was also observed by Ward et al.

when db/db mice were treated with Mito. Q, a mitochondria-
B C

D E

F

G H

A

FIGURE 6

The effect of metformin on oxidative stress, inflammation, and fibrosis in HK-2 cells treated with HG. Western blot analysis of p-AMPK
(A, B), AMPK (A, C), NLRP3 (A, D), and SMA (A, E) expression. DCFDA staining was used to detect intracellular oxidative stress (F). The
mRNA levels of IL-1b (G) and IL-18 (H) in the different groups. The values are the mean ± SD. n = 4/group. *p < 0.05 compared with
the control group; #p < 0.05 compared with the HG group. @p < 0.05 compared with the HG+MEL group.
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targeted protective agent, and diabetes-induced renal damage

was significantly improved compared to the control (26). These

evidences suggest that mitochondrial dysfunction plays a vital

role in renal injury in DN. Autophagy is the process by which

cells remove excess or damaged organelles in time to adapt to

changes in the environment (27). Autophagy can be divided into

macroautophagy (28), microautophagy (29), and chaperone-

mediated autophagy (CMA) (30), according to the occurrence

process. Macroautophagy can be divided into mitophagy (31),

ER-phagy (32), lipophagy (33), and so on. Mitophagy can

temporarily remove damaged mitochondria from cells to

prevent them from releasing contents and exacerbating cell

damage. Several studies have revealed that disordered

mitophagy can promote the progression of DN. There were

mitophagy defects, decreased mitochondrial membrane

potential, and increased mitochondrial reactive oxygen species

(mtROS), accompanied by downregulated PINK and Parkin

expression and increased apoptosis in the kidney of db/db

mice (34). A similar result was also observed by Lu et al.

Mitophagy was destroyed, and apoptosis was increased in HK-

2 cells treated with high glucose, while mitophagy was restored

with reduced apoptosis and alleviated kidney damage (35). This

study noted that the inhibition of mitophagy was accompanied

by increased oxidative stress, inflammation, and apoptosis in

HFD+STZ induced DN mice and HG-treated HK-2 cells.

Moreover, after the isolation of mitochondria, we found that

the levels of PINK1 and Parkin (the critical proteins of

mitophagy) located in mitochondria were reduced, while their

levels in the cytoplasm did not change significantly. This

evidence suggests that there is serious mitophagy disorder in

renal tubular cells in DN.

Melatonin is a pineal hormone associated with circadian

rhythms, and it can also be synthesized in extra-pineal tissues

such, as the heart, liver, placenta, skin, kidney, and intestine

(36–38). It regulates various life activities, such as energy

metabolism, lipid regulation and reproduction, pregnancy,

and fetal development (39). Recently, the relationship

between melatonin and autophagy has been partially

revealed. Stacchiotti et al. have shown that melatonin could

alleviate liver metabolism and steatosis, restore autophagy

flux and ameliorate mitochondrial damage in the liver of

high-fat-fed mice (40). Similarly, Wang et al. demonstrated

that melatonin could regulate the interaction between

autophagy and apoptosis through SIRT3, thereby alleviating

cadmium-induced testicular injury (41). However, in kidney

disease, the relationship between melatonin and autophagy,

especially mitophagy, has rarely been studied. It has been

reported that melatonin could alleviate mitochondrial

oxidative damage by promoting AMPK phosphorylation

(42). AMPK phosphorylation is inhibited in DN kidneys

(43, 44). In addition, studies have confirmed that AMPK

was a key molecule regulating mitophagy activity (45, 46).

Activation of mitochondrial autophagy can ensure timely
Frontiers in Endocrinology 09
clearance of damaged mitochondria, thereby reducing

oxidative stress and cellular inflammation (7). Therefore,

AMPK and mitophagy may be potential targets of

melatonin in DN. Here, we found that melatonin could

restore the decreased mitophagy activity caused by diabetes

in the kidneys of DN mice or HG-treated HK-2 cells.

Mechanist ical ly , melatonin activates mitophagy by

promoting AMPK phosphorylation. The expression of

PINK1 and Parkin in mitochondria was increased in the

kidneys of DN+MEL mice and HG treated HK-2 cells

compared to the control. At the same time, their expression

did not change significantly in the cytoplasm. This suggests

that melatonin can dramatically promote the activation of

mitophagy. Interestingly, when PINK1 or AMPK was

inhibited, the mitophagy activity restored by melatonin was

also inhibited. This evidence further suggests that melatonin

activates mitophagy by promoting AMPK phosphorylation.

However, what is the molecular mechanism by which

melatonin regulates AMPK activity? Rui et al. demonstrated

that melatonin could downregulate cAMP levels through

melatonin 1A receptor (MT1R), thereby activating AMPK

phosphorylation to ameliorate lipid metabolism (47). Thus,

the MT1R-cAMP axis is the potential mechanism by which

melatonin activates AMPK in the regulation of mitophagy.

Although this study showed that melatonin played a

renoprotective role in DN through the AMPK-PINK1-

mitophagy pathway, there are still some problems to be solved

in the future in this research. What is the molecular mechanism

by which melatonin promotes AMPK phosphorylation? Can the

simultaneous intervention of melatonin and Compound C (an

AMPK inhibitor) in diabetic mice block the protective effect of

melatonin in the kidneys of diabetic mice? Although there are

some limitations, this study shows a protective effect of

melatonin in DN, which is expected to be used to treat DN in

the near future.
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